Новости термоядерная физика

Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость.

Прорыв в термоядерном синтезе

В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Хорошие новости продолжают поступать в области исследований ядерного синтеза. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии.

Мегаджоули управляемого термоядерного синтеза

Современная наука пришла к выводу, что при наименьшей исходной температуре наибольшее количество энергии производит реакция между изотопами водорода — дейтерием и тритием. Но для этого важны три условия: высокая температура порядка 150 млн градусов по Цельсию , высокая плотность плазмы и высокое время ее удержания. Дело в том, что создать такую колоссальную плотность, как у Солнца, нам не удастся. Остается только нагревать газ до состояния плазмы посредством сверхвысоких температур. Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров с подачи Олега Лаврентьева в 1950-е годы предложил использовать тороидальные в виде пустотелого бублика камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали — токамак. Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность кручения турбин, например в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины.

Первый токамак в мире. Советский Т-1. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко. Монтаж Т-15. Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет — его в мире производят десятками тысяч тонн в год.

Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 — это безвредный инертный газ. К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы. Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.

И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы. К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии.

На Солнце этот процесс приводится в действие силой гравитации. Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция. Первые эксперименты, первоначально запланированные на 2018 год, были перенесены на 2025 год.

Большинство исследований пока связаны с т. Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам. Хотя многие учёные считают, что до появления термоядерных электростанций пройдут ещё десятилетия, новости невозможно игнорировать. Термоядерные реакции намного безопаснее с экологической точки зрения, чем обычные ядерные. К тому же даже небольшое количество водорода в теории способно снабжать дом энергией в течение сотен лет. Это особенно актуально на фоне роста цен на углеводороды и глобального потепления.

Когда работает токамак, в его камеру постоянно поступает газообразное топливо, например, смесь трития и дейтерия. Имеются специальные быстродействующие клапаны, через которые поступает топливо. Если на термоядерной электростанции образуется внештатная, аварийная ситуация, то мгновенно закрываются клапаны, топливо прекращает поступать, той энергии, которая накоплена, для взрыва недостаточно, она может только сломать установку, прожечь камеру. Токамаки, конечно, нельзя считать полностью безопасными. Опасность заключается в том, что, когда сливаются ядра легких элементов, в частности, дейтерия и трития, образуется ядро гелия и быстрый нейтрон. Нейтроны поглощаются внешней оболочкой. Какая бы оболочка ни была, она становится радиоактивной. Эту радиоактивную оболочку через 20-30 лет надо менять. Но период полураспада там лет 15-20. Роботы убирают эту оболочку, заменяют на другую, радиоактивную где-то кладут — не хоронят, а кладут, и через 20 лет ее можно использовать снова. Период полураспада прошел, она становится нерадиоактивной. Снова можно использовать в установке. Это другие элементы. В мире, как уже было сказано, много работающих токамаков, и на каждом стоит своя система управления плазмой, свои алгоритмы управления, каждая команда разрабатывает свои системы. Так происходит потому, что систему управления плазмой нельзя перенести один к одному с одного токамака на другой, из-за того, что токамаки все разные, имеют разные электромагнитные системы. Мы предложили свою классификацию, основанную на анализе литературы. Изначально аббревиатура «токамак» пришла из Курчатовского института тогда он назывался Институт атомной энергии им. Курчатова , где токамаки и были изобретены, и где в 1954 г. За рубежом тогда уже были установки типа стеллараторы, отличающиеся от токамаков отсутствием в них тороидального тока. На данный момент многие стеллараторы переделаны в токамаки, тем не менее, в некоторых странах они сохраняются, и с их помощью также продолжаются попытки приблизить плазму к термоядерной. Вообще токамаков за всю историю существования, с 1954 г. Но он морально и физически устарел, ему 40 с лишним лет. В Курчатовском институте сооружается современный токамак с вытянутым по вертикали поперечным сечением Т-15, но окончательные сроки вывода данной установки на проектные режимы не определены. Но параметры плазмы на этой установке относительно высокие, они составляют конкуренцию зарубежным установкам аналогичного типа... Нашей команде сейчас требуется в минимальном объеме всего 10 млн руб. Нам вообще ничего не нужно, кроме аппаратуры реального времени, и еще некоторый объем средств на зарплату и командировки, чтобы молодые люди не уходили в коммерческие компании. И мы тогда можем идти по намеченному пути. В заключение можно отметить тот факт, что первая атомная электростанция была введена в эксплуатацию в городе Обнинск в 1954 году, а пуск первого токамака произведен также в 1954 году в ИАЭ им. Но это была экспериментальная установка и все последующие, включая ITER, — также экспериментальные установки типа токамак. Беседу вела Ирина Татевосян 2018 год Тем временем в Китае 30. Он может стать первым реактором ядерного синтеза, генерирующим достаточно энергии для производства электричества. По словам одного из ведущих ученых, Китай сможет производить электроэнергию с помощью предлагаемого "искусственного солнца" уже через десять лет, если проект получит окончательное одобрение правительства. Строительство реактора ядерного синтеза может быть завершено к началу 2030х годов, если официальный Пекин даст добро, сказал профессор Сонг Юнтао сотрудникам средств массовой информации на конференции по контролю за выбросами углерода в Пекине в воскресенье. Китайский испытательный реактор Fusion Engineering Технология термоядерного синтеза, также известная как искусственное солнце, может обеспечить бесконечный запас чистой энергии, имитируя процесс ядерного синтеза на солнце, хотя технические сложности значительны, и попытки международного сообщества разработать данную технологию столкнулись с трудностями и растущими затратами. Руководство страны попросило ученых провести подготовительные работы по созданию Китайского испытательного реактора термоядерного синтеза CFETR , включая проектирование и строительство крупного испытательного центра в городе Хэфэй. Но Сонг, директор Института физики плазмы в Хэфэе, сообщил Beijing News, что окончательное разрешение еще не получено. Цель этого проекта заключается в том, чтобы CFETR стал первой установкой, вырабатывающей электроэнергию за счет тепла термоядерного синтеза.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.
Выбор сделан - токамак плюс - Российская газета Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и.
Термоядерный реактор: что это, как устроен, международный термоядерный реактор ИТЭР Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия.
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика Американцы совершили прорыв в изучении термоядерной энергии.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Международный экспериментальный термоядерный реактор — Википедия Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не.
Термоядерный реактор: что это, как устроен, международный термоядерный реактор ИТЭР Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза.
Ракетчики начали строить термоядерный двигатель Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука" Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Эра термоядерного синтеза Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного.
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Такая схема работы позволяет получить более равномерное обжатие, а также позволяет избежать слишком быстрого испарения внешней оболочки капсулы. Центральная камера сантиметрового размера, внутри которой помещается капсула с топливом. Конечно, последствия термоядерной реакции были замечены, но эта реакция была слабоватой. Даже если сравнивать выделившуюся энергию с той энергией, которая непосредственно поглощается топливом, то выход тут до недавнего времени составлял от силы 20—30 процентов рис. Таким образом, NIF долгое время не удавалось даже достичь первой цели из приведенного выше списка. Результаты работы NIF за последние два с половиной года. По горизонтали отмечены отдельные лазерные «выстрелы» шестизначный номер кодирует год-месяц-день выстрела и для каждого выстрела показаны три величины: энергия, поглощенная топливом черная отметка , энергия, выделившаяся в термоядерном синтезе за счет сжатия синяя колонка , дополнительная термоядерная энергия, связанная с саморазогревом топлива альфа-частицами красная колонка. Полная высота колонки показывает всю термоядерную энергию, выделившуюся при выстреле.

Правая часть гистограммы, отмеченная как «high foot», отвечает новому режиму сжатия капсулы. Вставка показывает распределение выстрелов на диаграмме двух величин: по горизонтали обобщенный критерий Лоусона GLC единица соответствует полноценному запуску реакции , по вертикали — доля нейтронного потока, вызванного разогревом альфа-частицами, по сравнению с прямым сжатием. Изображение из обсуждаемой статьи в Nature Вообще, надо сказать, что работает NIF очень неторопливо — два-три лазерных «выстрела» в месяц. Это и неудивительно: каждый выстрел уничтожает камеру с капсулой и требуется определенное время на ее установку, накопление энергии и подготовку нового выстрела. Из-за этой неторопливости и дороговизны всей установки к концу 2012 года сложилась угрожающая ситуация — руководству NIF пришлось даже отчитываться перед Конгрессом США о целесообразности продолжения этих исследований. Действительно, несколько десятков попыток в течение 2011—2012 годов не привели ни к какому улучшению, а вся работа NIF выглядела топтанием на месте. Тем ценнее то, что удалось в NIF реализовать в 2013 году.

Исследователи научились эффективно применять новую схему управления лазерными лучами. Во-первых, они задавали определенный временной профиль мощности лазерного импульса, а во-вторых, они независимо настраивали частоту разных лазерных лучей, попадающих в камеру под разными углами. Это позволило настраивать зависимость от времени того рентгеновского излучения, которое возникает при испарении камеры и сжимает капсулу. Отчасти с оглядкой на формулы, а отчасти эмпирическим путем был подобран временной профиль, при котором температура испарившейся камеры сначала резко прыгает до миллиона градусов, а потом в два этапа — до 2,5 миллионов такой режим был назван профилем с высоким подножием, «high-foot». При таком нагреве в капсуле запускается три умеренно сильных ударных волны, которые вызывают меньшие деформации, чем раньше. В результате центр капсулы удается сжать до меньших размеров и больших плотностей, что приводит к повышению температуры и более эффективной термоядерной реакции. Действовать методом проб и ошибок — дело очень ответственное при таком неторопливом режиме работы.

Первые несколько комбинаций параметров не принесли успеха, и только три последние попытки позволили резко повысить энергетический выход по сравнению со всеми прошлыми попытками рис. Рекордными оказались выстрелы, произведенные 27 сентября и 19 ноября прошлого года. Опубликованные в статьях результаты относятся прежде всего к этим двум сеансам работы. Рекордные выстрелы Наблюдение за результатами лазерного выстрела велось с помощью целого арсенала инструментов — применялось свыше 50 различных диагностических методик! Это позволило проследить за всеми аспектами схлопывания капсулы и восстановить физические условия в этом процессе. Для рекордных выстрелов были получены следующие данные. Температура доходит до 60 млн градусов, а это уже достаточно для запуска термоядерной реакции синтеза.

Изображения центральной горячей зоны в сеансе работы 27 сентября 2013 года. Изображения a, b — это вид сбоку и сверху в мягких рентгеновских лучах, цвет здесь передает относительную яркость свечения. Изображение c — реконструированный трехмерный профиль области горячей зоны, в которой видны небольшие деформации. Изображение d — нейтронный «снимок» центральной области; красная область отвечает нейтронам с энергией 13—17 МэВ и непосредственно показывает область реакции, голубой цвет — нейтроны с энергией от 6 до 12 МэВ. Изображение из обсуждаемой статьи в Nature Энергетический баланс реакции подводился с помощью рентгеновских и нейтронных наблюдений рис.

То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов.

В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы. Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов. Возможность размещения станции вблизи населенных пунктов из-за отсутствия выделяемых в окружающую среду вредных веществ. Практически неограниченные запасы топлива. Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного. К тому же термоядерный синтез лишен всех недостатков классической атомной энергетики.

Так, первое теоретическое обоснование в своих работах дал Лаврентьев 1950 , чуть позже с аналогичными трудами выступил Спицер из США 1951. Первый токамак , ТМП, был сконструирован в 1958 году в Курчатовском институте. По расчетам, его мощность будет в 30 раз выше аналогичного показателя у JET.

В зависимости от направления вращения магнитного поля плазма в установке либо "тормозится", в результате чего увеличивается время удержания плазмы, либо, напротив, ускоряется, что, в случае ракетного двигателя, создает реактивную тягу. Использовать для удержания плазмы открытые, то есть незамкнутые магнитные ловушки для плазмы при проведении управляемой термоядерной реакции предложил еще в 1950-е гг. Устройство получило название "пробкотрон Будкера" - технически более простой и надежный способ по сравнению с традиционным, так называемым "токамаком".

Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию. Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М.

Вестник РАН, 2021, T. 91, № 5, стр. 470-478

Хорошие новости продолжают поступать в области исследований ядерного синтеза. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». «Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Зачем на самом деле строится самый большой термоядерный реактор.

#термоядерный синтез

Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия. Российские учёные разработали новый материал для термоядерного реактора. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5.

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

Об этом сообщается в пресс-релизе, опубликованном на сайте научной организации; подробно о научном прорыве рассказывает издание Nature. Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility NIF. Реакцию запускали с помощью 192 лазеров, которые нагревали хольраумы — небольшие золотые цилиндры, внутри которых находится капсула со смесью изотопов водорода, трития и дейтерия. Лазеры подали 2,05 мегаджоуля энергии на внутреннюю стенку цилиндра, которая переизлучала ее в виде теплового рентгеновского излучения, вызвавшего взрыв внешней оболочки капсулы, направленный внутрь. Как зародился комплекс National Ignition Facility В 1960-х годах группа ученых из LLNL выдвинула гипотезу о том, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях. Эта революционная идея привела к появлению термоядерного синтеза с инерционным удержанием топлива, положив начало более чем 60-летним исследованиям и разработкам. В конце концов был создан комплекс NIF размером со спортивный стадион, где лазеры используются для создания температур и давлений, подобных тем, что возникают в ядрах звезд и планет-гигантов, а также внутри ядерных взрывов Ударные волны от взрыва заставляют дейтериево-тритиевое топливо сжиматься до давления в сотни гигабар, что создает в его центре горячую точку с температурой около 10 миллионов кельвинов.

В таких условиях экстремальная температура, сравнимая с температурой звезд, приводит к тому, что изотопы водорода начинают сливаться с образованием ядер гелия, высвобождая дополнительную энергию и создавая каскад термоядерных реакций. Термоядерные реакции синтеза производят альфа-частицы, энергия которых нагревает все остальное топливо.

В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т. Знаете, почему термоядерный реактор не могут построить уже 50 лет? Hi-Tech Mail.

Для того, чтобы положительно заряженные ядра слились, нужно преодолеть кулоновское отталкивание, нужна сила, которая их сблизит и удержит достаточно долго, чтобы произошла реакция. Для запуска слияния ядер изотопов водорода — нужны экстремально высокая температура и давление — как в недрах Солнца. Для термоядерной бомбы такие условия создает бомба плутониевая, которая играет роль запала.

Но взрыв водородной бомбы вряд ли можно рассматривать как надежный источник энергии. Магистральным путем для попыток создать устойчиво работающий термоядерный реактор стали токамаки, где плазменный шнур в тороидальной камере удерживает магнитное поле. Ученые рассчитывали, что при достаточно высокой температуре в этом шнуре начнется реакция с положительным выходом энергии, то есть энергии будет выделяться больше, чем затрачено. Рассчитывают они на это и сейчас, и строят в надежде на это международный термоядерный реактор ИТЭР читайте о нем в нашем материале «Солнце в бутылку! Быстрее взрыва Но наш главный герой — устройство, совсем не похожее на токамак. Это установка NIF National Ignition Facility — можно перевести как «Национальная зажигательная лаборатория» была построена в США в конце 1990-х годов для изучения управляемого термоядерного синтеза с инерциальным конфайнментом и непрямым лазерным обжатием. Главное слово в этом длинном поезде терминов — прилагательное «инерциальный». Если вы попытаетесь нагреть капсулу с термоядерным топливом скажем, смесью дейтерия и трития до очень высоких температур, при которых теоретически может начаться реакция синтеза, то задолго до нужного градуса и капсула и ее содержимое испарятся и рассеются в пространстве. Именно поэтому создатели токамаков тратят столько усилий на удержание плазмы в ограниченном объеме, чтобы не терять нужные для синтеза плотность и температуру топливной смеси.

Но если вы сумеете сжать и нагреть топливо очень быстро и очень сильно, то термоядерная реакция в нем будет идти быстрее, чем разлет вещества капсулы и ее охлаждение. Иначе говоря, инерциальное удержание то есть конфайнмент состоит в том, что и реакция, и выделение энергии происходят до того, как вещество наконец соберется разлететься — точно как в термоядерной бомбе после того, как в ней сработает атомный запал. Как это сделать? Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного внутрь симметричного взрыва — имплозии — обычной взрывчатки. В 1978 году в письме в Nature физики из ядерного центра в Арзамасе-16 сообщали , что проводили такие эксперименты в 1955 и 1963 годах и достигли успеха — то есть смогли зафиксировать нейтроны, порожденные, по их мнению, термоядерной реакцией в тритиево-дейтериевой мишени. Но к тому моменту у ученых появился значительно более удобный, чем раствор нитробензола в тетранитрометане , инструмент — лазер. Лазерный пресс Один из изобретателей лазера Николай Басов в 1964 году вместе с коллегами опубликовал в ЖЭТФ статью , где рассматривал тонкости нагрева плазмы лазерным излучением, а уже через несколько лет рассказал о результатах первых экспериментов с мишенью из дейтерида лития и они увидел нейтроны, что могло свидетельствовать о термоядерной реакции. За океаном в то же время ходили похожие идеи. Например, американский «отец» водородной бомбы Эдвард Теллер в 1957 году обдумывал вариант взорвать термоядерное устройство в трехсотметровой полости в толще гранита для получения энергии.

Это заставило его и его сотрудников искать ответы на два вопроса: каким может быть наименьший энергетический выход термоядерной реакции, который бы имел смысл для коммерческого использования, и какого уровня энерговыделения можно добиться, не используя для запуска реакции «ядерный запал». Эти вопросы через некоторое время привели их к мысли об использовании лазера — как способа концентрации энергии в очень небольшом пространстве, что позволяло бы достичь необходимых давлений и температур в маленьком объеме топлива, горения которого бы не было разрушительным по масштабу. В 1972 году Джон Накколс из Ливерморской национальной лаборатории имени Лоуренса вместе с коллегами опубликовал в Nature статью , где описал главные черты установки для лазерного термоядерного синтеза и даже привел вычисления, касающиеся ее коммерческой эффективности. Главное преимущество лазера, писал Накколс и его соавторы, состоит в том, что он позволяет создать сверхвысокую плотность вещества, необходимую для зажигания термоядерной реакции. Механические средства могут создать давление не более 106 атмосфер, этот предел задается прочностью химических связей.

Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы.

Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать. Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии. Теперь быстродвижущийся ион следует снова превратить в нейтральный атом. Если этого не сделать, ион будет отклонён магнитным полем токамака. Поэтому к разогнанному иону следует присоединить электрон. Для деионизации ион проходит через ячейки, наполненные газом. Здесь ион, захватывая электрон у молекул газа, рекомбинирует.

Не успевшие рекомбинировать ядра дейтерия отклоняются магнитным полем на специальную мишень, где тормозятся, рекомбинируют и могут быть использованы вновь. Требования к мощности «фабрики атомов» ITER настолько велики, что на этой машине впервые пришлось применить систему, которой не было на предшествующих токамаках. Это система отрицательных ионов. На таких высоких скоростях положительный ион просто не успевает превратиться в нейтральный атом в газовых ячейках. Поэтому используются отрицательные ионы, которые захватывают электроны в специальном радиочастотном разряде в среде плазмы дейтерия, экстрагируются и разгоняются высоким положительным потенциалом 1 МВ по отношению к источнику ионов , затем нейтрализуются в газовой ячейке. Оставшиеся заряженными ионы отклоняются электростатическим полем в специальную охлаждаемую водой мишень. При потреблении примерно 55 МВт электроэнергии, каждый из двух планируемых на ITER инжекторов нейтральных атомов способен вводить в плазму до 16 МВт тепловой энергии. Криостат[ править править код ] Криостат [30] [31] — самый большой компонент токамака. Внутри криостата будут располагаться остальные элементы машины. Криостат, помимо механических функций опора деталей токамака и их защита от повреждений будет выполнять роль вакуумного «термоса», являясь барьером между внешней средой и внутренней полостью.

Для этого на внутренних стенках криостата размещены тепловые экраны, охлаждаемые азотным контуром 80 К. Криостат имеет множество отверстий для доступа к вакуумной камере, трубопроводов системы охлаждения, фидеров питания магнитных систем, диагностики, дистанционного манипулятора, систем нагрева плазмы и других. Доставить сборку таких размеров целиком тяжело и дорого, поэтому было принято решение конструктивно разбить криостат на четыре крупных фрагмента поддон, две цилиндрические обечайки и крышка. Каждый из этих фрагментов будет собираться из более мелких сегментов.

FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв

«Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.

Похожие новости:

Оцените статью
Добавить комментарий