Такое положение исключает собирание в чаше антенны атмосферных осадков, которые сильно влияют на качество приема. ненаправленные антенны, симметричные - несимметричные. Возбуждение в элементах антенны происходит с фазовым сдвигом на 90 0 при равенстве амплитуд. В цикле статей «Ликбез по антеннам» планируется рассмотрение различного типа антенн, которые широко используются в беспроводной передачи данных. Антенна (латинское antenna — рея) — устройство, предназначенное для излучения или приёма радиоволн.
Принцип работы антенны
Антенна представляет собой электромагнитный излучатель, создающий электромагнитное поле, которое выходит из передающей антенны на антенну приемника и затем преобразует электромагнитную волну в электрические сигналы. Антенна (латинское antenna — рея) — устройство, предназначенное для излучения или приёма радиоволн. В космос запускается спутник, который служит для распространения волны, а приемником выступает антенна, подсоединённая к телевизору.
Антенны: ТВ и интернет
То же, что усик в 3 знач. Толковый словарь Ушакова.
Теперь можно говорить, что антенные устройства могут принимать не только радиоволны, но и оптическое электромагнитное излучение. Если антенна для телевизора становится все менее популярной, то у наноантенн большое будущее. Когда-нибудь их будут использовать для охлаждения домов вместо кондиционеров, в качестве зарядных устройств, для питания транспортных средств. Другое направление применения — беспроводные сети на чипе-кристалле.
Перед традиционными системами стоит проблема задержек и рассинхронизации сигналов, которую пока не удается обойти. Виды и основные характеристики антенн Вибраторные устройства Симметричный вибратор Это диполь, питающийся высокочастотными токами. Конструкция состоит из двух отрезков проводника, размещенных прямолинейно. Питание от генератора подается посередине.
Вот что получается. Если бы мы подавали переменное напряжение на некий идеальный резистор, то синфазный переменный ток в этой цепи был бы равен напряжению в вольтах, деленному на сопротивление в омах — так же, как и приличный постоянный ток.
Но если вместо резистора у нас катушка индуктивности, то дело становится более запутанным. Когда мы прикладываем напряжение к катушке, она как бы сопротивляется току через нее, поэтому ток отстает по фазе от напряжения. Кстати, если отключить подачу напряжения от катушки, то она тоже будет сопротивляться и постарается поддержать течение тока через себя в той мере, в которой катушка может запасти энергию — напряжения уже нет, а ток все еще идет. Вот это вот сопротивление, оно называется реактивным, тем выше, чем выше частота. То есть с ростом частоты при равной индуктивности или с ростом индуктивности при равной частоте сопротивление переменному току растет. С конденсаторами все то же самое, но только наоборот.
При приложении напряжения к конденсатору ток сначала проваливается в него, как в пустую яму, опережая напряжение, а затем падает по мере заряда. Легкость, с которой переменный ток попадает в конденсатор, означает, что с ростом частоты при равной емкости сопротивление переменному току падает, а при равной частоте при росте емкости сопротивление переменному току также падает. Поэтому примем на заметку: реактивное сопротивление, то есть индуктивное или емкостное сопротивление переменному току, зависит от частоты. Слева традиционная синусоидальная осциллограмма, справа сдвиг фаз на примере «отставания» тока от напряжения при наличии в цепи индуктивного сопротивления. Итак, антенна — это проводник, к которому подводится электрическая энергия и который ее излучает в окружающее пространство. Излучает электрический ток в проводнике, который создает вокруг проводника магнитное поле.
Почему электромагнитная энергия выходит из комфортного для нее проводника в некомфортный для нее вакуум? А она и не выходит! Энергия создает колебания поля, но не движется сама по себе. Давайте сравним со звуковыми волнами. Когда динамик антенна создает колебания, воздух эфир не движется, ветер не возникает, но колебания распространяются в воздухе эфире. Так же происходит и с электромагнитными волнами, разве что электромагнитная энергия распространяется не в воздухе, а в эфире.
Позже, правда, выяснят, что предполагавшегося эфира не существует, и что земля тоже не плоская, а электромагнитное поле прекрасно себя чувствует и в вакууме но мы-то знаем, что эфир есть, а земля, конечно, не плоская, а немного выпуклая. То есть, еще раз, энергия не переносится вместе со средой точнее с полем , а переносится за счет распространения волн в неподвижной в общем случае среде в поле. Антенна как колебательный контур. Прежде чем говорить о конкретных конструкциях простых антенн, по принципу устройства которых мы сможем разобраться и в устройстве сложных, поговорим об электрическом резонансе. Для этого вернемся назад к реактивному сопротивлению. Полотно антенны можно представить как распределенную емкость и распределенную индуктивность — как размотанную до прямого провода катушку и как вырожденные до того же самого провода пластины конденсатора.
Как устроены простейшие антенны: диполь и гроунд-плейн ground plane. Какими должны быть размеры антенны, как правильно запитать антенну, на какой высоте ее подвесить, какие бывают антенны. Об этом вы узнает из этого фильма. Но фильм, как обычно, не скучные формулы, а живой рассказ не только о физике антенн, но и о жизни радиолюбителей коротковолновиков.
SpaceX обновила спутниковую антенну Starlink — она стала больше и мощнее
Объясняю разницу между активной и пассивной антенной | Как выбрать антенну для эфирного цифрового телевидения. Обзор всех вариантов, подбор антенны под конкретные условия приема 20-30 бесплатных каналов. |
Что такое активная антенна | пассивная антенна ? | Антенна для дачи Мы настолько привязались к телевизору, что без него нам определённо некомфортно. |
Радиоволны беспроводной сети
- Пассивная антенна
- Видео. Антенны и дураки. Основы антенных устройств
- Антенна - электрическое устройство
- Полное руководство по сотовым антеннам. Описание наружных, внутренних и автомобильных антенн
- Про антенны для самых маленьких / Хабр
- Какое нужно оборудование
Что такое эфирное ТВ и правда ли оно бесплатное
Что такое антенны: виды, применение, общие понятия | В данном видео мы расскажем, что такое антенна. |
ТВ антенна. Виды и конструкция. Работа и применение. Особенности | В Викиданных есть лексема антенна (L86794). |
Антенны. Сегодня и всегда. | Прежде чем начать разговор о выборе телевизионной антенны для цифрового телевидения стандарта DVB-T2, поговорим немного о самом эфирном телевидении. |
Передающие антенны: типы, устройство и характеристики | Что такое активная антенна? Механика работы активного приемника такая же, как и у пассивного — у него тоже есть «рожки» различной геометрии, которые ловят волны и преобразуют их в ток. |
Разработанная в рамках проекта ФПИ антенна вошла в Топ-10 изобретений 2020 года | рея на корабле). 1. Воздушный провод, подвешиваемый на мачты для улавливания радиоволн (тех.). |
Об антеннах нового поколения
Они органично приютились в наших мобильных телефонах. Выставка «Живые и неживые антенны» — первая в России выставка, объединяющая художественную и техническую элиту. В выставке примут участие как профессиональные художники, так и «технари» — резиденты технопарка Сколково и международные эксперты в области антенн. Какие проекты интересны: анализ технических антенн, их разновидностей, форм и разнообразного спектра действия с перспективы science-art; структуризация и художественное осмысление феномена природных антенн; исследование в области архитектурных форм и элементов декора с точки зрения теории антенн; художественная перспектива взгляда на человека — его мозга, клеток, ДНК — как совершенных устройств передачи энергии. Заявки просим присылать на адрес: e. Дедлайн: 1 августа 2021 года.
Распространение волны на грунт происходит по контуру Земли. Такая волна называется прямой волной. Волна иногда изгибается из-за магнитного поля Земли и попадает в приемник. Такую волну можно назвать отраженной волной. Волна, распространяющаяся через земную атмосферу, известна как земная. Прямая волна и отраженная волна вместе дают сигнал на приемной станции. Когда волна достигает приемника, задержка прекращается. Кроме того, сигнал фильтруется во избежание искажения и усиления для четкого вывода. Волны передаются из одного места и где они принимаются многими приемопередающими антеннами. Система координат измерения антенны Рассматривая плоские модели, пользователь будет сталкиваться с показателями азимута плоскости и высоты плоскости паттерна. Термин азимут обычно встречается в отношении «горизонта» или «горизонтали», тогда как термин «высота» обычно относится к «вертикали». На рисунке плоскость xy является азимутальной плоскостью. Диаграмма азимутальной плоскости измеряется, когда измерение выполняется, перемещая всю плоскость xy вокруг испытываемой приемопередающей антенны. Плоскость возвышения — это плоскость, ортогональная плоскости ху, например, плоскость yz. План плоскости возвышенности совершает обход всей плоскости yz вокруг испытываемой антенны. Образцы азимуты и диаграммы высоты часто отображаются как графики в полярных координатах. Это дает пользователю возможность легко визуализировать, как антенна излучает во всех направлениях, как если бы она была уже «нацелена» или смонтирована. Иногда полезно нарисовать диаграммы направленности в декартовых координатах, особенно когда в шаблонах имеется несколько боковых лепестков и где важны уровни боковых лепестков. Основные характеристики связи Антенны являются основными компонентами любой электрической цепи, поскольку они обеспечивают взаимосвязь между передатчиком и свободным пространством или между свободным пространством и приемником.
Кроме этого в книге приведены некоторые схемы и рекомендации для самостоятельного конструирования антенн различных типов. Показано, что, несмотря на кажущуюся сложность конструкций антенн, их в большинстве случаев можно изготовить в домашних условиях. Надеемся, что приведенные в книге советы помогут людям, имеющим даже минимальные познания в радиотехнике, самостоятельно выбрать подходящую антенну, установить ее и добиться устойчивого приема той или иной телестанции, повысив тем самым качество уже принимаемых программ. Что же такое антенна? Антенна — устройство, которое излучает подведенную к нему высокочастотную энергию в виде электромагнитных волн в окружающее пространство передающая антенна или принимает высокочастотную энергию свободных колебаний приемная антенна и превращает ее в энергию электромагнитных колебаний, поступающую по фидеру на вход приемного устройства. Фидер — это линия передачи антенный кабель , предназначенная для транспортировки сигнала, принятого антенной к приемнику. Основная задача линии передачи фидера — осуществление транспортировки электромагнитной энергии, принятой антенной, к приемнику с минимальными потерями. От выбора фидерной линии зависит качество приема программ телевидения и радиовещания. Передающая и приемная антенны обладают свойством взаимности, то есть одна и та же антенна может излучать или принимать электромагнитные волны, причем в обоих режимах она имеет одинаковые характеристики. К передающим антеннам предъявляют дополнительные требования, связанные с большими подводимыми мощностями высокочастотной энергии, поэтому конструктивно приемные антенны проще передающих. Свойства взаимности широко используются для определения характеристик антенн, так как некоторые параметры проще определять в режиме передачи, чем в режиме приема. Каждая антенна имеет целый ряд определенных характеристик, необходимых для оценки ее качества. Основные параметры антенн. За полосу пропускания принимается спектр частот определяется принимаемыми телевизионными каналами , на границах которого мощность принятого сигнала уменьшается не более чем в два раза. Строится она в полярной сферической рис. Если возвести в квадрат относительные значения ЭДС, соответствующие различным направлениям прихода сигнала, то можно построить диаграмму направленности по мощности. Лепесток, соответствующий максимальному сигналу или нулевому направлению, называют основным или главным, остальные — боковыми или задними в зависимости от расположения по отношению к главному лепестку рис. Для удобства сравнения диаграмм направленности разных антенн их обычно нормируют, для чего максимальную величину ЭДС принимают за единицу. Основным параметром диаграммы направленности является угол раствора ширина главного лепестка, в пределах которого ЭДС, наведенная в антенне электромагнитным полем, спадает до уровня 0,707, или мощность, спадающая до уровня 0,5 от максимальной. По ширине главного лепестка судят о направленных свойствах антенны. Чем эта ширина меньше, тем больше направленность антенны. Форма диаграммы направленности зависит от типа и конструкции антенны. Так, например, диаграмма направленности полуволнового вибратора в горизонтальной плоскости напоминает восьмерку, а в вертикальной — круг. Антенна «волновой канал» в своей диаграмме направленности имеет ярко выраженный главный лепесток, а с увеличением числа директоров в антенне главный и боковые лепестки сужаются, при этом улучшаются направленные свойства антенны. КНД D зависит от ширины диаграммы направленности антенны в горизонтальной и вертикальной плоскостях. На практике часто требуется оценить КНД по отношению не к ненаправленной, а к дипольной антенне. В этом случае значение КНД, вычисленное по указанной формуле, должно быть уменьшено в 1,64 раза. На метровых и дециметровых волнах КПД для приемных антенн близок к единице — около 0,95. В качестве эталонной антенны принимают полуволновой вибратор или изотропную антенну полностью ненаправленная антенна, имеющая пространственную диаграмму направленности в виде сферы. Реально таких антенн нет, но она является удобным эталоном, с помощью которого можно сравнивать параметры существующих антенн. Коэффициент усиления полуволнового вибратора относительно изотропной антенны равен 2,15 дБ в 1,28 раза по напряжению или в 1,64 раза по мощности. Следовательно, если возникнет необходимость пересчитать коэффициент усиления антенны по напряжению или по мощности относительно изотропной антенны, то необходимо разделить известную величину на 1,28 или 1,64, в результате чего получим коэффициент усиления относительно полуволнового вибратора. Если G антенны указан в децибелах относительно изотропной антенны, то для пересчета его относительно полуволнового вибратора необходимо вычесть 2,15 дБ. Среднее значение коэффициента усиления антенны в рабочей полосе частот — это среднее арифметическое значение коэффициентов усиления в децибелах, измеренных на средних частотах каждого из каналов, входящих в рабочую полосу частот, а также на крайних частотах этой полосы. Неравномерность коэффициента усиления — это отношение максимального коэффициента усиления к минимальному в полосе частот принимаемых каналов. Встречается определение помехозащищенности как уровень боковых лепестков УБЛ диаграммы направленности — это отношение ЭДС при приеме со стороны максимума наибольшего бокового лепестка к ЭДС при приеме со стороны максимума основного лепестка. Уровень боковых лепестков представляют в относительных единицах или процентах. При конструировании антенн уровни боковых и задних лепестков стремятся свести к минимуму, чтобы улучшить помехозащищенность антенн. Чем меньше реактивная составляющая Хвх и чем ближе Rвх к волновому сопротивлению фидера линии, тем лучше антенна согласована. Невыполнение условия согласования приводит к появлению многократных отражений сигналов в антенном кабеле, проявляющихся в виде повторных, сдвинутых по горизонтали изображений на экране телевизора и частичной потере мощности принимаемых сигналов в фидере. Для уменьшения потери мощности антенну необходимо настроить в резонанс с частотой принимаемых каналов. В случае если антенна работает в широком диапазоне ТВ каналов, ее следует настраивать на среднюю частоту диапазона. Практически настройка сводится к подбору геометрических размеров и элементов антенны, а также расположения клемм, к которым подводится фидерная линия. Резонанс антенны достигается в том случае, когда по длине вибратора укладывается целое число полуволн. На частотах ниже резонансной реактивная составляющая имеет емкостный, а на частотах выше резонансной — индуктивный характер. Входное сопротивление антенны также зависит от объектов, находящихся вблизи антенны и влияющих на распределение поля в пространстве, что необходимо учитывать при установке антенны. Чем меньше меняется входное сопротивление антенны при изменении частоты, тем шире полоса ее пропускания. Выражается КБВ в относительных единицах: чем больше значение КБВ, тем эффективнее передача сигнала от антенны к телевизору. При чисто бегущей волне ток и напряжение по длине фидера не имеют ни минимума, ни максимума, а КБВ равен единице. Чем выше значение КБВ в антеннах различных конструкций находится в пределах 0,25-0,6 , тем эффективнее передача сигнала от антенны к телевизору и выше качество приема. Антенны для приема радиовещания. Поскольку большинство современных радиоприемников являются многоканальными и обладают встроенными антеннами с повышенной чувствительностью, необходимость в создании любительских радиостанций и целых антенных комплексов для приема нескольких радиостанций, как это было, скажем, на заре развития радиотехники, отпала. Более того, популярность радио на современном этапе развития нашего общества заметно упала. Этим объясняется некоторое снижение интереса к разработке новых антенн для приема радиостанций. Поэтому в данной книге ограничимся кратким рассмотрением основных типов антенн, используемых для приема радиопередач в диапазонах длинных волн ДВ , средних волн СВ и коротких волн KB на различные расстояния. Наиболее распространенной антенной для приема радиовещания в диапазонах ДВ, СВ и KB является длинный вертикальный провод. Если входные клеммы радиоприемника подключить к нижнему концу такого вертикального провода и к хорошему заземлению, антенна будет представлять собой несимметричный вибратор. Диаграмма направленности такой антенны в горизонтальной плоскости получается круговой: антенна принимает одинаково со всех азимутальных направлений. В вертикальной плоскости диаграмма направленности похожа на разрезанную пополам лежащую восьмерку: максимум приема осуществляется с горизонтального направления вдоль поверхности Земли, с увеличением угла местности прием ослабевает, а с направления, соответствующего зениту, отсутствует. В теории антенн известен принцип взаимности, согласно которому все параметры приемной антенны можно определить по известным параметрам этой же антенны в режиме передачи. Тогда можно представить себе рассматриваемую антенну как передающую, подключенную к выходу радиопередатчика. Излучение сигнала антенной происходит под воздействием тока высокой частоты, протекающего в проводе антенны. В нижней части вертикального провода антенны ток максимален, по мере продвижения вверх за счет излучения сила тока уменьшается, а на верхнем конце равна нулю. Из-за этого наиболее эффективна нижняя часть этой антенны, а самая верхняя часть практически не используется. Для повышения эффективности антенны необходимо добиться излучения не только нижней, но и верхней ее частью за счет более равномерного распределения тока вдоль провода. Это достигается подключением верхнего конца провода к каким-либо дополнительным проводникам, которые за счет емкости между ними и поверхностью Земли обеспечат появление тока в этой точке антенны. Наиболее простое решение — подключить верхний конец вертикального провода антенны к горизонтальному проводу. Такие антенны получили название Г-образных и Т-образных, если вертикальный провод подключен к концу или к середине горизонтального соответственно. Обе антенны обладают одинаковыми параметрами и свойствами, а выбор одной из них зависит исключительно от возможностей конструктивного исполнения. Горизонтальную часть антенны лучше всего выполнять из антенного канатика как можно большей длины. Концы с помощью орешковых изоляторов крепятся к каким-либо высоким предметам на местности: к стенам зданий, деревьям, дымовым трубам. Использовать в качестве опор мачты линий электропередач, телеграфные столбы или столбы энергоснабжения категорически запрещается. Горизонтальная часть антенны не должна располагаться под или над проводами телефонных линий, линий радиотрансляции или электроосветительной сети, так как при случайном обрыве того или иного провода возможна аварийная ситуация. К горизонтальной части антенны в удобном месте припаивается провод снижения — лучше всего многожильный медный провод с резиновой или пластмассовой изоляцией с хлопчатобумажной лакированной оплеткой марки БПВЛ или ЛПРГС сечением не менее 1,5 мм. При наличии выбора предпочтение следует отдавать проводу БПВЛ, жила которого состоит из медных луженых проволок, что удобнее для пайки. Жила провода ЛПРГС состоит из нелуженых медных проволок, поверхность каждой из которых из-за контакта с резиновой изоляцией сильно окислена и перед пайкой требует тщательной зачистки. Можно, конечно, использовать в качестве провода снижения и другие марки проводов. Внутрь здания провод снижения пропускается через специально просверленные отверстия в рамах окна, куда предварительно вставляются трубчатые фарфоровые изоляторы. Снижение не должно касаться краев крыши, иначе под воздействием ветра изоляция провода протрется и прикосновение оголенной жилы к железной крыше или выполненной из другого материала, но мокрой во время дождя, будет сопровождаться тресками в приемнике. Конец провода снижения заправляется в однополосную вилку для подключения к антенному гнезду радиоприемника. Гнездо заземления приемника должно быть надежно присоединено к Земле. При наличии в здании водопровода его можно соединить с водопроводной трубой таким же проводом, который используется для снижения антенны. При отсутствии водопровода необходимо сделать специальное заземление. Для этого под окном выкапывается яма, желательно глубиной до уровня грунтовых вод. В яму закапывается какой-нибудь массивный металлический предмет, к которому припаивается провод заземления, насыпается один-два килограмма поваренной соли и заливается ведром воды, после чего яма засыпается. В летнее сухое время желательно время от времени поливать это место водой. В сельской местности для защиты от грозовых разрядов необходимо снабдить снижение антенны разрядником. Он представляет собой две металлические зубчатые пластинки, расположенные зубцами одна к другой с расстоянием в 2—3 мм между остриями зубцов. Пластинки крепятся к основанию из изоляционного материала в виде пластинки оргстекла, которая устанавливается на стене. С одной зубчатой пластинкой соединяется провод заземления, с другой — провод снижения антенны. Полезно также во время грозы соединять между собой накоротко пластинки разрядника, заземляя антенну. Часто отсутствует возможность крепления горизонтальной части антенны достаточной длины. В этих случаях можно рекомендовать установку антенны типа «Метелка». Конструкция такой антенны достаточно проста. Этот угол практически не влияет на работу антенны. Пучок собирают из 19, 37 или 61 куска голого медного провода. Длина проводов для пучка берется в пределах 500-1000 мм, а диаметр провода — 1,5—5 мм. Чем длиннее провода, тем больше должен быть их диаметр для обеспечения достаточной жесткости конструкции. Каждый провод правят для получения ровного и прямого куска. Один конец каждого провода зачищают на длину 50 мм и залуживают окунанием в расплавленный припой с использованием канифольного флюса. В результате залуживания на поверхности проводов не должно быть излишков припоя. Затем все провода собирают в пучок, который должен представлять собой правильный шестигранник. Конец пучка из залуженных проводов обматывается медным луженым проводом диаметром 1,5 мм, чтобы получить бандаж шириной примерно 30 мм. Намотка ведется плотно, с натяжением от витка к витку. Концы бандажного провода скручивают, после чего бандаж нужно пропаять, либо погрузив его в расплавленный припой, либо паяльной лампой, так как мощности паяльника не хватит. Запаянный конец пучка крепят на фарфоровом изоляторе, который укрепляют на шесте. Свободные концы проводов пучка разводят равномерно в стороны, чтобы получить объемный конус. К бандажу припаивается провод снижения, а шест устанавливается на крыше. При этом необходимо предусмотреть, чтобы при случайном падении шеста он не коснулся каких-либо проводов. При большой длине шеста его можно крепить одним или двумя ярусами растяжек, которые изготовляются из стальной оцинкованной проволоки. Каждый ярус обычно содержит по три растяжки. Эффективность рассмотренных антенн определяется длиной вертикальной части. Напряжение сигнала на антенном входе радиоприемника определяется произведением напряженности электромагнитного поля в точке приема на действующую высоту антенны. При наличии горизонтальной части, или метелки, действующей высотой антенны можно приближенно считать геометрическую длину вертикальной части. Поэтому для улучшения приема далеко расположенных радиовещательных станций необходимо стремиться к удлинению вертикальной части антенны. В отличие от телевизионных антенн, когда в условиях дальнего приема важна высота расположения антенны над поверхностью Земли, здесь имеет значение высота расположения горизонтальной части, или метелки, над уровнем размещения радиоприемника, так как прием осуществляется именно вертикальной частью антенны. Зачастую радиослушатели не ставят перед собой задачу приема радиопередач дальних радиостанций; в этом случае вполне можно ограничиться комнатной антенной. Простейшая комнатная антенна представляет собой кусок голого или эмалированного медного провода диаметром 0,4—0,8 мм, протянутого под потолком от одной стены к другой, к которому припаян другой кусок такого же провода, подключенный к антенному гнезду приемника. При этом использовать гнездо заземления нет необходимости. Следует отметить, что не только все современные радиовещательные приемники, но и приемники, выпущенные 20—30 лет назад, оснащены ферритовой магнитной антенной для приема передач в диапазонах длинных и средних волн. Многие приемники имеют ручку поворота магнитной антенны, что позволяет выбрать ее оптимальное положение, соответствующее наилучшему приему при минимуме помех. Портативные переносные приемники также оборудованы ферритовыми магнитными антеннами для работы в диапазонах ДВ и СВ, а некоторые, такие как «Украина-201» и «Меридиан-201», — дополнительно магнитной антенной с ферритовым сердечником для работы в диапазоне КВ. Помимо магнитной антенны все радиоприемники имеют гнездо для подключения наружной антенны, но если речь не идет о дальнем приеме, использование комнатной антенны не дает преимуществ перед имеющейся магнитной антенной. Дело в том, что не только комнатные, но и наружные антенны, доступные для изготовления рядовым владельцам радиоприемника, в диапазонах ДВ, СВ и KB являются ненаправленными из-за того, что их размеры для диапазона KB значительно меньше, а для диапазонов СВ и ДВ несоизмеримо меньше длины волны. Магнитная же антенна является направленной и поэтому обладает пространственной избирательностью, что позволяет, поворачивая ее, ослабить уровень помех, поступающих к антенне с других направлений, и выбрать положение, соответствующее максимуму полезного сигнала. Наконец, благодаря использованию в магнитных антеннах ферритовых сердечников, их действующая высота больше, чем у комнатных антенн доступных размеров. В те времена, когда эфир, особенно в диапазонах КВ, был напичкан радиостанциями специального назначения «глушилками» , использование направленных магнитных антенн иногда позволяло избавиться от этих специально создаваемых помех или в какой-то степени их ослабить. Когда эти радиостанции были упразднены, проявился недостаток направленных свойств магнитных антенн, так как при приеме радиовещания желательно иметь ненаправленную антенну: заранее неизвестно, с какого направления будет выполняться прием той или иной радиостанции. Однако до настоящего времени промышленность не выпускает радиовещательных приемников, оборудованных ненаправленной встроенной антенной. В диапазонах KB радиоволны имеют, как правило, горизонтальную поляризацию. Поэтому в тех случаях, когда прием ведется переносным или портативным радиоприемником, проще всего поставить приемник набок, так чтобы встроенная в него ферритовая антенна оказалась вертикальной. Тогда в горизонтальной плоскости ее диаграмма направленности станет круговой — ненаправленной. Стационарный радиоприемник кантовать практически невозможно. Тем не менее, если конструируется самодельный приемник или есть желание переделать уже готовый, этот недостаток можно устранить. Имеется возможность горизонтально расположенную магнитную антенну сделать ненаправленной. Для этого используют два ферритовых стержня прямоугольного сечения длиной 50—60 мм, которые приклеивают перпендикулярно друг к другу клеем БФ-2 или эпоксидным клеем. Перед склейкой необходимо тщательно притереть торец одного стержня к поверхности другого, чтобы получилась Г-образная конструкция. Антенную катушку необходимо равномерно намотать по всей длине Г-образного стержня. Существуют и более сложные рекомендации, когда предлагается наматывать на каждый стержень раздельные антенные катушки и катушки связи, а антенные катушки настраивать отдельными конденсаторами переменной емкости. Это достигается включением в цепь одной из катушек связи нескольких витков, размещенных на другом стержне магнитной антенны. Прием сигналов удаленных радиостанций в условиях современного города связан с наличием значительного уровня индустриальных помех за счет электрического и автомобильного транспорта, работы коллекторных электродвигателей, кассовых аппаратов, электромедицинской аппаратуры и других потребителей электроэнергии. В этих условиях улучшить прием может применение широкополосной рамочной помехозащищенной антенны. Одна из таких антенн была предложена киевлянином В. Андриановым в журнале «Радио», 1991 г. Антенна представляет собой одну или две экранированные рамки, каждая из которых выполнена из одного витка коаксиального кабеля длиной 11 м с фидером из такого же кабеля. Связь антенны с фидером осуществляется с помощью трансформатора с объемным витком, обеспечивающим согласование в широкой полосе частот, включающей даже диапазон ультракоротких волн УКВ. Конструкция этого трансформатора подробно описана автором в статье. Антенна была установлена на лоджии третьего этажа панельного дома и использовалась совместно с радиоприемником «Ишим-003-1». Приемник обеспечивал уверенный прием радиостанций в диапазоне от 150 кГц до 18 МГц, а также в диапазоне УКВ на расстоянии 7 км от передатчика при полном затенении трассы высотными зданиями. Оригинальная самодельная рамочная антенна средневолнового диапазона была предложена известным специалистом радиоприема В. Поляковым в журнале «Радио», 1994 г. Антенна реагирует на магнитную составляющую электромагнитного поля и может служить заменой ферритовой антенны, а ее электрические параметры могут быть даже лучше, чем у ферритовой. Рамка антенны выполнена на каркасе диаметром 125 мм корзиночной намоткой и настраивается стандартным конденсатором переменной емкости. Обмотка содержит 37 витков провода «литцендрат» марки ЛЭШО 21x0,07 мм. Добротность этой рамочной антенны изменяется по диапазону в пределах 200—280 при полосе пропускания до 6 кГц. Напряжение на выводах контура рамочной антенны, наводимое полем центральных радиостанций, составило 15-300 мВ на девятом этаже панельного дома. Автор предлагает располагать антенну вне радиоприемника, на небольшом от него расстоянии. Суррогатные антенны. Достаточно хороший прием радиовещания в диапазонах ДВ, СВ и KB достигается с применением в городских условиях суррогатных антенн, в качестве которых можно использовать трубы центрального отопления или водопровода. Хотя обычно они заземлены, их разветвленная сеть внутри здания обеспечивает наведение электромагнитным полем достаточно высокого уровня сигнала. В результате прием на такую суррогатную антенну оказывается значительно лучше, чем на комнатную. Единственный недостаток этих антенн состоит в повышенном уровне индустриальных помех из-за того, что они воспринимают излучения, возникающие при искровых разрядах от включения и выключения различных потребителей электроэнергии в здании. Подключать к радиоприемнику заземление при использовании такой антенны не требуется. Необходимо предостеречь от применения в качестве суррогантной антенны проводов электроосветительной сети. Некоторые авторы дают такие рекомендации, предлагая подключать антенное гнездо радиоприемника к одному из проводов электросети через разделительный конденсатор, рассчитанный на рабочее напряжение не менее 250 В. Действительно, прием на такую антенну иногда возможен, но не всегда. Дело в том, что некоторые радиоприемники с сетевым питанием содержат сетевой фильтр помех. Конденсаторы этого фильтра замыкают каждый провод сетевого питания на корпус приемника, что сильно ослабляет уровень наведенных сигналов в проводах электросети. Однако главная причина, препятствующая использованию электросети в качестве антенны, заключается в опасности электрического пробоя конденсатора, который рекомендуют включать между проводом электросети и антенным гнездом приемника. При этом возможно перегорание контурных катушек в приемнике и даже поражение электрическим током при прикосновении к металлическим элементам конструкции аппарата. Об уровне помех радиоприему от такого суррогата антенны можно судить по тому, что каждое включение-выключение потребителя энергии в доме электрическая лампочка, бытовая техника приводит к сильному щелчку. Антенны для диапазона УКВ. Диапазон, отведенный для радиовещания на УКВ, характеризуется теми же особенностями, что и отведенный для телевидения. Дальность приема радиопередач в диапазоне УКВ определяется зоной прямой видимости и зоной полутени, в которой уровень напряженности поля значительно меньше. Отличие от приема телевизионных сигналов состоит в том, что для приема радиопередач требуется меньшая напряженность поля. Уровень собственных шумов телевизионного приемника составляет примерно 5 мкВ при полосе пропускания 6 МГц. Полоса пропускания радиовещательного УКВ-приемника, определяющая уровень шумов, составляет всего 200 кГц, то есть в 30 раз меньше, чем у телевизионного приемника. В связи с тем что напряжение собственных шумов пропорционально корню квадратному из полосы пропускания, напряжение собственных шумов на входе радиоприемника УКВ примерно в 5,5 раз меньше, чем у телевизора, то есть составляет менее 1 мкВ. Соответственно, можно считать, что и напряженность поля для приема радиопередач может быть примерно в 5,5 раз меньше, чем для приема телевидения.
Аналоговый сигнал Разъяснять как всегда, я буду на простом примере. За пример, возьмем передачу голосовой информации от одного человека к другому. Во время разговора, наши голосовые связки излучают определенную вибрацию различной тональности частоты , и громкости уровня звукового сигнала. Эта вибрация, пройдя некоторое расстояние, попадает в человеческое ухо, воздействуя там, на так называемую слуховую мембрану. Эта мембрана, начинает вибрировать с такой же частотой и силой вибрации какую излучали наши звуковые связки, с одним лишь отличием, что сила вибрации за счет преодоления расстояния, несколько ослабевает. Так вот, передачу голосовой речи от одного человека к другому, можно смело назвать аналоговой передачей сигнала , и вот почему. Здесь дело в том, что наши голосовые связки, излучают такую же звуковую вибрацию, какую и воспринимает само человеческое ухо что говорим, то и слышим , то есть, передаваемый и принимаемый звуковой сигнал, имеет схожую форму импульса, и такой же частотный спектр звуковых вибраций, или по другому сказать, "аналогичной" звуковой вибрации. Здесь, думаю понятно. Теперь, рассмотрим более сложный пример. И за этот пример, возьмем упрощенную схему телефонного аппарата, то есть того телефона, которым люди пользовались задолго до появления сотовой связи. Во время разговора, речевые звуковые вибрации передаются на чувствительную мембрану телефонной трубки микрофона. Затем, в микрофоне, звуковой сигнал преобразуется в электрические импульсы, и далее поступает по проводам ко второй телефонной трубке, в которой, с помощью электромагнитного преобразователя динамика или наушника электрический сигнал преобразуется обратно в звуковой сигнал. В приведенном выше примере, используется, опять же, "аналоговое" преобразование сигнала. То есть, звуковая вибрация имеет такую же частоту, как и частота электрического импульса в линии связи, а так же, звуковой и электрический импульсы, имеют схожую форму то есть, аналогичную. В передаче телевизионного сигнала, сам аналоговый радиотелевизионный сигнал имеет достаточно сложную форму импульса, а так же, достаточно высокую частоту этого импульса, ведь в нем передается на большие расстояния, как звуковая информация, так и видео. С " аналоговым сигналом ", думаю, разобрались.
Руководство по выбору антенны для цифрового телевидения.
Что такое антенна – схема, значение, применение. В Воронежском государственном техническом университете (ВГТУ) разработали антенну со встроенной солнечной панелью, которая может работать автономно без внешних источников питания. Что же такое антенна? Антенна – устройство, которое излучает подведенную к нему высокочастотную энергию в виде электромагнитных волн в окружающее пространство (передающая антенна) или принимает высокочастотную энергию свободных колебаний.
Что такое #антенна?
Первая антенна значительно уменьшена по сравнению с предыдущей версией, имея размеры 29 × 25 см, что приблизительно соответствует размеру ноутбука Apple MacBook. Качество приёма на безмачтовую антенну примерно такое же, как и на антенну с сосредоточенной ёмкостью. Что такое антенна? Бывают антенны радиолюбительские, для приемников, телевизоров, роутеров, мобильных телефонов и другие.
Какую антенну выбрать для цифрового тв — комнатную или наружную, активную или пассивную?
Что такое активная антенна? Механика работы активного приемника такая же, как и у пассивного — у него тоже есть «рожки» различной геометрии, которые ловят волны и преобразуют их в ток. Практические антенны, такие как секторные антенны, нацелены на то, чтобы направить «луч» энергии в определенном направлении, при этом другие направления получают значительно меньше энергии. Отсюда следует, что для увеличения КПД антенны необходимо уменьшать сопротивление потерь и увеличивать сопротивление излу-чения антенны. устройство, преобразующее электроэнергию в излучаемые ею радиоволны и наоборот, принимаемые электромагнитные волны в ток.
Инструкция по выбору антенны для цифрового телевидения
Комнатные Подходит тем, кто хочет смотреть телевизор, не подключаясь к кабелю или коллективной антенне. Представляют собой рамку круглой формы с усилителем или без. Качественно работают, только если ретранслятор расположен поблизости в идеале — в зоне прямой видимости — об этом читайте ниже. Что лучше — комнатная или наружная антенна? Варианты конструктивного исполнения Разнообразие форм Приемные антенны для ДМВ, с помощью которых ловится цифровой ТВ-сигнал, как правило, относятся к логопериодическому типу с несколькими группами штырьков-вибраторов разной длины. Этот тип чувствителен к направлению, однако ширина полосы пропускания чрезвычайно велика. Они применяются в нескольких вариантах конструкции: Плоские однонаправленные.
Конструктивно представляют собой единый стержень, на который в противофазе монтируются проводники переменной длины самые короткие — на конце, самые большие — у основания. Конструкция надежная и дешевая, но имеет неустранимый недостаток: требует очень точной ориентации и принимает сигнал только с одного направления. Состоят из нескольких стержней с вибраторами, расположенными в разных плоскостях. Принимают как прямой, так и отраженный сигнал на расстоянии от ретранслятора до 50 км и более. Самый дорогой, но и эффективный вариант. Устанавливается только на улице.
Конструктивно представляют собой обычный проводник, замкнутый в кольцо. Простейший вариант, но крайне неэффективный за пределами прямой видимости ретранслятора. Активная и пассивная антенны: в чем разница Ключевое различие между пассивным и активным типом в том, используется ли прием сигнала и передача его на телевизор или ресивер напрямую или через усилитель. Просто принимают и передают сигнал в неизменном виде. Конструктивно они проще, не требуют дополнительного электропитания, но работать могут только в зоне, где сигнал достаточно мощный. Принятый сигнал поступает на блок усиления и лишь затем идет на ТВ-устройство.
Такая антенна хороша для работы не только с прямыми, но и с отраженными сигналами для приема в условиях плотной застройки и неровного рельефа местности. Как понять, какая антенна нужна именно вам?
В самом центре такой антенны, на ее оси в фокусе, находится конвертор, который вместе с крепежными приспособлениями слегка затеняет полезную поверхность зеркала антенны. Правда, с увеличением общей площади антенны этот эффект становится менее значительным. За счет того, что ось прямофокусной антенны всегда нацелена на спутник, она как бы "смотрит в небо". Офсетная антенна отличается от прямофокусной тем, что "смотрит вниз": ее фокус находится не на оси антенны, а внизу. Поэтому конвертор не затеняет полезную площадь зеркала. К преимуществам офсетной антенны относится и то, что крепится она почти вертикально. Это исключает скопление в ее "чаше" атмосферных осадков, которые способны очень серьезно влиять на качество приема. В зависимости от географической широты угол наклона офсетной антенны немного меняется.
Изготавливают спутниковые антенны из алюминия или стали. Уровень принимаемого сигнала, а следовательно, и качество и количество каналов зависят от диаметра "тарелки". Тот же диаметр годится и для спутника Sirius, но лишь в хорошую погоду. А для хорошего приема всех каналов со спутника Astra требуется установить антенну диаметром 1,8 м. В комплект любой спутниковой антенны кроме параболического отражателя зеркала входит система подвески и крепления. В соответствии с типом подвески антенны подразделяются на азимутальные полное техническое название этого типа - азимутально-угломестная, то есть осуществляющая наведение по азимуту и углу места и полярные. В азимутальном варианте антенну настраивают на какой-либо спутник и жестко ее фиксируют фото 2. Полярная подвеска получила свое название из-за того, что ось, вокруг которой в этом случае вращается антенна, направлена на Полярную звезду. Полярная подвеска позволяет при помощи рычага - актюатора с электрическим приводом перенацеливать антенну с одного спутника на другой. Благодаря этому у пользователя появляется возможность принимать телевизионные программы с нескольких спутников.
Поворотом антенны в этом случае управляет специальное устройство - позиционер, нацеливающее антенну по командам ресивера. Существует, однако, возможность просмотра программ с двух спутников и при неподвижной без актюатора, позиционера и полярной подвески антенне. Для этого возле первого конвертора закрепляется второй, но не в фокусе антенны, а рядом с ним фото 3. Антенна "смотрит" на один спутник, но в "поле ее зрения", немного сбоку, попадает и второй спутник. Соответствен но сигнал с него собирается антенной не в фокусе, а также немного сбоку. Туда и устанавливается второй конвертор. Обычно прием сигнала с двух спутников возможен, если их орбитальные позиции различаются не более чем на шесть-семь градусов. Можно, наконец, принимать сигналы разных спутников и с помощью нескольких антенн, наводя на каждый из них отдельную "тарелку". Следующий компонент приемной спутниковой системы - конвертор. Конструктивно он состоит из трех частей: самого конвертора, поляризатора и облучателя.
Облучатель предназначен для лучшей фокусировки электромагнитного сигнала на волноводный вход конвертора. Для прямофокусной и офсетной антенн применяются несколько различные конструкции облучателя. У большинства современных прямофокусных спутниковых антенн этот параметр равен примерно 0,3-0,4, а у офсетных антенн он составляет 0,5-0,6. В соответствии с этим облучатели для прямофокусных и офсетных антенн изготовляются с разным "углом раскрыва". Между облучателем и конвертором монтируется поляризатор. Поскольку телевизионные сигналы от подавляющего большинства спутников имеют вертикальную и горизонтальную поляризацию, приемная система должна отделять одну поляризацию от другой и принимать каждую из них в отдельности. Для решения этой задачи и предназначен поляризатор. По командам ресивера он пропускает сигналы либо вертикальной, либо горизонтальной поляризации, а управление этим процессом осуществляется путем переключения напряжения питания с 13 на 18 В. Существуют также поляризаторы с плавной перестройкой плоскости поляризации, которые управляются плавным изменением тока. Их устанавливают на антеннах с полярной подвеской при приеме сигналов с нескольких спутников.
При этом для каждого спутника приходится подбирать свои плоскости поляризации. Поляризаторы, управляемые напряжением, обычно изготавливают в виде единого блока с облучателем и конвертором фото 4 , а поляризаторы, управляемые током, - как отдельное устройство. Наконец, сам конвертор.
Подробности, включая стоимость и возможные технические улучшения, пока не раскрыты. Компания подчёркивает портативность новой антенны, что позволит пользователям наслаждаться высокоскоростным интернетом с низкой задержкой в любом месте, включая сельские и отдалённые районы, где особенно востребованы мобильные и портативные решения. Вторая антенна также отличается от своего предшественника.
Это означает, что новая антенна не только займёт меньше места, но и предложит пользователям более скоростную связь. Обе новинки способны работать с первым и вторым поколениями спутников Starlink. К сожалению, заявка в FCC не раскрывает всех деталей, в том числе стоимость новых антенн и возможное улучшение скорости интернета. Однако отмечается, что новое поколение терминалов принесёт дополнительные преимущества американским потребителям. Изучение пылевых сгустков вокруг звезды V960 Mon, расположенной в 5000 световых лет от Солнца, в созвездии Единорога, покажет, как рождаются газовые планеты-гиганты, подобные Юпитеру. Исследования показали, что газопылевое облако вокруг V960 Mon, образует серию сложных спиральных рукавов, которые простираются на расстояния, превышающие размер Солнечной системы.
Это открытие было подтверждено с помощью ALMA. Астрономы называют два способа формирования газовых планет-гигантов. Первый — аккреция, процесс приращения массы небесного тела путём гравитационного притяжения материи из окружающего пространства. Второй — гравитационная неустойчивость, при которой сверхплотные участки протопланетного диска из газа и пыли вокруг звезды коллапсируют. Их можно использовать для обеспечения стабильного сигнала мобильной связи и скоростного интернет-доступа в отдалённых населённых пунктах. Источник изображений: Sheffield.
Технология 3D-печати радиоантенн может ускорить разработку инфраструктуры сетей 5G и 6G, а также предоставить людям, живущим в удалённых районах Великобритании, а также в других уголках мира, доступ к передовым и скоростным технологиям беспроводной связи, считают специалисты. Применяемые сегодня различными телекоммуникационными сетями радиоантенны дорого и долго производить. Это замедляет процесс разработки и внедрения инновационных решений и затрудняет задачи по созданию новой инфраструктуры. Антенны, разработанные специалистами Шеффилдского университета, предлагают гораздо более дешёвый способ производства с использованием технологии 3D-печати и при этом без ущерба производительности конечного продукта. Их можно изготовить всего за несколько часов, при этом затраты на их производство составят всего несколько британских фунтов, а уровень их производительности будет аналогичен радиоантеннам, которые изготавливаются традиционными способами. Разработчики поясняют, что при изготовлении антенн с помощью технологии 3D-печати применяются наночастицы серебра, обладающие нужными свойствами для передачи радиосигнала.
Антенны для цифрового телевидения В 21 веке большинство граждан нашей страны перешли на цифровое телевидение, которое отличается от аналогового формой транслируемого сигнала. В традиционных системах напряженность поля меняется без разрывов, а в цифровых каждое значение пикселя отдельно закодировано единичками и нулями. Одним из самых высоких достоинств цифрового вещания является высокая устойчивость сигнала, что позволяет понизить мощность передатчиков. Цифровое телевидение отличается также от аналогового и качеством картинки, цвета всех пикселей передаются настолько четко, что изображение кажется максимально реалистичным. По сигналу, который принимают цифровые антенны, можно распознать миллиарды цветов. Исключением являются бесплатные каналы, которые не хотят ставить дорогое оборудование или двойные полосы частот, чтобы подарить потребителям гиперреалистичное изображение, созданное при помощи системы представления оттенков Бриллиант Колор. Почему нельзя использовать обычные антенны для просмотра цифрового телевидения Качественный прием закодированного сигнала могут обеспечить только специальные антенны.
Так происходит по той причине, что постоянное электрическое поле не излучается в пространство, этим свойством обладают исключительно динамические системы. Магнитное поле всегда реагирует на изменение электрического поля, образовывая электромагнитные волны. Если бы человек мог увидеть их, то картинка напоминала бы две параллельно расположенные друг к другу синусоиды. Одна из них лежит в горизонтальной плоскости, а вторая — в вертикальной, соответственно, одна является амплитудой электрического поля, а другая — амплитудой магнитного поля. В цифровом сигнале используется именно такая форма волны, прием которой возможен только специальными устройствами. Очень важно, чтобы у антенны-передатчика и антенны-приемника совпадала поляризация, другими словами, должна быть электромагнитная совместимость оборудования.
Разработанная в рамках проекта ФПИ антенна вошла в Топ-10 изобретений 2020 года
Для этой системы нужно 4 компонента: наземная передающая станция, спутник над орбитой Земли, принимающая антенна и ресивер. относятся к устройствам радиотехники, используются для приёма или передачи электромагнитных волн. В Воронежском государственном техническом университете (ВГТУ) разработали антенну со встроенной солнечной панелью, которая может работать автономно без внешних источников питания. Что такое антенна и что она из себя представляет. Метаповерхностная антенна STC, как ее называют инженеры, может управлять сложными электромагнитными волнами в пространственной и частотной областях с помощью программной настройки. Антенна это устройство для непосредственного излучения и (или) приёма радиоволн.