В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт. Международный коллектив, в который вошли учёные Сколтеха и их коллеги из Франции, США и Швейцарии, обнаружил причину энергетических потерь в цикле заряда-разряда литий-ионных. НазваниеПовышение мощности разряда и эффективности заряд-разрядного цикла водородно-ванадиевого накопителя электроэнергии за счет оптимизации катодного материала. 29 июля команда сети магазинов "КАТОД" приняла участие в забеге Trail Run от "Гонки Героев". В данном разделе вы найдете много статей и новостей по теме «катоды». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. Японская компания Taiheiyo Cement предложила использовать для изготовления катодов новый материал, который сократит зарядку аккумулятора в 3-4 раза. Ученые из Университета префектуры Осака разработали катод из сульфида лития с твердым электролитом, который отличается устойчивостью к окислению. Справиться с внешними угрозами и приблизить успешное завершение спецоперации российской армии помогают новосибирские предприятия, в числе них новосибирский завод «Катод». Ученые из Университета префектуры Осака разработали катод из сульфида лития с твердым электролитом, который отличается устойчивостью к окислению. КАТОД – профессиональный ремонт турбин, стартеров и генераторов для всех видов транспорта.
Автоматическое зарядное устройство КАТОДЪ-501
В результате получались объемные сополимеры. Авторы проверили емкость устройства после 25 000 циклов заряда-разряда и обнаружили, что она составила треть от первоначальной. Если бы аккумулятор в телефоне был так же стабилен, его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Удельная емкость таких устройств варьировалась от 82 до 101 миллиампер-часа на грамм в зависимости от силы тока при заряде и разряде. Кроме того, зарядить такие аккумуляторы ученые смогли всего за несколько секунд. Статья об открытии опубликована в журнале Energy Technology.
В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала.
За счет этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий — все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность.
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения Добавлено: 22. При добавлении ионной жидкости их модифицированный катод мог поддерживать превосходный контакт с электролитом. Их прототип батареи также показал хорошее сохранение емкости. Хотя поиск лучшей ионной жидкости остается сложной задачей, эта идея обещает новые направления в разработке твердых литиевых батарей для практического применения. Но поскольку мы ищем лучшие решения с более высокой плотностью энергии, ученые обращаются к твердотельным литий-металлическим батареям. Литий-металлические батареи потенциально имеют гораздо более высокую плотность энергии, чем их литий-ионные аналоги. Они рассматриваются как будущее батарей, приводящих в действие транспортные средства и энергосистемы в огромных масштабах.
Так осуществляют извлечение тех или иных веществ из электролита электроэкстракцию. Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием. Если электрод поместить в раствор с ионами того же вещества, из которого он изготовлен, то при некотором потенциале между электродом и раствором не происходит ни растворения электрода, ни осаждения на нем вещества из раствора. Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества катодный процесс , если же более положительный, то начнется его растворение анодный процесс. Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. В табл. Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал медь, серебро, свинец, никель , щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода. Два разнополярных электрода Два разнополярных электрода Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В например, магний, алюминий, щелочноземельные металлы получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов. Нормальные электродные потенциалы веществ являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса. Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе. С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк. Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ. Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея. В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне например, выделением водорода на катоде , утечками тока и короткими замыканиями между электродами. Выход по току существенно зависит от плотности тока на электроде. С увеличением плотности тока на электроде выход по току растет и повышается эффективность процесса. Устройство гальванической цепи. Из этой мощности только первая составляющая расходуется на проведение реакций, остальные являются тепловыми потерями процесса. Лишь при электролизе расплавленных солей часть теплоты, выделяющейся в электролите IUэ, используется полезно, так как расходуется на расплавление загружаемых в электролизер солей. Эффективность работы электролизной ванны, может быть оценена массой вещества в граммах, выделяемого на 1 Дж затраченной электроэнергии. Эта величина носит название выхода вещества по энергии. Это «ГОСТ 15596-82. Термины и определения».
Последние комментарии
- Новые материалы для катодов ускорят зарядку в 3-4 раза
- Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях • ПРОМИА
- Продолжить чтение
- Разработка российских ученых позволила увеличить пробег электрокаров на одной зарядке
В ЮФУ предложили экологичный метод производства катодов для литий-ионных аккумуляторов
- Российские ученые создали эффективную замену литию в аккумуляторах
- Электрохимические процессы при зарядке акб: особенности зарядки литий ионных аккумуляторов
- Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях • ПРОМИА
- Учёные сделали то, что уже давно нужно было сделать
- Учёные сделали то, что уже давно нужно было сделать
- Химики впервые перезарядили тионилхлоридный аккумулятор
В КНР ученые нашли пагубное влияние черного чая на легкие — ведет к онкологии
- Из полимеров сделали катоды для литиевых аккумуляторов
- Литий «с плюсом»
- Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
- Новый материал катода ускорит зарядку литий-ионных батарей
- Учёные сделали то, что уже давно нужно было сделать
- Создан уникальный катод для металл-ионных аккумуляторов
Новый материал катода ускорит зарядку литий-ионных батарей
Мы целевым образом помогаем воинским формированиям, которые дислоцируются или были созданы на территории нашего региона — это и «Ермак», и армейские подразделения, составленные из мобилизованных. Мы оказываем им различные виды помощи», — подчеркнул губернатор. Для поддержки таких предприятий в Новосибирской области есть целый ряд программ и инструментов, утверждённых Правительством региона, уточнил заместитель губернатора Сергей Сёмка. Также Андрей Травников провёл в правительстве региона совещание по вопросам содействия и координации усилий по обеспечению поставок имущества и оказания услуг воинским подразделениям, принимающим участие в СВО. Напомним, бронежилеты «Архангел» производят для добровольцев «Веги» в Новосибирске. Районные СМИ.
При этом в качестве катодов тестировались материалы на основе полимерных ароматических аминов, которые можно синтезировать из различных органических соединений. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов.
С электродами из таких материалов аккумуляторы могут еще быстрее заряжаться и разряжаться». Стандартный литий-ионный аккумулятор — это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части — в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счет этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные.
Благодаря конверсионной электрохимической реакции удается получить ту же величину емкости электрической энергии для значительно меньшей массы катодного материала. В отличие от ранее известных способов получения подобных материалов, разработанный в ЮФУ метод подразумевает, что один из компонентов для производства катода — металл-органический каркас MIL-88A фумарат железа — синтезируется в водной среде без каких-либо токсичных добавок, что говорит о минимальном вреде окружающей среде. Полученный материал был применен в качестве катода для литий-ионного аккумулятора и показал хорошую стабильность и высокую емкость. Схема синтеза FeF 2 «Фторид железа не заменит литий в аккумуляторах, однако конверсионные катодные материалы позволяют создавать более эффективные аккумуляторы и, таким образом, эффективнее этот литий применять. Сам конверсионный катодный материал обладает существенно более высокими практически вдвое показателями удельной емкости и плотности энергии, чем существующие коммерчески-применяемые классические интеркаляционные материалы.
Профессор Лю и его коллеги смогли сконструировать новый катод LMR со стабилизированной сотовой структурой. Они ввели ионы переходного металла TM в слои лития выше или ниже сотовой структуры, чтобы повысить ее стабильность. Используя метод ионного обмена то есть систему для эффективного удаления или растворения ионов , исследователи превратили комбинированный материал на основе натрия, лития, марганца и никеля в желаемый катод LMR O2-типа. Преимущество нашего катода LMR заключается в значительно более низком спаде напряжения при использовании батареи по сравнению с традиционными катодами», — пояснил профессор Лю. В тестовых испытаниях новый катод, обогащенный литием, показал себя успешно, подтвердив возможности продлить срок службы и повысить производительность литий-ионных аккумуляторов. Однако основное внимание при тестировании было уделено тому, насколько удалось преодолеть недостатки, вызываемые явлением «утечки напряжения».
Исследователи создали энергоемкий органический катод для аккумуляторов
Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора. Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза. Главная» Новости» Катод имеет заряд. Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта, который позволит увеличить пробег электрокаров на одной зарядке.
Научились заряжать аккумулятор за несколько секунд ученые в России
Литий-ионные аккумуляторы могут давать большую мощность, обеспечивая при этом сравнительно высокие скорости разряда и заряда, а также хранят достаточно много энергии в расчете на единицу своей массы. Поэтому их применяют в качестве накопителей энергии не только в электронике и электротранспорте, но уже и в масштабах глобальных энергосетей. Например, в Австралии построят сеть огромных энергонакопителей на основе литий-ионных аккумуляторов, чтобы запасать излишки энергии, произведенной солнечными и ветровыми электростанциями. Но если литий-ионных аккумуляторов будет становиться больше, то рано или поздно закончится сырье для их производства. Похожая ситуация и с литием - на его добычу уходит так много воды, что это может стать серьезной экологической проблемой. Поэтому исследователи ищут новые энергонакопители, которые с одной стороны работают по принципу литий-ионных аккумуляторов и сохраняют их преимущества, а с другой используют более доступное сырье.
Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными.
Ученые разработали новый тип катода для аккумуляторов 17:15, 13. Открытие позволяет увеличить плотность энергии накопителей, сохранив их безопасность. В отличие от традиционных литиевых аккумуляторов, новые элементы для накопления заряда используют не только катионы Li, но и анионы галогенов LiCl и LiBr. При этом такой аккумулятор намного безопаснее.
Ru, слова одного из соавторов статьи, аспиранта Сколтеха Филиппа Обрезкова. Несмотря на то, что литий-ионные аккумуляторы на основе неорганических материалов занимают доминирующее положение на рынке, дальнейшее улучшение их рабочих характеристик затруднено, так как в их составе используются тяжелые элементы, ограничивающие удельные электрохимические емкости материалов. Решить проблему можно путем применения в качестве материалов для катодов органических соединений на основе легких элементов — углерода, гелия, азота, кислорода, серы. Среди их плюсов по сравнению с неорганическими материалами можно выделить высокую удельную энергоемкость, высокие скорости зарядки и разрядки, устойчивость к механическим деформациям, а также высокую экологичность — переработать их можно так же, как и обычный бытовой пластик.
В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей ёмкости даже после 25 тысяч рабочих циклов - если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Сегодня емкость ЛИА лимитируется в основном свойствами катодных материалов. В качестве последних используют различные по структуре соединения. Наиболее широкое распространение получил упомянутый выше кобальтат лития LiCoO2: его слоистая структура обеспечивает двумерную диффузию ионов лития. Преимуществами этой системы являются высокое рабочее напряжение 4 В , относительная простота синтеза, высокая электронно-ионная проводимость, что способствует циклированию при больших плотностях тока, и т. Однако у LiCoO2 имеется и немало недостатков: токсичность, невысокая практическая удельная емкость около половины от теоретической , недостаточная термическая и структурная устойчивость и др. К тому же кобальтовое сырье довольно дорого.
В последние годы стали использоваться и другие соединения со слоистой структурой, содержащие ионы нескольких переходных металлов кобальта, никеля, марганца , практическая емкость которых в полтора раза превосходит емкость кобальтата лития. В отличие от слоистой, шпинельная структура обеспечивает трехмерную диффузию ионов лития. Однако свободный объем, доступный для ионов лития, невелик, что ограничивает скорость диффузии и снижает мощность электрохимической ячейки в целом. Недостатками LiMn2O4 являются также заметная растворимость марганца в электролите и структурная неустойчивость при напряжениях ниже 3 В. В последние годы большое внимание уделяется исследованиям катодных материалов с каркасной структурой на основе соединений лития и переходных металлов Fe, Mn, Co, Ni с полианионами, такими как PO4 3—, AsO4 3— и др.
LiFePO4 отличается высокой структурной и химической устойчивостью при циклировании, а также нетоксичностью и доступностью. Однако у него очень низкая электронная и литий-ионная проводимость и, как следствие, неудовлетворительная циклируемость при больших токах. Однако в ходе многочисленных исследований были разработаны разнообразные методы для улучшения свойств LiFePO4. Например, нанести на поверхность частиц слой высокопроводящего углеродного покрытия, в результате чего электронная проводимость материала может возрасти многократно Ravet, Armand, 1999. Этому же способствует, например, и допирование материала катода алюминием, цирконием и другими металлами Chiang, 2002.
Время российского «нано»? В 2000 г. Ямато Sony первым показал, что в наноразмерном состоянии железофосфат лития способен работать даже при высоких скоростях заряда-разряда. На сегодняшний день наноразмерные композиты железо-фосфата лития и углерода практически не уступают по электрохимическим показателям другим известным катодным материалам. Поэтому они являются перспективными для использования в гибридных энергетических системах и крупногабаритных аккумуляторах для электромобилей, где большое значение имеют цена и безопасность.
С чем же связано улучшение мощностных характеристик электродных материалов, особенно с низкой электронно-ионной проводимостью, при повышении их дисперсности? Это приводит к ускорению ионного транспорта и, соответственно, процессов заряда-разряда в аккумуляторах.
Однако основное внимание при тестировании было уделено тому, насколько удалось преодолеть недостатки, вызываемые явлением «утечки напряжения». По оценке исследователей, эта давняя проблема была почти полностью устранена. Теперь исследовательская группа ставит перед собой задачу поиска решения еще одной сложной проблемы катодных материалов LMR — гистерезиса напряжения. Это явление вызывается разницей в профилях напряжения во время циклов зарядки и разрядки аккумулятора. Ранее широко считалось, что гистерезис напряжения возникает из-за нестабильности сотовой надстройки, но даже с улучшенной стабильностью во время циклов, обеспечиваемой новой разработкой, явление гистерезиса напряжения не было устранено. Решение этой проблемы, как ожидается, позволит еще больше повысить плотность энергии для многослойных катодных материалов.
При этом плотность энергии у получившейся батареи невелика: всего 160 ватт-часов на килограмм против 285 ватт-часов на килограмм в среднем у литий-ионных ячеек. В сравнении с литий-железо-фосфатными аккумуляторами натрий-ионные лучше работают при низких температурах и быстрее заряжаются. По остальным показателям — безопасность, ресурс и эффективность внедрения — у них паритет. К преимуществам NIB-батарей также стоит отнести низкую стоимость в них нет редкоземельных элементов, а натрий можно получать даже из морской воды и широкий диапазон рабочих температур. Но у новых аккумуляторов всё же есть ряд преимуществ.
Обычно анод делается из графита, а катод — из оксида лития-кобальта. Эти материалы хорошо сочетаются вместе, но специалисты Ренсселерского политехнического института считают, что эффективность системы можно увеличить. Для этого команда ученых заменила оксид лития-кобальта на дисульфид ванадия. Поскольку этот материал легче, это позволило увеличить плотность энергии. А его повышенная проводимость ускорила зарядку. Исследователи обращаются к дисульфиду ванадия VS2 не в первый раз.
Китайская CATL представила первые натрий-ионные аккумуляторы для электромобилей
Литий в лидерах: химические источники тока | Полученный материал был применен в качестве катода для литий-ионного аккумулятора и показал хорошую стабильность и высокую емкость. |
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов - Eham | Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. |
Российские ученые создали эффективную замену литию в аккумуляторах | У аккумуляторов полярность на аноде и катоде изменяется от того, работает он как гальванический элемент (при разряде) или как электролизёр (при заряде). |
Новости | Проект Заряд | Метка: катод. Литий-металлические аккумуляторы сохраняют 80% емкости после 6 000 циклов заряда-разряда – исследование. |
Разработка российских ученых позволила увеличить пробег электрокаров на одной зарядке | Выяснилось, что на межзёренных границах отрицательного электрода (на катоде) в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. |
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Новая структура микрочастиц катода, разработанная командой, может привести к созданию более долговечных и безопасных батарей, способных работать при очень высоком напряжении. Отрицательный заряд катода привлекает положительные ионы и приводит к образованию нейтральных частиц. Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали. В процессе заряда ионы Li⁺ экстрагируются из материала катода, переносятся через электролит к аноду и внедряются в его структуру. Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза.