Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC.
Будущее рядом: как нас будет лечить искусственный интеллект?
Собянин сообщил, что благодаря использованию ИИ врачи Москвы получат «цифровых помощников», которые помогут подобрать лечение пациентам. Информация будет регистрироваться и обрабатываться только в цифровом формате, врачи смогут больше времени уделять задачам, где нужны их компетенции. Кроме того, планируется внедрить умный проактивный подход, в рамках которого ИИ будет анализировать медицинские карты и выявлять риски возникновения заболеваний.
Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет.
Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики. Впрочем, без человека пока еще не обойтись. После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения.
Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность. Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек. Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся. Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных.
Поэтому компания Healx с помощью нейросетей создает полную информационную базу 7 000 редких болезней, в которой собирает все ведомости из научных материалов, баз данных пациентов и исследований лекарств. Созданная база помогла при разработке лекарства от синдрома Мартина-Белл.
ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Кроме того, онлайн-консультации предоставляет возможность снизить затраты на здравоохранение и получить второе мнение по результатам исследований, чтобы уточнить диагноз и план лечения. ИИ делает телемедицину значительно удобнее. Он применяется для удаленной диагностики, сбора медицинских показателей и работы с информацией о пациентах. Например, в нашем приложении для докторов Primu. Online планируется внедрить ИИ для анализа симптомов и перевода записей приёмов в текстовый формат. А в Google уже разработали алгоритм, который по фотографии сетчатки глаза выявляет диабетическую ретинопатию.
Так врачи могут избежать рутинных задач и сложностей диагностики, чтобы сосредоточиться на лечении. Например, В Google разработали алгоритм, который по фотографии сетчатки глаза выявляет диабетическую ретинопатию. Над телемедицинскими приложениями работают многие крупные компании, например, Сбер. Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей.
С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу. Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет. ГЛАВА 2 С целью решить поставленные задачи были проведены следующие исследования: я нашла приложения, которые основаны с помощью искусственного интеллекта. Подробно о них: Первым приложением является ПроРодинки. ПроРодинки — это комплекс программ с мобильным приложением, которое по фотографии «родинки» и присланным данным формирует рекомендацию о выборе врача.
Анализ и формирование рекомендации выполняется нейросетью, построенной и обученной на нескольких тысячах диагностированных случаев и работающей под непрерывным контролем врачей-экспертов. Функционал приложения бесплатен для пользователей. Именно в этом приложении искусственный интеллект выявил, что мое новообразование ничем не помешает моей жизни, но для окончательного результата я все же рекомендую обратиться к квалифицированным врачам. О разработке сообщил один из ее создателей Роман Давыдов. Давыдов рассказал, что идея написать программу, которая смогла бы помочь диагностировать рак, пришла к ним на одной из секций «бизнес-ускорителя» инновационных стартапов «А:Старт». Команда российских программистов создала приложение Check Melanoma, которое уже доступно для пользователей Android. Фотобанк, с помощью которого и происходит распознавание заболевания, молодые специалисты собирали буквально по крупицам. Сам процесс диагностики прост: нужно зарегистрироваться на сайте или скачать программу, затем авторизоваться и создать личный кабинет, в котором можно уже непосредственно подгружать фотографии подозрительных родинок либо рентген легких и отправлять их на исследование. Однако авторы приложения рекомендуют закачивать только качественные макроснимки, сделанные на расстоянии 15 сантиметров с четким фокусом на участке кожи, который нужно проверить. Мы даже посчитали статистику: порядка 65-70 процентов верных «диагнозов».
Сейчас наша задача — найти больше фотографий, чтобы составить еще больший результат, возможно, даже самый большой в мире». По словам Давыдова, за год он с коллегой планирует собрать более 200 тысяч изображений опухолей, совершенствовать нейросеть, чтобы впоследствии она могла определять не только меланому, но также рак груди и легких на ранних стадиях, а точность прогноза составляла 80-85 процентов. Однако программисты предупреждают, что предназначение программы не в том, чтобы заниматься лечением на дому и ставить диагноз самому себе — за этим следует обращаться непосредственно к квалифицированным медикам. Создать методику тестирования и проверки правильности для алгоритмов ИИ для оценки эффективности работы алгоритмов в условиях, отличных от обучающего набора. Вывод: Процесс развития новых технологий как принятый стандарт услуг использует устойчивую практику научно-исследовательских и опытно-конструкторских разработок, прошедших экспертную оценку и может обеспечить защиту от использования вводящих в заблуждение или плохо проверенных алгоритмов ИИ. Использование диагностики ИИ как замены принятым этапам в медицинских стандартах предоставления услуг потребует намного большей проверки и оценки, чем использование такой диагностики для предоставления подтверждающей информации, помогающей принимать решения. Тема искусственного интеллекта является одной из популярных и используемых для защиты проектов, найденная информация дала мне больше знаний о нём, и больше заинтересованности, я думаю, что в дальнейшем, я свяжу свою жизнь с искусственным интеллектом. Мне понравилось экспериментировать с разными сайтами, для выявления диагноза, но я не стану полностью доверять этим приложениям. В наше время искусственный интеллект только начинает набирать обороты, и я не стану рекомендовать эти сайты без полной уверенности, но ради интереса можно опробовать данные приложения. Искусственный интеллект в медицине.
Как умные технологии меняют подход к лечению, 2021. Paul Cerrato, John Halamka. Цифровая реконструкция здравоохранения, 2021. Обзор Российских систем искусственного интеллекта для здравоохранения.
Искусственный интеллект в медицине: добро или зло?
Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества.
Полная роботизация: как искусственный интеллект помогает врачам
Наши жители не получат новые возможности по поддержанию и сохранению здоровья, а мы окажемся в роли «догоняющего» участника новой реальности. Тем временем ИИ становится новой базовой технологией, как когда-то персональные компьютеры и программы, которыми мы пользуемся повседневно переводчики, навигация, домашние умные помощники и т. Скорость этих изменений, а также требования к росту качества жизни постоянно увеличиваются. В этих новых условиях нам необходимо предоставлять лучшие медицинские услуги для наших жителей и условия труда для наших медицинских работников. При постоянном развитии цифровизации здравоохранения, экспоненциальном росте накапливаемых данных без новых технологий их обработки просто не обойтись.
И такой технологией является искусственный интеллект. В каких мегаполисах мира работают аналогичные сервисы? Конечно, мы активно изучаем международный опыт, но у нас есть проекты, по масштабу не имеющие аналогов в мире. Например, московский эксперимент по использованию компьютерного зрения для анализа медицинских изображений.
Результаты этого проекта легли в основу 11 национальных стандартов разработки и применения ИИ для клинической медицины. Проекты по исследованию возможностей ИИ в столичном здравоохранении реализуют единым фронтом несколько команд Комплекса социального развития Правительства Москвы — от разработки принципиально новых для страны ИИ-сервисов, тестирования прототипов до масштабного внедрения готовых продуктов. Мы разрабатываем и реализуем собственные подходы по применению ИИ в здравоохранении, с исследовательским скепсисом подходим к информации о возможностях тех или иных технологий, все проверяем и тестируем на своей базе. В последних отчетах исследовательских и консалтинговых компаний о цикле развития новейших технологий генеративный ИИ находится на пике завышенных ожиданий — о нем много говорят, с ним экспериментируют.
Однако говорить о его массовом внедрении, в первую очередь в медицине, пока рано — нет ни одного готового продукта с понятным сценарием использования и доказанными эффектами для роста производительности труда или повышения качества медицинского обслуживания, диагностики или лечения. Безусловно, у технологии большой потенциал, и мы пока даже не представляем его глубину и трансформационную силу. Предполагаю, что оценить первые результаты мы сможем в среднесрочной перспективе — на горизонте пяти лет. Но на протяжении этого времени нам, стороне заказчика и пользователя технологии, предстоит провести немало экспериментов.
И возможно, не все сразу принесут желаемые результаты. Пандемия заставила рентгенологов обучаться буквально не отходя от рабочего места. Насколько они достоверны? И это, безусловно, гигантские объемы данных.
Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины. Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта.
Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных.
Александр Гусев: у нас есть шанс на мировом рынке искусственного интеллекта Минздрав анонсировал вступление в силу приказа, согласно которому главврач медицинской организации будет сам принимать решение о переходе на электронный документооборот. Замминистра Павел Пугачев признал, что, несмотря на всю цифровизацию, «врачи по-прежнему вынуждены печатать документы на бумаге». Почему буксует информатизация отрасли?
СМИ сетевое издание «Городской информационный канал m24. Средство массовой информации сетевое издание «Городской информационный канал m24.
Учредитель и редакция - АО «Москва Медиа». Главный редактор сетевого издания И.
Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике. Отдельно будут рассмотрены современные технологические решения для практического здравоохранения и превентивной медицины: информационные системы сбора и анализа медицинских данных, облачные хранилища, мобильные приложения и веб-сервисы для врачей и пациентов. Участие в конференции бесплатное.
Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей
Искусственный интеллект преодолевает препятствия Ассоциация разработчиков и пользователей ИИ в медицине «Национальная база медицинских знаний» НБМЗ , созданная несколько лет назад при поддержке РВК, поставила перед собой цель способствовать внедрению новейших технологий в клиническую практику. Мы встретились с директором по проектной деятельности ассоциации, научным сотрудником НИИ общественного здоровья имени Н. Семашко Андреем Алмазовым, чтобы узнать, что удается сделать для внедрения ИИ в медицинскую практику и что этому мешает.
Как искусственный интеллект помогает в определении редких и генетических заболеваний Искусственный интеллект играет все более важную роль в области медицины, особенно в обнаружении и диагностике редких и генетических заболеваний. Благодаря своим вычислительным возможностям и способности обрабатывать и анализировать большие объемы данных, искусственный интеллект может помочь в определении и понимании этих сложных и необычных состояний. Искусственный интеллект использует алгоритмы машинного обучения и глубокого обучения для анализа различных типов данных, таких как медицинские изображения, генетическая информация, результаты лабораторных анализов и многое другое. При помощи этих данных искусственный интеллект может выявлять корреляции, паттерны и скрытые взаимосвязи между различными заболеваниями и их симптомами. Одной из самых важных функций искусственного интеллекта в диагностике редких и генетических заболеваний является распознавание нежелательных генетических вариантов. Используя мощные алгоритмы, искусственный интеллект может анализировать генетическую информацию пациента и сравнивать ее с базами данных геномов, чтобы идентифицировать редкие или мутационные гены, которые могут быть связаны с заболеванием. Благодаря такому анализу искусственный интеллект может помочь в определении вероятности развития определенного генетического заболевания у пациента, что позволяет врачам принимать ранние меры по предупреждению или лечению.
Он также может помочь в выборе наиболее эффективных методов лечения, учитывая индивидуальные особенности пациента и его генетическую предрасположенность. Кроме того, искусственный интеллект может помочь в исследованиях редких и генетических заболеваний путем анализа большого объема данных о пациентах. Это позволяет ученым выявлять новые паттерны и корреляции, определять новые подтипы заболеваний и разрабатывать инновационные методы лечения. Искусственный интеллект является мощным инструментом в борьбе с редкими и генетическими заболеваниями, обеспечивая более точную диагностику, персонализированное лечение и новые направления исследований. Это открывает новые перспективы для пациентов, страдающих от этих сложных состояний, и помогает предотвратить прогрессирование заболевания и улучшить качество их жизни. Искусственный интеллект в процессе лечения: персонализированная медицина и индивидуальные прогнозы Искусственный интеллект ИИ в медицине привносит новые возможности в процесс лечения, делая его более персонализированным и эффективным. Благодаря ИИ, врачи и исследователи получают доступ к огромным объемам данных, анализ и обработка которых помогают прогнозировать результаты лечения и предсказывать индивидуальные характеристики пациентов. Использование ИИ в процессе лечения способствует развитию персонализированной медицины, где каждому пациенту предлагается индивидуальный подход и оптимальный план лечения. Алгоритмы машинного обучения и искусственные нейронные сети позволяют анализировать множество факторов, таких как генетическая предрасположенность, медицинская история, прогнозируемые реакции на определенные лекарственные препараты и другие факторы, которые могут влиять на эффективность лечения.
Искусственный интеллект также помогает врачам прогнозировать и предотвращать возможные осложнения и побочные эффекты лечения. Анализ данных, полученных от предыдущих пациентов с аналогичными характеристиками и диагнозами, позволяет предсказывать вероятность возникновения определенных проблем и рекомендовать соответствующие меры по их предотвращению. Применение ИИ в медицине также способствует улучшению диагностики. Алгоритмы искусственного интеллекта могут сравнивать медицинские снимки и анализировать отклонения, которые человеческий глаз может упустить. Таким образом, ИИ помогает врачам выявлять заболевания на более ранних стадиях и принимать соответствующие меры для лечения их. Искусственный интеллект в медицине — это один из инновационных инструментов, который помогает улучшить процесс лечения пациентов. Персонализированная медицина и индивидуальные прогнозы, основанные на анализе данных, позволяют врачам предоставлять наиболее оптимальные варианты лечения каждому пациенту в зависимости от его индивидуальных потребностей и рисков. Это открывает новые возможности для более эффективного и успешного лечения пациентов в будущем. Возможности искусственного интеллекта в развитии новых методов лечения и терапии Искусственный интеллект предоставляет огромные возможности для развития новых методов лечения и терапии в медицине.
Поэтому мы не будем претендовать на исчерпывающую картину применения ИИ в медицине, а попытаемся очертить наиболее успешные или перспективные с нашей точки зрения направления. ИИ в хирургии Речь идет о роботах, участвующих в хирургических операциях и сопровождающих хирургические операции и послеоперационных больных. В 2018 г. Важно заметить, что термин «робот» часто создает неправильное представление о том, что роботы выполняют хирургические операции. Это не совсем так.
Роботы с искусственным интеллектом применяются все чаще в микрохирургических процедурах. Но не следует считать, что скоро будут оперировать только роботы-хирурги. Зато справедливы ожидания, что роботы с ИИ помогут хирургам работать лучше. Роботизированная хирургия — это активно развивающаяся и эффективная технология, которая приобретает все большее значение при различных медицинских процедурах в неврологии, гинекологии, ортопедии, торакальной и общей хирургии, при установке зубных имплантатов, а также трансплантации волос. Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики.
Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами. Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции. Робот входит в грудную клетку через небольшой разрез ниже грудины.
Используя это устройство, хирурги теперь могут выполнять стабильное и локализованное картирование, зондирование и лечение всей поверхности сердца. Возможности нейронных сетей помогают трансформировать сферу радиологии, экономя время и деньги медицинских организаций.
Точные результаты Рынок ИИ в медицине достаточно активно рос в последние годы, однако с 2022—го из—за санкций возникли трудности с дальнейшим использованием технологий западных производителей. Впрочем, эта проблема достаточно быстро решилась: на рынок вышли отечественные разработки и, по оценке Анны Соломахиной, основателя Школы медицинского бизнеса, многие из них не уступают иностранным аналогам. Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики. Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта.
С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом.
Обзор Российских систем искусственного интеллекта для здравоохранения
Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов. Как присутствие искусственного интеллекта влияет на современную российскую медицину? Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность?
Врачам и пациентам: как искусственный интеллект помогает в медицине
Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных.
Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований
Ученые из Сколковского института наук и технологий Сколтех занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Об этом рассказал руководитель исследовательской группы Центра прикладного ИИ Сколтеха, кандидат физико-математических наук Максим Шараев. Учился на кафедре биофизики. Максим — эксперт в области нейровизуализации, нейротехнологий и машинного обучения, автор ряда исследований в области когнитивных технологий и нейроинтерфейсов. Мне с детства было очень интересно находить новую информацию, которую приходилось буквально собирать по крупицам. Когда начал работать в науке, стало понятно, что и здесь много рутины. Это только в кино каждый день какие-то прорывы, а в реальности работа ученого — это в основном кропотливый труд. Больше всего раздражают бюрократические, административные вопросы, которые отвлекают от научной деятельности и сильно выматывают. Но зато, когда что-то получается, подтверждается гипотеза и есть результат — например, научная статья в авторитетном журнале — это радует и вдохновляет.
Максим с детства хотел заниматься наукой Источник: Анастасия Пешкова — А почему вы выбрали биофизику? Еще с ранних лет мне было интересно всё, что связано с изучением мозга. Когда я был маленьким, мне казалось, что для этого нужны знания по биологии, нейрофизиологии, психологии. Но потом, в том числе благодаря родителям и учителям, я понял, что современные науки, особенно те, где есть большое количество экспериментальных данных, сложные приборы, установки, невозможно постичь без естественно-научного образования в качестве базы. Эмпирическая биология и нейрофизиология, когда было достаточно простых наблюдений и анализов, давно закончилась. Сейчас любая сложная наука — это наука данных, а методы их анализа одни и те же в любых областях. Биохимическая физика — это применение физико-математических методов к биологическим системам. Исследования по большей части имеют прикладной характер Источник: Анастасия Пешкова — Наша лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией — получением и анализом данных работы мозга.
Для этого применяются математическое моделирование, методы машинного обучения и искусственного интеллекта. Но в процессе решения прикладных задач часто возникают и фундаментальные, например, касающиеся методов: разработка новых типов нейронных сетей, новых архитектур, подходов к анализу данных. Также мы занимаемся так называемой персонализированной медициной. По каждому человеку можно собрать огромное количество данных: геномные, транскриптомные, МРТ мозга, энцефалограмма, анализы крови и так далее. Суммарно это даст очень информативный индивидуальный портрет человека.
Экономический эффект от использования таких технологий уже превысил 13 млрд рублей. Помогает в этом утверждённый президентом федеральный проект «Искусственный интеллект» национального проекта «Цифровая экономика». Проект начал реализовываться в 2021 году. Меры поддержки предусматривают подготовку кадров в этой области, стимулирование научных исследований, финансовую поддержку разработки новых и внедрения существующих решений. Эти продукты уже используются медицинскими организациями при диагностике пациентов.
Задача Минздрава — создать условия для расширения внедрения технологий искусственного интеллекта в клиническую практику. Рассчитываем, что меры поддержки, предусмотренные в федеральном проекте, позволят реализовывать конкретные проекты в области искусственного интеллекта», — отметил замминистра здравоохранения России Павел Пугачев. Как меняются поликлиники Москвы Подробнее «Использование технологий ИИ позволяет на раннем этапе выявить заболевание, а соответственно — дешевле и проще его вылечить. Это снижает финансовую нагрузку на систему здравоохранения в целом, упрощает работу врачей и повышает продолжительность и качество жизни нас, обычных граждан», — подчеркнул директор по направлению «Цифровая трансформация отраслей и компаний» АНО «Цифровая экономика» Алексей Сидорюк. Вот лишь некоторые возможности применения технологий искусственного интеллекта ИИ в здравоохранении. Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т.
Причем что примечательно, у руля компании стоит наш соотечественник Алекс Жаворонков. Господин Жаворонков еще в середине 2000-х годов получил степень магистра в Университете Джона Хопкинса, а затем и докторскую степень в Московском Государственном Университете, где его исследования были сосредоточены на использовании машинного обучения для изучения физики молекулярных взаимодействий в биологических системах.
В 2014 году Алекс основал уже упомянутую Insilico Medicine, имея за плечами опыт работы в индустрии высоких технологий и заинтересовавшись вопросами фармации. Это интересно: Как работает искусственный интеллект Если вернуться к ИИ, то сами разработчики называют основную технологию работы искусственного интеллекта «генеративным тензорным обучением». Она позволяет ИИ, если не вдаваться в подробности, более эффективно и быстро обучаться требуемым навыкам. Мы подумали: можем ли мы заставить машины придумывать с нуля новые молекулы с определенными свойствами вместо того, чтобы заставлять их перебирать десятки доступных вариантов, — говорит Алекс Жаворонков. Insilico использовали GENTRL для того, чтобы создать несколько а если быть точным, то 6 вариантов лекарств для лечения мышечного фиброза.
Еще одной областью применения искусственного интеллекта является персонализированная медицина. Системы ИИ могут анализировать генетические данные пациентов, учитывать их индивидуальные особенности и предлагать персонализированные подходы к диагностике и лечению. Это позволяет более точно определить риск развития заболеваний, выбрать наиболее эффективные лекарственные препараты и предотвратить нежелательные побочные эффекты. Самым перспективным направлением ИИ в медцине можно считать квантовое машинное обучение. Генеративные модели ИИ на база квантовых алгоритмов позволят проектирвоать и разарбатывать новые сложные молекулярные соединения новых лекарств и материалов. Необходимо отметить, что в России также активно разрабатываются и внедряются системы искусственного интеллекта в клиническую медицину.
Искусственный интеллект создал новое лекарство всего за 21 день
При достаточно высоких показателях, она может быть использована для анализа новых данных пациентов и предоставления рекомендаций врачам. Развитие ИИ-медицины в России Как и во всем мире, в России существуют различные проекты и инициативы, связанные с использованием искусственного интеллекта в медицине. Некоторые из них уже демонстрируют успешные результаты в областях, таких как диагностика и алгоритмизация лечения. Однако, можно сказать, что в целом Россия не является лидером в развитии ИИ-медицины в мире. Ведущие страны, такие как США и Китай, вкладывают большие ресурсы исследований и разработок в эту область.
В России важным фактором сдерживания развития ИИ-медицины, является недостаток финансирования, ограниченный доступ к высокотехнологичному оборудованию, а также недостаточная масштабность проектов. Тем не менее, Россия продолжает развивать эту сферу и прилагает усилия для преодоления препятствий. Вместе с тем, нужно отметить, что эта область относительно новая и ее развитие может занять много времени и усилий. Риски использования ИИ и нейросетей в области здравоохранения ИИ может «подсказать» неправильный диагноз, особенно если модель была обучена на неполных или неточных данных.
Если искусственный интеллект используется неправильно или алгоритмы машинного обучения неправильно обучены, то они могут привести к опасным ошибкам, которые нанесут вред пациентам. Возникают и морально-нравственные аспекты — кто несет ответственность за принятое и непринятое решение. Эта проблема рождается в самом алгоритме: он гибкий и критерий «не навреди» не всегда самый быстрый или дешевый способ лечения пациента. Разработчики могут установить параметры для системы, которые не совпадают с медицинской этикой и это также может повредить здоровью пациентов.
Вопрос потери конфиденциальности тоже стоит довольно остро — данные пациента должны быть защищены от несанкционированного доступа, а использование ИИ в медицине может невольно повысить риск утечки личной информации. Еще одна проблема — неуместное лечение.
Создание цифровых двойников пациентов. Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения. На данный момент уже есть симуляции отдельных органов или систем, однако в ближайшей перспективе возможно создание моделей, имитирующих целые тела. Созданием цифровых двойников группы наиболее распространенных заболеваний в области кардиологии и онкологии занимаются ученые Сеченовского университета. Разработку прототипов цифровых двойников планируется завершить к 2025 году.
Обучение медперсонала. Медики осваивают новые навыки благодаря симуляции реальных обстоятельств, без риска нанести травму пациенту или испортить оборудование. Например, уже разработана технология виртуальной реальности для обучения специалистов по рентгенографии. Разработка новых лекарств. По данным Калифорнийской ассоциации биомедицинских исследований, путь лекарства от исследовательской лаборатории до пациента занимает в среднем 12 лет. Только один из тысячи препаратов доходит до тестирования на людях, и только один из пяти тысяч препаратов утверждается для практического использования и выходит на рынок. Применение технологий ИИ значительно сократит как время вывода новых лекарств на рынок, так и их стоимость.
Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Искусственный интеллект ИИ сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. Об этом сообщил в своем личном блоге мэр столицы Сергей Собянин. Источник: Freepik Мэр Москвы отметил, что ИИ помогает врачам-терапевтам ставить диагнозы и создавать перечни исследований.