Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. Читайте последние новости на тему в ленте новостей на сайте РИА Новости. В стране полным ходом прокладывают сети квантовой связи. В данном обзоре новостей представлены последние открытия в физике и астрофизике. Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. свежие новости дня в Москве, России и мире.
Физика: 10 научных прорывов 2023 года со всего мира
Она постоянно рассматривает, по какому пути будут развиваться события. Би-би-си: Способность видеть будущее — она имеется у всех людей в равной степени или нет? Мозг обычного человека реагирует только на сиюминутные возможности, то есть рассматривает только те из них, которые находятся непосредственно перед его глазами. Такой мозг почти ничего не планирует. Например, какие-нибудь мелкие воришки хватают только то, что непосредственно видят. Они планировать не в состоянии. Тогда как великие мыслители способны грамотно пользоваться этой машиной времени, которой их наделила природа. Они могут моделировать будущее. Они понимают законы природы, поэтому могут спроецировать настоящее в будущее и предположить, каким же оно будет. Митио Каку. Под маленькими я, конечно, имею в виду строение и функции человеческого мозга и генетику.
Под очень большими — теорию Большого взрыва. Сейчас мы стали рассматривать вселенную с точки зрения квантовой теории. Следующий большой скачок произойдет, когда мы сумеем объединить большое с маленьким. Когда мы сумеем применить квантовую теорию к пониманию генетики и человеческого мозга. И в этом нам должны помочь квантовые компьютеры. В каком-то смысле таким квантовым компьютером является сама мать-природа. Сейчас мы используем компьютеры, работающие на бинарном коде. Но природа работает иначе. Она, в отличие от цифрового разума, мыслит не нулями и не единицами. У нее — квантовый разум.
Этот разум понимает атомы, электроны и фотоны. Именно из них слагается язык вселенной. И именно это и будет следующим большим прорывом в науке. Би-би-си: Следует ли ожидать этого большого скачка только в физике, или он распространится и на другие науки, например, на медицину? Давайте попробуем это лекарство. А оно сработает? Мы не знаем. Ладно, давайте попробуем другое. А оно поможет?
Точнее, из квантовой неопределённости и невозможности одновременно знать две «враждующие» характеристики квантовой системы, например, одновременно координаты и импульс количество движения. Квантовое состояние системы описывается бесконечным набором волновых функций, и измерение одного из состояний заставляет мгновенно исчезать все остальные. Физики предположили, что если определить координаты частицы, то это будет означать, что она полностью остановилась все остальные состояния коллапсировали и достигала состояния, как в случае абсолютного нуля. Все квантовые детали информация о них фактически стираются. Согласно принципу Ландауэра , потеря одного бита данных приводит к выделению энергии. Иначе говоря, система теряет энергию и охлаждается ещё сильнее. И чем сложнее квантовая система, тем больше она несёт информации и тем сильнее охлаждается при измерении квантовых свойств. Именно это новое открытие роли сложности квантовой системы открывает новый угол зрения на поиск пути к абсолютному нулю, даже если это такое же практически невозможное решение, как и те, с которыми учёные уже работали энергия и время. Вполне возможно, что повышение сложности квантовых систем — это ещё один способ приблизиться к абсолютному нулю или, по крайней мере, ускорить процесс движения в эту сторону. В перспективе новый подход может привести к открытию новых явлений в квантовой физике и к созданию новых материалов и технологий. Между тем, как и любые процессы в этом мире, химические реакции подвержены законам квантового мира. Учёные впервые выяснили, до какой степени можно пренебрегать ими при изучении химических процессов и как квантовые явления в химических реакциях влияют на физический мир. Ионы пробивают энергетические барьеры для химической связи с молекулами. Поэтому всё сводится к пренебрежению квантовыми эффектами и к решению задач только с позиции классической физики. Подобное приближение удобно для практического применения в повседневной жизни, но не позволяет разобраться в ряде фундаментальных процессов мироустройства. Очевидно, что для изучения квантовых явлений в химических реакциях необходимо придумать и поставить эксперимент, который был бы подтверждён теоретическими выкладками. Эффект туннелирования оказался одним из наиболее удобных кандидатов на постановку такого эксперимента, но на его организацию потребовались годы планирования. Опыт удался у команды исследователей из Университета Инсбрука, о чём они сообщили в свежем выпуске журнала Nature. Для опыта был выбран изотоп водорода дейтерий, который поместили в ионную ловушку и охладили, после чего заполнили ловушку газообразным водородом. За счёт сильного охлаждения отрицательно заряженным ионам дейтерия не хватало энергии для химической реакции с молекулами водорода. Тем не менее, отдельные ионы дейтерия вступали в реакцию с молекулами водорода, чего не могло быть с точки зрения классической физики. По их количеству мы можем сделать вывод о том, как часто происходила реакция». Предложенный в 2018 году теоретический расчёт показал, что в условиях эксперимента одно квантовое туннелирование будет происходить в одном случае из каждых ста миллиардов столкновений, что учёные из Инсбрука смогли подтвердить на практике. Иными словами, для химической реакции с квантовыми явлениями эксперимент впервые подтвердил теорию. Одновременно это была самая медленная реакция с заряженными частицами из когда-либо наблюдавшихся. На основе проведённого исследования можно разработать более простые теоретические модели «квантовых» химических реакций и проверить их на реакции, которая уже успешно продемонстрирована. Туннельный эффект возникает во многих физических и химических процессах, а это путь к их лучшему пониманию и к открытию явлений, которые были либо плохо объяснимыми, либо вовсе непонятными для науки, например, такими, как астрохимический синтез молекул в межзвёздных облаках. Подтверждающий теорию эксперимент — это лучшее, что можно использовать для новых открытий. Квантовые состояния ядер могут сохраняться часами, но управлять ими напрямую фотонами было нельзя, а ведь оптика остаётся основой для организации квантовой связи и квантового интернета. Группа учёных из Массачусетского технологического института нашла решение проблемы и открыла новый способ управления атомными ядрами как кубитами с помощью фотонов. Источник изображения: MIT Фотоны как кванты порции энергии электромагнитного излучения почти не взаимодействуют с атомными ядрами, а их собственные частоты отличаются на шесть—девять порядков. В обычных условиях фотоны воздействуют на спины электронов вблизи атомных ядер, и это воздействие опосредованно передаётся на спины ядер. Было бы заманчиво напрямую воздействовать фотонами как переносчиками информации на вычислительные или запоминающие кубиты в виде ядерных спинов. Но как? Но пока только в теории, о чём надо помнить. Постановка эксперимента будет на следующем этапе исследования. Новый подход использует такие свойства некоторых ядер, как присущий им электрический квадруполь. Через него ядро взаимодействует с окружающей средой и на это взаимодействие можно оказывать влияние квантами света и, следовательно, тем самым оказывать влияние на само ядро — на его ядерный спин, записывая или считывая состояние кубита на этом ядре. Такое воздействие оказывается практически прямым: в зависимости от длины волны фотона спин поворачивается на тот или иной угол. Выше на иллюстрации схематически показано, как два лазерных луча с разной длиной волны могут влиять на электрические поля изображены розовым на рисунке , окружающие атомное ядро овалы на рисунке , воздействуя на эти поля таким образом, что спин ядра отклоняется в определенном направлении, как показано стрелкой. И это отклонение строго связано с частотой входящего луча фотона. Это открытие имеет множество потенциальных применений от квантовой памяти, которую изменяют или считывают фотоны, и эта информация тут же передаётся в сеть, до системы вычислений, датчиков и спектроскопии. Ждём лабораторных подтверждений предложенной теории. Миру нужны квантовые компьютеры. Радар будет встроен в систему планетарной обороны для поиска опасных астероидов, хотя сможет также детектировать ракеты и спутники. Источник изображения: Pixabay Традиционно радар испускает радиоволновое излучение и улавливает отражение сигнала от изучаемого объекта. Это отлично работает на сравнительно коротких дистанциях, но по мере увеличения дальности и чувствительности требуются как гигантские по площади антенны, так и передатчики с запредельными мощностями. Законы квантовой физики, по словам исследователей, позволяют обойти эти ограничения и добиться сверхчувствительной работы космических радаров, обойдясь малыми энергиями и сравнительно небольшими антеннами. Всё дело в том, что квантовый радар будет оперировать порциями энергии, то есть одиночными частицами, используя для детектирования квантовые свойства этих частиц. Например, если в сторону объекта отправить одну из двух связанных частиц, например, фотон света или квант энергии микроволнового диапазона, то отражённую от далёкого объекта частицу из связанной пары будет легко выделить на фоне даже сильнейших шумов. Мы просто будем знать, что искать. Также легко будет детектировать искусственно созданные кванты энергии, поскольку они будут отличаться от появившихся естественным путём. Отправка одного единственного кванта будет намного дешевле с позиции энергозатрат, чем работа мощного радиопередатчика. К тому же блок генерации связанных квантов можно встроить в обычную систему радиолокационного наблюдения. Правда, работа квантового блока будет нетривиальна сама по себе, ведь для этого необходимо охлаждение узлов до экстремально низких температур. Именно, этот аспект больше всего не нравится военным, которым придётся эксплуатировать криогенные системы в полевых условиях. Некоторое препятствие в развитии квантовых радарных технологий китайские учёные ощутили после введения ограничений со стороны США на продажу в Китай самых современных криогенных систем. Теперь китайцам приходится самим создавать аналогичные установки. Это задерживает работы по созданию квантового радара, но обнадёживающие результаты уже получены. В США также работают над радаром на квантовом принципе. В частности, этим занята компания Raytheon Technologies. Raytheon разрабатывает радар с использованием эффекта квантовой запутанности для обнаружения на орбите наноспутников и других мелких объектов, которые невидимы для традиционных радарных систем. И Китай, и США, и другие страны в аналогичных работах преследуют сначала военные цели, но сбрасывать со счетов эти усилия для укрепления планетарной обороны тоже нельзя.
Иллюстрация классического двухщелевого опыта. Свет, проходя через две прорези в ширме, формирует на непрозрачной поверхности экрана ряд чередующихся интерференционных полос Источник: Савенок Д. Для этого они использовали полупроводниковое зеркало с переменной отражаемостью излучения. Исследователи дважды быстро изменяли отражательную способность зеркала, создав две щели во временной области. В процессе физикам удалось зафиксировать интерференционные полосы вдоль частотного спектра отраженного от зеркала света. При этом интерференция происходила на разных частотах, а не в разных пространственных положениях. В теории эта работа может найти применение в области создания оптических компьютеров. Таким образом физики продемонстрировали наличие элементов и технологий для создания масштабных многоузловых квантовых сетей. Читайте также 7. Первое рентгеновское изображение атома Источник: Saw-Wai Hla Коллектив ученых из Аргоннской национальной лаборатории США совместно с коллегами из Европы, Китая и ряда американских университетов впервые в истории смог при помощи синхротронной рентгеновской сканирующей туннельной микроскопии получить рентгеновский снимок одного-единственного атома, тогда как до сих пор этот метод позволял изучать структуры, насчитывающие около 10 тыс. Преодолеть это ограничение удалось за счет добавления к детектору острого металлического наконечника, который располагался всего в 1 нм над исследуемым образцом и двигался вдоль его поверхности. Такое усовершенствование позволило исследователям фиксировать уникальные «отпечатки» каждого из составлявших образец химических элементов.
Это одна из фундаментальных проблем на пути к квантовому компьютеру, которую пытаются решить ученые всего мира. Квантовая коррекция ошибок была теоретически открыта в 1995 году, она предлагает средства для борьбы с декогерентностью, используя избыточность. То есть кодирует кубит в системе большего размера, уменьшая тем самым ее способность взаимодействовать с тем, с чем не нужно. Авторам нового исследования удалось более чем удвоить время жизни квантовой информации. Их кубит с исправлением ошибок жил 1,8 миллисекунды да, в квантовом мире все происходит быстро. Результата помог добиться новый алгоритм машинного обучения, добавленный к физическим расчетам: умея анализировать массивы данных, недоступные человеку, он настроил процесс исправления ошибок.
Физики доказали необратимость квантовой запутанности
В данном разделе вы найдете много статей и новостей по теме «квантовая физика». В данном разделе вы найдете много статей и новостей по теме «квантовая физика». квантовая физика: Последние новости. Физики из Национальной лаборатории в Брукхейвене (Brookhaven National Laboratory, BNL) открыли совершенно новый тип квантовой запутанности, достаточно известного явления, связывающего квантовые частицы. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших.
В МФТИ назвали главный прорыв года в квантовой физике
По его мнению, мы просто не всё знаем о квантовой физике, и могут быть какие-то скрытые параметры, которые уже содержатся в характеристиках частицы и выдаются в ответ на измерение свойств одной из запутанных частиц. Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго оно будет противоположным по направлению становится известна мгновенно, где бы этот второй фотон из пары не находился. Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются.
Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света.
Лауреатом в номинации «Инженерное решение» стал Гамлет Ходжибагиян, директор по научной работе Лаборатории физики высоких энергий Объединенного института ядерных исследований ОИЯИ , кандидат физико-математических наук. Премия присуждена за разработку магнитов на основе высокотемпературного сверхпроводящего материала для сверхмощных хранилищ электроэнергии и исследований новой физики.
Альберт Эйнштейн критиковал эту теорию: ведь способность частиц моментально «угадывать» состояние друг друга означала бы, что они обмениваются информацией быстрее скорости света, что противоречит постулатам теории относительности. По мнению Эйнштейна, должны были существовать некие скрытые параметры, узнав которые, ученые смогли бы вернуть квантовую теорию в русло детерминизма, то есть классической модели. А чтобы найти такие параметры, нужно было бы найти другие составляющие двухчастной системы, которые бы не меняли свои свойства при измерении, в отличие от запутанных частиц. Джон Стюарт Белл, работавший над этой проблемой, в 1960-х годах века предложил проверить наличие скрытых параметров при помощи неравенства которое сейчас называется теоремой Белла. По замыслу ученого, если неравенство выполняется, значит, в системе есть скрытые параметры. Доказать это могли бы статистические эксперименты: в случае наличия или отсутствия скрытых параметров вероятность состояний будет отличаться. Недостаток теории заключался в том, что для ее доказательства необходимо было бы провести тысячи экспериментов, чтобы собрать достаточно статистических данных.
Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются.
Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света. Учёные из Швейцарской высшей технической школы Цюриха ETH Zurich создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц.
Измерения длились на несколько наносекунд быстрее.
Квантовые технологии
Китайские физики обнаружили гигантский — на два порядка больше по величине обычного — невзаимный перенос заряда в топологическом изоляторе на основе тетрадимита допированного оловом (Sn—Bi1,1Sb0,9Te2S). Еще одним фундаментальным принципом физики элементарных частиц является квантовая запутанность, согласно которой частицы остаются взаимосвязанными вне зависимости от расстояния между ними. Группа посвящена Квантовой физике и всем смежным областям науки. В основном публикуются новые статьи о теоретических и прикладных исследованиях, программы для вычислений, книги и видео. Новости и события Физики предложили новый способ безыгольных инъекций Ученые Центра фотоники и двумерных материалов МФТИ с коллегами представили инновационный способ безыгольных инъекций. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших. Новости квантовой физики. 14 августа 2023 года. Главные Заголовки. Массивы квантовых стержней могли бы улучшить телевизоры или устройства виртуальной реальности.
Российские учёные развивают технологии на основе квантовой физики вместо классической
свежие новости дня в Москве, России и мире. квантовая физика — самые актуальные и последние новости сегодня. Новости физики в сети Internet: май 2023 (по материалам электронных препринтов).
С приставкой «супер-»: обзор новостей квантовой физики
В интервью РИА Новости он объяснил, какие перспективы открывает новый инструмент коммуникаций и что нужно для его квантовой революцией называют период взрывного технологического роста, последовавшего за созданием квантовой физики. Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике. Еще одним фундаментальным принципом физики элементарных частиц является квантовая запутанность, согласно которой частицы остаются взаимосвязанными вне зависимости от расстояния между ними. Новости. Фото дня. Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически корректировать случайные ошибки, возникающие в процессе их работы.
Нобелевскую премию по физике присудили за квантовую запутанность
Благодаря этому управлению с помощью когерентного сложения электромагнитных волн MAPLE способен смещать фокус и направление излучаемой энергии — без каких-либо движущихся частей, передавая большую часть энергии в нужное место на Земле. Нейтрино заглянуло внутрь протона Американские физики из Рочестерского университета и проекта MINERvA Main Injector Neutrino ExpeRiment to study v-A interactions — Главный эксперимент с инжектором нейтрино для исследований взаимодействия нейтрино с атомами в Фермилабе впервые смогли точно измерить размер и структуру протона с помощью нейтрино. Их результаты опубликованы в журнале Nature. Тем самым создан ещё один инструмент, способный заглянуть внутрь субатомных частиц, который, возможно, позволит уточнить наши представления о них. Кроме того, подобные эксперименты могут прояснить и то, как нейтрино взаимодействуют с веществом. Информацию о структуре протона исследователи получили, направив пучок нейтрино на пластиковые мишени, содержащие углерод и водород, ядра которого как раз одиночные протоны. Нейтрино слабо взаимодействует с веществом, поэтому пришлось решить множество проблем для высокоточных измерений их рассеяния. Например, было сложно наблюдать сигнал нейтрино, рассеянного одиночными протонами водорода на фоне нейтрино, рассеянных связанными протонами в ядрах углерода. Для решения этой проблемы исследователи смоделировали сигнал углеродного рассеяния и вычли его из экспериментального сигнала. Физики впервые увидели коллайдерное нейтрино Реакции, которые происходят в протонных коллайдерах ускорителях частиц, в которых два пучка протонов сталкиваются друг с другом , порождают большое количество нейтрино.
Однако до сих пор эти нейтрино никогда не наблюдались напрямую. Очень слабое взаимодействие нейтрино с другими частицами делает их обнаружение крайне сложным. И вот в августе 2023 года участники сразу двух экспериментов на Большом адронном коллайдере объявили о первой регистрации нейтрино. Известно, что нейтрино высоких энергий производятся преимущественно на этом участке, но другие детекторы на БАКе имеют здесь слепые зоны и потому не могли наблюдать. Обнаруженные FASER нейтрино имеют самую высокую энергию, когда-либо зарегистрированную в лабораторных условиях. А от осколков столкновений протонов его прикрывают примерно 100 метров бетона и камня. Регистрация коллайдерных нейтрино может открыть новые возможности для экспериментальных исследований в области физики элементарных частиц.
Теоретические основы квантовой коррекции ошибок были заложены почти 30 лет назад, однако только сейчас их удалось успешно применить на практике. Результаты опубликованы в Nature. Квантовая коррекция ошибок — это процесс, предназначенный для сохранения квантовой информации. Информация в классических вычислениях поступает в виде битов, соответствующих единицам или нулям. В квантовых вычислениях информация существует в квантовых битах, или кубитах. Кубиты могут создаваться разными способами. В этом исследовании — из сверхпроводящих цепей, охлаждаемых до температур в 100 раз ниже, чем температура открытого космоса.
Доказать это могли бы статистические эксперименты: в случае наличия или отсутствия скрытых параметров вероятность состояний будет отличаться. Недостаток теории заключался в том, что для ее доказательства необходимо было бы провести тысячи экспериментов, чтобы собрать достаточно статистических данных. Это стало возможно только сильно позже, когда появилось оборудование для фиксации состояния экспериментальных фотонов. Американский физик Джон Клаузер предложил эксперимент для проверки неравенства Белла, благодаря которому ему в 1972 году удалось доказать, что неравенства не выполняются, а значит, скрытых параметров нет. Однако работа на этом не завершилась. Клаузер и другие ученые продолжили искать ответы на некоторые спорные моменты. После эксперимента Джона Клаузера к процессу подключился Ален Аспект.
Рентгеновская подпись всего лишь одного атома железа: зависимость туннельного тока от частоты фотона Изображение Университета Огайо Установка на место 93 тонного детектора STEREO вместе с защитой. Сверху он покрыт черными листами поглотителя нейтронов для уменьшения внешнего фона. Цель эксперимента —обнаружение и изучение взаимодействий нейтрино высоких энергий внутри коллайдера. В магнитной ловушке накопили атомы антиводорода, а затем позволили им свободно падать. Перемещение атомов антивещества отслеживали по аннигиляционным вспышкам на стенках установки. Несмотря на кажущуюся простоту описания, эксперимент очень сложный, потребовавший в том числе учёта большого числа факторов, например, влияния магнитов в установке, чьё действие создаёт силу, сопоставимую с гравитационной. На пути к 120-му элементу В октябре 2023 года на Фабрике сверхтяжёлых элементов в Лаборатории ядерных реакций ОИЯИ Дубна, Россия исследователи впервые успешно синтезировали сверхтяжёлый элемент с помощью снаряда-ядра тяжелее 48Ca. В результате бомбардировки ядрами хрома 54Cr мишени из урана 238U они получили ранее неизвестный изотоп ливермория 288Lv 116-го элемента Периодической таблицы Менделеева со временем жизни чуть менее одной миллисекунды. Уникальный атом не был непосредственной целью эксперимента и стал приятной неожиданностью. Дело в том, что сверхтяжёлые элементы от 114-го — флеровия до 118-го — оганесона были синтезированы [1], [2], [3] в реакциях с пучком 48Ca, а самое тяжёлое вещество, которое можно наработать в количестве, достаточном, чтобы сделать мишень — калифорний. Слияние ядер кальция 20-й элемент и калифорния 98-й элемент как раз и образует 118-й элемент — последний из синтезированных на сегодняшний день. Чтобы получить сверхтяжёлые элементы с большим атомным номером надо использовать ядра не кальция, а элементов с большим количеством протонов. Так, для получения 120-го элемента предлагается реакция хрома 54Cr 24-й элемент с мишенью из кюрия 96-й элемент. Исследованием этого снаряда и занят ОИЯИ. Полученный результат позволяет надеяться на успешное использование ядра 54Cr для синтеза 120-го элемента, приступить к которому ОИЯИ планирует в 2025 году. После этого, видимо, будет сделана попытка синтезировать также ещё не открытый 119-й элемент, бомбардируя Америций 95-й элемент. Рентгеновская подпись атома Команда физиков из нескольких американских лабораторий под руководством профессора Со Вай Хла Saw Wai Hla, Университет Огайо разработала метод, использующий синхротронное рентгеновское излучение для исследования отдельного атома в веществе.
Распутать квантовую запутанность: за что дали «Нобеля» по физике
Новости и события Физики предложили новый способ безыгольных инъекций Ученые Центра фотоники и двумерных материалов МФТИ с коллегами представили инновационный способ безыгольных инъекций. Интерфакс: Лауреатами Нобелевской премии по физике за 2022 год стали французский ученый Ален Аспе, американский физик Джон Клаузер и австрийский ученый Антон Цайлингер за исследования в квантовой механике, а именно за "эксперименты с запутанными фотонами. Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин. Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков.