Новости атомная батарейка

Атомную батарейку, которая эффективно сможет работать десятки лет, продлевая работоспособность космических и глубоководных приборов, создали ученые НИТУ «МИСиС». О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Китайские ученые создали «вечную» ядерную батарею, которая может производить энергию до 50 лет без подзарядки.

Российские ученые оценили созданную в Китае ядерную батарейку

Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет. Ученые НИТУ «МИСиС» разработали компактную батарейку на атомной энергии, заряда которой хватит на 20 лет. Про супер-долгую атомную батарейку с повышенной в 10 раз мощностью". В Китае изобрели атомную батарейку, способную работать без подзарядки 50 лет. Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы).

От смартфона до ракеты. Учёные создали "вечную" атомную батарейку

Российские ученые разработали прототип ядерной батарейки мощностью до 100Вт, которая может работать с помощью бета-распада никеля-63. В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка. Российские ученые разработали прототип ядерной батарейки мощностью до 100Вт, которая может работать с помощью бета-распада никеля-63. Отмечается, что ядерные батарейки работают за счет преобразования в электричество энергии распада метастабильных ядер. Теперь пришло время рассказать о компактной атомной батарее созданной российскими учеными. Ядерные батарейки – это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество.

Что дальше?

  • Дух времени
  • Гамулятор • Новый вариант атомной батарейки или "РИТЭГ второго поколения" (с)
  • В России создана атомная батарейка, которая способна работать 20 лет
  • Российские ученые создали батарейку, работающую 100 лет - Российская газета

Создана уникальная ядерная батарейка

Эффективная площадь преобразования бета-излучения в электрическую энергию в сравнении с аналогами увеличилась в 14 раз, что в результате дало общее увеличение тока. В числе прочих преимуществ разработчики отмечают упрощение технологии изготовления атомной батареи, что вдвое удешевляет её производство. Применение такой батареи возможно лишь в специальных микроэлектронных устройствах, в том числе в приборах, работающих в критических условиях — в космосе, под водой или в горах, отмечают исследователи. Например, в качестве аварийного источника питания небольших датчиков.

Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно.

Например, в качестве аварийного источника питания небольших датчиков. Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно.

Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин. В настоящий момент разработка МИСиС проходит процедуру международного патентования, а сам вуз признан зарубежными экспертами «одним из ключевых участников мирового рынка бетавольтаических батарей», отмечает пресс-служба университета. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи, пишет RT.

В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами.

Такие источники востребованы в самых разных отраслях от космоса до медицины. Выбор радиоизотопа и схемы преобразования Области применения ядерных батарей разнообразны: в ближайшем будущем они могут стать незаменимыми на территориях, удаленных от инфраструктуры, например, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяженности, в космосе, а также в связи и медицине — там, где нужна длительная работа прибора без подзарядки или замены источников энергии. Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения — поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Кроме выбора радиоизотопа принципиально важным является выбор схемы преобразования энергии ядерного распада в электричество.

На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: энергия альфа- и бета-частиц сначала превращаются в другие виды энергии, например в тепловую, химическую, механическую или световую энергию, а они уже превращаются в электричество. Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный.

В России создана атомная батарейка: может работать до ста лет

Технологии будущего Роскосмос Планета Земля со всеми ее водными и воздушными оболочками весит почти шесть секстиллионов тонн — и всего лишь около 300 кг этой массы приходится на тритий. Это крайне редкий изотоп водорода, ядра которого содержат один протон и два нейтрона; он тяжелый и нестабильный, со временем полураспада около 12,3 года. В природе тритий образуется в верхних слоях атмосферы под воздействием космических частиц, которые сталкиваются с атомами летучих газов, а затем накапливается в Мировом океане. Но немалое количество этого элемента появляется на Земле в результате деятельности человека и заканчивает свою жизнь в хранилищах ядерных отходов. Он образуется в ходе деления ядер урана в реакторах, появляется во многих других процессах с участием нейтронов — например, при борном регулировании цепной реакции. Здесь это побочный продукт, и не самый безопасный, требующий нейтрализации. Присутствие изотопа водорода на АЭС обязательно отслеживают.

Причем чем выше температура, тем больше скорость его диффузии. Поэтому для безопасности тритий выделяют, концентрируют и переводят в твердое состояние, чтобы утилизировать вместе с остальными радиоактивными отходами». На некоторых реакторах изотоп специально вырабатывают для подобных нужд, хотя это производство трудно назвать массовым. И даже такие количества требуют контроля специалистов. Излучение Распадаясь, радиоактивные элементы создают разные виды опасного излучения: это могут быть потоки ядер гелия альфа-излучение , высокоэнергетических фотонов гамма и электронов бета. При распаде трития образуется почти чистое бета-излучение с частицами невысоких энергий.

Они неспособны проникнуть сквозь кожу, а в воздухе пролетают всего несколько миллиметров. По словам Александра Аникина, небольшое количество молекулярного трития, даже попав в легкие, за время между вдохом и выдохом не сможет нанести серьезного вреда. Проблема в том, что это водород, а значит, он способен легко встроиться в молекулы воды, оказываясь в жидкостях тела и даже биологических полимерах, включая ДНК.

Исследователи из России создали компактную атомную батарейку, которая в десять раз мощнее существующих аналогов, сообщает russian. Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет. Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах. Учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку, которая в десять раз мощнее и вдвое дешевле существующих аналогов.

В России создана атомная батарейка, которая способна работать 20 лет 2023-01-15 15:55 2626 Национальный исследовательский технологический университет «МИСиС» НИТУ «МИСиС» сообщает о разработке инновационного автономного источника питания — передовой атомной батарейки. Главной особенностью изделия является оригинальная микроканальная 3D-структура никелевого бетавольтаического элемента. Радиоактивный элемент наносится с двух сторон так называемого планарного p-n-перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадёт» мощность.

Изделие способно работать до двадцати лет. Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных или недоступных местах, например, в космосе, под водой или в высокогорных районах.

Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет

Этим они отличаются от атомных реакторов, в которых для этого используется управляемая цепная ядерная реакция. Китайские ученые создали «вечную» ядерную батарею, которая может производить энергию до 50 лет без подзарядки. Ученые НИТУ «МИСиС» разработали атомную батарейку с повышенной в десять раз мощностью. Китайские ученые создали «вечную» ядерную батарею, которая может производить энергию до 50 лет без подзарядки.

В России создали «ядерную батарейку» для космоса и авиации

Излучение внутри батарейки «ловят» с помощью специальных элементов, чаще всего полупроводниковых. А они превращают ядерное излучение в электричество. В качестве источника могут использоваться разные изотопы, поясняет Сергей Леготин. Чаще всего говорят о батарейках на основе трития, плутония или изотопа никель-63. От вида изотопа зависит, сколько времени будет работать батарейка и какие мощности выдавать. Структуру, состоящую из изотопа и полупроводников, помещают внутрь специального защищённого корпуса. Он спроектирован таким образом, чтобы радиация не выходила наружу, а сама батарейка могла пережить ударные нагрузки, перепады температур и давления. Получается надёжная и практически автономная конструкция, изолированная от окружающей среды. Ядерные батарейки не нуждаются в подзарядке и могут работать в течение многих лет. В теории — пока не достигнут периода полураспада изотопа, который в них находится.

На практике ещё нужно учитывать деградацию других элементов, например полупроводников. Какими бывают ядерные батарейки и как они работают Источники энергии на основе изотопов можно разделить на две категории: тепловые и нетепловые. Всё зависит от того, каким образом из энергии ядерного распада получают электричество. РИТЭГ: что было до ядерных батареек. Такие устройства использовали в космосе, в тех местах, где невозможно применять солнечные батареи. Например, на космических кораблях, которые отходят далеко от Солнца. Внутри устройства — радиоактивный изотоп, который распадается естественным путём и при этом выделяет тепло. Специальные элементы преобразуют это тепло в электричество. РИТЭГ — хорошо изученная технология, но не слишком эффективная.

При таком способе преобразования теряется много энергии. К тому же термические преобразователи громоздкие и хрупкие, пользоваться ими не очень удобно. Нужна была более совершенная технология. Электронно-вольтаический эффект и сэндвич-структура. В 50-х учёные выяснили, что бета-излучение радиоактивных изотопов может генерировать электрический ток, если проходит через полупроводники. На основе этого эффекта начали создавать генераторы. Изотоп испускает частицы, а полупроводниковая часть преобразует эти частицы в энергию», — поясняет Сергей Леготин. С помощью таких «сэндвичей» стало можно создавать источники питания, которые вырабатывали бы энергию в течение многих лет без подзарядки. Но у таких батареек тоже были свои минусы: бета-вольтаические элементы дают довольно слабый электрический ток.

Поэтому батарейка может питать только маломощные элементы, а для питания чего-то более мощного нужен целый кластер из множества бета-вольтаических элементов. Со временем полупроводниковые технологии совершенствовались. Стало возможно создавать структуры с улучшенным качеством преобразования энергии изотопа в ток.

Поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа резко сужает круг потенциальных кандидатов, поскольку ядра при распаде должны либо все переходить в основное состояние дочернего ядра, либо заселять возбужденные состояния дочернего ядра с очень низкой вероятностью. Кроме выбора радиоизотопа, принципиально важным при разработке радиоизотопных источников энергии является и выбор схемы преобразования энергии ядерного распада в электричество. На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в иную, например, тепловую, химическую, механическую, световую и т. Это наиболее перспективный радионуклид в бета-вольтаике — средняя энергия бета-частиц 63Ni 17. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему на основе 63Ni, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц. Эта система является относительно простой с точки зрения экспериментальной реализации и представляет собой ансамбль плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осажденных на поверхности широкополосного диэлектрика — оксида кремния. Ключевая особенность системы основана на том, что вследствие размерной зависимости энергии Ферми наличие пространственно неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в такой системе.

Ещё одна технология — создавать батарейки на основе альфа-излучения, за счёт принципа, который называется термофотовольтаическим. Изотоп, испускающий альфа-частицы, — чаще всего это плутоний — погружается в специальную капсулу с напылением. Стенки капсулы под воздействием радиации нагреваются до температуры в 1500 градусов по Кельвину. Капсула становится настолько горячей, что её стенки светятся. Этот свет улавливают фотоэлементы, расположенные вокруг капсулы, и преобразуют в электричество. Похоже на солнечные батареи, но вместо Солнца светится капсула с изотопом. А ещё плутоний даёт намного большие мощности: одна батарейка может выдавать несколько сотен ватт. Хотя есть и свои сложности. Альфа-излучение довольно интенсивное и чаще всего сопровождается гамма-излучением. Под его воздействием понемногу разрушаются узлы батарейки: провода, преобразователи энергии и другие комплектующие. Со временем их понадобится заменять. Например, в плутониевых батарейках оборудование способно «прожить» около 20 лет, хотя период полураспада самого изотопа куда больше — 87 лет. К тому же преобразование тут двойное: тепло превращается в свет, а потом в электричество, и по пути часть энергии теряется. Существуют и другие способы преобразовывать альфа-излучение в электрический ток: нестандартные конструкции батареек, использование неравномерной эмиссии электронов. Но таких разработок меньше, и продвигаются они медленно из-за дороговизны комплектующих. По какой технологии создают ядерные батарейки Технологический процесс делится на несколько этапов. В зависимости от вида батарейки этапы могут различаться — для примера покажем процесс на основе современных тритиевых батареек с сэндвич-структурой. Подготавливают радиоактивные изотопы. Изотопы не берутся из ниоткуда, их получают с помощью долгих и сложных реакций обогащения в специальных центрифугах. Процесс создания изотопа может занимать несколько лет. Чаще всего производители ядерных батареек не готовят изотопы самостоятельно, а закупают — в России их подготовкой занимаются предприятия «Росатома». Разрабатывают полупроводниковый элемент. Для создания полупроводников могут использовать кремний, арсенид галлия, германий и другие элементы — тут всё зависит от потребностей. Фактически производитель батарейки создаёт полупроводниковый диод на основе нужного материала. Запускают в конструкцию изотоп. Тритий — это газ, который закачивают внутрь рабочей камеры. Там он вступает в реакцию со специальной подложкой и начинает излучать бета-частицы. Твёрдые элементы вроде никеля-63 наносят на полупроводник с помощью напыления или приклеивают в виде фольги, хотя это менее эффективно. Потом из батарейки откачивают воздух, чтобы частицы не сталкивались и полезное излучение не уходило в никуда. Помещают батарейку в защитный корпус. Одна пара «изотоп — полупроводник» даёт довольно низкую энергию.

Она может выдавать небольшое количество энергии, но беспрерывно на протяжении 20 лет. Или же он может питать датчик температуры где-нибудь в Арктике или других труднодоступных местах с суровыми условиями. Единственная проблема технологии — слишком высокая себестоимость.

Другие новости

  • Российские ученые создали атомную батарейку, которая может работать 20 лет — Нож
  • Российская «атомная батарейка» способна проработать 20 лет! /
  • Ядерная батарейка: в России создали источник питания, работающий 50 лет
  • Мини-атомная электростанция
  • Электротранспорт и бытовая техника

В России создана атомная батарейка, которая способна работать 20 лет

  • Ядерное питание: российские учёные создали атомную батарейку повышенной мощности — РТ на русском
  • Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии | РБК Тренды
  • Оставайтесь на связи
  • «Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты
  • В России создали «ядерную батарейку» для космоса и авиации

Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность

От смартфона до ракеты. Учёные создали "вечную" атомную батарейку атомная батарейка. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах.
В России разработана атомная батарейка Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63.
Вечная атомная батарейка на основе углерода и Никеля 63 - принцип работы. Новая российская атомная батарейка стала в десять раз мощнее и вдвое дешевле аналогов.
Ядрена батарейка Изотоп никель-63 (63Ni) давно привлекает внимание инженеров как перспективный энергоисточник для атомных батареек.

В России создана атомная батарейка: может работать до ста лет

В России создали атомную батарейку со сроком службы до 20 лет Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах.
В МИФИ создали прототип плутониевой батарейки Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы).
Создана уникальная ядерная батарейка | Наука и жизнь Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа.
Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет Ядерные батарейки – это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество.
Вечная атомная батарейка на основе углерода и Никеля 63 - принцип работы. На заводе «Элемаш» в Электростали делают батарейки для ядерных реакторов, которые используют по всему миру.

В НИЯУ МИФИ создали прототип ядерной батарейки

Атомная батарея Nickel-63 diamond β-volt представляет собой алмазный полупроводниковый преобразователь и лист никеля-63 толщиной 2 мкм, уложенный слоями. Рассчитана на 50 лет работы без подзарядки – Самые лучшие и интересные новости по теме: Батарейка, Китай, Ядерный реактор на развлекательном портале Теперь пришло время рассказать о компактной атомной батарее созданной российскими учеными. "Росатом" изготовил первую опытную партию компактных ядерных батареек.

Почему не делают смартфоны и ноутбуки на атомных батарейках? И могут ли они появиться в будущем?

атомная батарейка. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах. В России представили прототипы уникальных ядерных батареек, срок службы которых составляет более пятидесяти лет. Ученые российской атомной отрасли вплотную приблизились к созданию так называемого бета-вольтаического источника питания на основе радиоактивного изотопа никель-63. Атомная батарея Nickel-63 diamond β-volt представляет собой алмазный полупроводниковый преобразователь и лист никеля-63 толщиной 2 мкм, уложенный слоями. Атомная батарейка, также известная как радиоизотопный генератор тепла (РИГТ), является источником энергии, который использует процесс распада радиоактивных изотопов для.

80 лет без подзарядки: в России создали атомную батарею

Но то что удалось достигнуть ученым на данный момент не является пределом. Выхлоп можно повысить еще минимум в три раза. А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле. Ядерная батарейка на углероде 14 работающая 100 лет У данной атомной батарейке по сравнению с другими радиационными источниками энергии имеются следующие преимущества: Дешевизна.

Долгий срок работы до 100 лет. Низкая токсичность. Способна работать в экстремальных температурных условиях.

Радио активный изотоп углерод 14 имеет период полураспада 5700 лет. Он абсолютно не токсичен и имеет низкую стоимость. Активную работу по модернизации ядерной батарейки ведут не только США и Россия, но и другие страны!

Исследователи научились наращивать пленку на карбидной подложке. В результате чего подложка подешевела в целых 100 раз. Такая структура устойчива к радиации, а это делает данный энергетический источник безопасным и долговечным.

Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы в престижном журнале AppliedPhysicsLetters. Открытие, сделанное в ходе разработки Кроме прочего, оказалось, что данные наноструктурированные пленки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределенным спектром излучения в заданном диапазоне. Как показали проведенные эксперименты, процесс окисления пленки приводит к образованию оксидной оболочки поверх металлического ядра нанокластера. Таким образом, при окислении металлической пленки формируется ансамбль никелевых нанокластеров, имеющих оболочку из оксида. Малые размеры нанокластеров 2-15 нм приводят к проявлению у них квантовых свойств, в связи с чем, ансамбль подобных нанокластеров, имеющих оксидную оболочку превращается в набор полупроводниковых материалов.

Это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и дает возможность «настройки» спектра излучения системы под требуемый диапазон. Это, в свою очередь, выводит энергоэффективность источника электроэнергии на новый уровень. Схема преобразования Превращение батарейки в селективно излучающую систему в инфракрасном диапазоне, позволяет увеличить эффективность работы источников питания, часть энергии которых обычно безвозвратно тратиться на тепло, что и было экспериментально продемонстрировано учеными НИЯУ МИФИ в рамках опытно-конструкторской работы по договору с ЧУ «Наука и инновации» Госкорпорации «Росатом».

Например, в качестве аварийного источника питания небольших датчиков. Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно. Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин. В настоящий момент разработка МИСиС проходит процедуру международного патентования, а сам вуз признан зарубежными экспертами «одним из ключевых участников мирового рынка бетавольтаических батарей», отмечает пресс-служба университета.

С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи.

Источником энергии для уникальных батареек послужил изотоп никеля-63. Сообщается, что излучение данного элемента не представляет опасности для живых организмов, его период полураспада длится приблизительно сто лет. Этой энергии должно хватить для автономного питания кардиостимулятора в течение многих лет.

Похожие новости:

Оцените статью
Добавить комментарий