Новости 26 задача егэ информатика

Примеры заданий ЕГЭ по информатике с решением на Паскале.

Вариант с реального ЕГЭ 2023 по информатике 11 класс задания и решения

72 Конец фильма ПОЛЯКОВ Константин Юрьевич д.т.н., учитель информатики ГБОУ СОШ № 163, г. Санкт-Петербург kpolyakov@ Изображение слайда. Примеры заданий: Задание 26 Простое задание (Решу ЕГЭ). 2024. 3 месяца назад. Самый мощный обстрел Белгорода за всю войну / Новости России. Информатика. Решения, ответы и подготовка к ЕГЭ от Школково. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python.

Задание 26. Обработка массива целых чисел

Известно, какой объём занимает файл каждого пользователя. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 63 камня или больше. Первым ходит Петя. Задание 1а. Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Решение задания 1а. Ответ на задание 1а. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Решение задания 1б. Минимальное значение - 7.

Ответ на задание 1б. Решение задания 2. Необходимо найти такое значение S количество камней во второй куче , при котором Петя не сможет выиграть своим первым ходом, но и Ваня также не может выиграть своим первым ходом. Причем, любой ход Вани создает выигрышную ситуации для Пети, который выигрывает своим вторым ходом. Одним из вариантов решения задания 1б была ситуация S 6, 20. Рассмотрим ее: Примечание.

В st[0] - будет подстрока с первым числом, в st[1] со вторым. Переменная s - это размер свободного пространства на диске, n - это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b. В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество. Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент. Пробегаемся по списку a, начиная с конца. Ищем кем можно заменить удалённый элемент. Мы идём с конца, поэтому в приоритете будут самый большие элементы.

Задача 19 Задача 20 Задача 21 Известно, что Ваня выиграл своим первым ходом после неудачного хода Пети. Укажите минимальное значение S, когда такая ситуация возможна. Проверить Можно скопировать и вставить все ответы сразу Найдите два минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: Петя не может выиграть за один ход; Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания. Проверить Можно скопировать и вставить все ответы сразу Найдите минимальное значение S, при котором одновременно выполняются два условия: у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Если найдено несколько значений S, в ответе запишите наименьшее из них.

Навигация по записям

  • Досрочный период КЕГЭ по информатике 9 апреля 2024 | Артём Зинкин
  • ЕГЭ по информатике — 2024: структура и изменения ⋆ MAXIMUM Блог
  • Задание 26 | ЕГЭ по информатике 2023
  • ЕГЭ по информатике: что нужно знать, чтобы хорошо сдать | Сила Лиса
  • Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова - Смотреть видео

Самое необходимое по заданию №26 в формате видеоурока

  • Найди то, не знаю что
  • Use saved searches to filter your results more quickly
  • Как решать №26 из ЕГЭ по информатике?
  • Информатика ЕГЭ 2024 | Ишимов & Шастин – Telegram
  • Search code, repositories, users, issues, pull requests...
  • Задание 26. ЕГЭ. Исправление ошибок в программе

Формулировка задания №26 ЕГЭ 2024 из демоверсии ФИПИ

  • Use saved searches to filter your results more quickly
  • 🔍 Похожие видео
  • ЕГЭ по информатике 2023 — Задание 26 (Сортировка)
  • 26 задание егэ информатика 2021 excel скидки
  • Задание 26
  • Разбор 26 задания ЕГЭ 2017

Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова

Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности. Алгоритм: 1. Найдем максимальный элемент последовательности, который оканчивается на 13.

Оформим это отдельной подпрограммой.

На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Разбор 26 задания ЕГЭ 2017 1. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня.

Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней.

Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень. Можно нарисовать деревья всех возможных партий для указанных значений S. Она состоит в том, чтобы удвоить количество камней в куче и получить кучу, в которой будет соответственно 18 или 16 камней.

Вам необходимо определить, какое наибольшее количество процессов выполнялось в системе одновременно на неделе, начавшейся в момент UNIX-времени 1633305600, и в течение какого суммарного времени в секундах выполнялось такое наибольшее количество процессов. Входные данные Первая строка входного файла содержит целое число N — общее количество процессов за весь период наблюдения. Каждая из следующих N строк содержит 2 целых числа: время старта и время завершения одного процесса в виде UNIX-времени. Все данные в строках входного файла отделены одним пробелом.

Задание 26 | ЕГЭ по информатике | ДЕМО-2024

Большая база заданий ЕГЭ по Информатике, объяснения решений и правильные ответы. 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). Разбор 26 задания ЕГЭ 2017 года по информатике из демоверсии. уроки для подготовки к экзаменам ЕГЭ ОГЭ. Задания по информатике.

Демоверсия егэ информатика 26 задание разбор

Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы. Опишите выигрышную стратегию Вовы.

Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче. При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней. Тогда после первого хода Паши в куче будет 31 камень или 40 камней.

Возможные значения S: 20, 29. Возможное значение S: 28. После первого хода Паши в куче будет 29 или 38 камней. Если в куче станет 38 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом.

Ситуация, когда в куче 29 камней, разобрана в п. В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции в них выигрывает Вова подчёркнуты. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы.

Два иг-ро-ка, Петя и Ваня, иг-ра-ют в сле-ду-ю-щую игру. Перед ними лежат две кучки кам-ней, в пер-вой из ко-то-рых 2, а во вто-рой - 3 камня. У каж-до-го иг-ро-ка не-огра-ни-чен-но много кам-ней. Иг-ро-ки ходят по оче-ре-ди, пер-вый ход де-ла-ет Петя.

Ход со-сто-ит в том, что игрок или утра-и-ва-ет число кам-ней в какой-то куче, или до-бав-ля-ет 4 камня в какую-то кучу. Игра за-вер-ша-ет-ся в тот мо-мент, когда общее число кам-ней в двух кучах ста-но-вит-ся не менее 31. Если в мо-мент за-вер-ше-ния игры общее число кам-ней в двух кучах не менее 40, то вы-иг-рал Петя, в про-тив-ном слу-чае - Ваня. Кто вы-иг-ры-ва-ет при без-оши-боч-ной игре обоих иг-ро-ков?

Каким дол-жен быть пер-вый ход вы-иг-ры-ва-ю-ще-го иг-ро-ка? Ответ обос-нуй-те. Выигрывает Ваня. Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделённые запятой.

Эти числа соответствуют количеству камней на каждом этапе игры в первой и второй кучах соответственно. Таблица содержит все возможные варианты ходов первого игрока. Из неё видно, что при любом ходе первого игрока у второго имеется ход, приводящий к победе. Два игрока, Петя и Вася, играют в следующую игру.

Перед ними лежат две кучки камней, в первой из которых 2, а во второй - 1 камень. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первым ходит Петя. Ход состоит в том, что игрок или увеличивает в 3 раза число камней в какой-то куче, или добавляет 3 камня в какую-то кучу.

Выигрывает игрок, после хода которого в одной из куч становится не менее 24 камней. Кто выигрывает при безошибочной игре? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.

Выигрывает Петя, своим первым ходом он должен увеличить в 3 раза количество камней во второй куче. Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделенные запятой. Таблица содержит все возможные варианты ходов Васи. Из неё видно, что при любом его ответе у Пети имеется ход, приводящий к победе.

Два игрока, Петя и Ваня, играют в следующую игру. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. Игра завершается в тот момент, когда количество камней в куче становится более 100.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 101 или больше камней. Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите все такие значения и выигрывающий ход Пети. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани. Представьте его в виде рисунка или таблицы. Для каждого ребра дерева укажите, кто делает ход, для каждого узла - количество камней в позиции.

При меньших значениях S за один ход нельзя получить кучу, в которой больше 100 камней. Пете достаточно увеличить количество камней в 5 раз. Тогда после первого хода Пети в куче будет 21 камень или 100 камней. В обоих случаях Ваня увеличивает количество камней в 5 раз и выигрывает в один ход.

Сложное 14 Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления. Задача 1. Определите, сколько различных значений может принимать выражение при всех возможных x и y.

Известно, какой объём занимает файл каждого пользователя. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные: В первой строке входного файла находятся два числа: S— размер свободного места на диске натуральное число, не превышающее 10 000 и N— количество пользователей натуральное число, не превышающее 4000. В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке.

Эксперты рассказали выпускникам о финальной подготовке к итоговой аттестации, о типичных затруднениях, с которыми сталкиваются школьники во время ЕГЭ, и о грамотном распределении времени на экзамене. Директор института информационных технологий Московского государственного технологического университета «Станкин», кандидат технических наук, член комиссии разработчиков контрольных измерительных материалов ЕГЭ по информатике Сергей Сосенушкин напомнил, что компьютерный формат экзамена дает возможность выпускникам использовать широкий спектр инструментов, которые не были им доступны ранее, и выполнить задания максимально эффективно.

ЕГЭ по информатике (2024)

Необходимо определить ряд с максимальным номером, в котором есть подряд ровно 11 неприжившихся саженцев, при условии, что справа и слева от них саженц прижились. В ответе запишите сначала наибольший номер ряда, затем наименьший номер из неприжившихся мест. Входные данные: В первой строке входного файла 26. Каждая из следующих N строк содержит два натуральных числа, не превышающих 100 000: номер ряда и номер заного места. Выходные данные: Два целых неотрицательных числа: максимальный номер ряда, где нашлись обозначенные в задаче места, и минимальный номер подходящего места. В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки — подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т. Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок.

Тип 14 это задачи на позиционные системы счисления. Задача 1. Определите, сколько различных значений может принимать выражение при всех возможных x и y. Решение Первым делом определяем какими могут быть x и y.

В st[0] - будет подстрока с первым числом, в st[1] со вторым. Переменная s - это размер свободного пространства на диске, n - это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b. В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество. Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент. Пробегаемся по списку a, начиная с конца. Ищем кем можно заменить удалённый элемент. Мы идём с конца, поэтому в приоритете будут самый большие элементы.

Определите, сколько различных значений может принимать выражение при всех возможных x и y. Решение Первым делом определяем какими могут быть x и y. В первом слагаемом x и y являются цифрами 18-тиричного числа, следовательно x и y натуральные числа меньшие 18. Теперь, когда мы нашли область определения x и y, можно подумать и об алгоритме решения.

Разбор 26 задания ЕГЭ 2023 по информатике ( python )+ досрочный период 2023

Для выполнения этого задания следует написать программу. Файл с данными: 24. Задание 25 Демо-2022 Пусть M — сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей и у числа нет, то значение M считается равным нулю. Напишите программу, которая перебирает целые числа, большие 700 000, в порядке возрастания и ищет среди них такие, для которых значение M оканчивается на 8.

Выведите первые пять найденных чисел и соответствующие им значения M. Формат вывода: для каждого из пяти таких найденных чисел в отдельной строке сначала выводится само число, затем — значение М.

Размер подарка позволяет поместить его в самую маленькую коробку. Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000.

В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.

Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней.

Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73.

Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза.

Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S.

Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19. Везде следующим ходом выиграет Ваня, см. Это задание из второй части высокого уровня сложности. Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3. Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию.

Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя.

Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Разбор 26 задания ЕГЭ 2017 1. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает.

Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии

Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). 9 задание егэ информатика, какие то проблемы. Отмена. Воспроизвести. Информатика ЕГЭ Умскул.

Похожие новости:

Оцените статью
Добавить комментарий