Неполученная нобелевская премия. В 1890-м ссора с высокопоставленным чиновником стала причиной ухода Менделеева из университета. Он, к слову, получил премию по химии в 1903 году, но до и после этого сделал всё, чтобы в его родной Швеции не вручили медаль имени Нобеля Менделееву. Дмитрия Менделеева трижды номинировали на Нобелевскую премию. Но есть две версии, почему Менделеев в 1906 году не получил Нобелевскую премию. На тот момент премия была относительно «молодая» (первую Нобелевскую премию вручили в 1901 г.), и Дмитрий Иванович уже получил кучу престижных наград – в частности, медаль Копли, одну из старейших научных наград.
Почему Дмитрий Менделеев не получил Нобелевскую премию?
Периодический закон Работая над трудом «Основы химии», Д. Менделеев открыл в феврале 1869 года один из фундаментальных законов природы — периодический закон химических элементов. Менделеева «Соотношение свойств с атомным весом элементов» был прочтён Н. Меншуткиным на заседании Русского химического общества. Отдельные учёные в ряде стран, особенно в Германии, соавтором открытия считают Лотара Мейера. Существенное различие этих систем заключается в том, что таблица Л. Мейера — это один из вариантов классификации известных к тому времени химических элементов; выявленная Д. Менделеевым периодичность — это система, которая дала понимание закономерности, позволившей определить место в ней элементов, неизвестных в то время, предсказать не только существование, но и дать их характеристики.
Не давая представления о строении атома, периодический закон, тем не менее, вплотную подводит к этой проблеме, и решение её было найдено несомненно благодаря ему — именно этой системой руководствовались исследователи, увязывая факторы, выявленные им с интересовавшими их другими физическими характеристиками.. Немецкий учёный, главный редактор фундаментального пособия «Анорганикум» — объединённого курса неорганической, физической и аналитической химии, выдержавшего более десяти изданий, академик Л. Кольдиц так истолковывает особенности открытия Д. Менделеева, сопоставляя в высшей степени убедительные результаты его труда с работами других исследователей, искавших подобные закономерности. Развивая в 1869—1871 годах идеи периодичности, Д. Менделеев ввёл понятие о месте элемента в периодической системе как совокупности его свойств в сопоставлении со свойствами других элементов. На этой основе, в частности, опираясь на результаты изучения последовательности изменения стеклообразующих оксидов, исправил значения атомных масс 9 элементов бериллия, индия, урана и др.
Предсказал в 1870 году существование, вычислил атомные массы и описал свойства трёх ещё не открытых тогда элементов — «экаалюминия» открыт в 1875 году и назван галлием , «экабора» открыт в 1879 году и назван скандием и «экасилиция» открыт в 1885 году и назван германием. Затем предсказал существование ещё восьми элементов, в том числе «двителлура» — полония открыт в 1898 году , «экаиода» — астата открыт в 1942—1943 годах , «экамарганца» — технеция открыт в 1937 году , «двимарганца» — рения открыт в 1925 году , «экацезия» — франция открыт в 1939 году. В 1900 году Дмитрий Иванович Менделеев и Уильям Рамзай пришли к выводу о необходимости включения в периодическую систему элементов особой, нулевой группы благородных газов. Удельные объёмы. Химия силикатов и стеклообразного состояния Настоящий раздел творчества Д. Менделеева, не выразившись результатами масштабов естествознания в целом, тем не менее, как и всё в его исследовательской практике, будучи неотъемлемой частью и вехой на пути к ним, а в отдельных случаях — их фундаментом, чрезвычайно важен и для понимания развития этих исследований. Как станет видно из дальнейшего, он тесным образом связан с основополагающими компонентами мировоззрения учёного, охватывающими сферы от изоморфизма и «основ химии» до базиса периодического закона, от постижения природы растворов до взглядов, касающихся вопросов строения веществ.
Первые работы Д. Менделеева в 1854 году представляют собой химические анализы силикатов. Это были исследования «ортита из Финляндии» и «пироксена из Рускиалы в Финляндии», о третьем анализе минеральной глинистой породы — умбры — имеются сведения только в сообщении С. Куторги в Русском географическом обществе. К вопросам аналитической химии силикатов, Д. Менделеев возвращался в связи с магистерскими экзаменами — письменный ответ касается анализа силиката, содержащего литий. Этот небольшой цикл работ послужил возникновению интереса у исследователя к изоморфизму: состав ортита учёный сравнивает с составами других сходных минералов и приходит к выводу, что такое сопоставление позволяет построить изменяющийся по химическому составу изоморфный ряд.
В мае 1856 года Д. Менделеев, вернувшись в Санкт-Петербург из Одессы, подготовил диссертационную работу под обобщённым названием «Удельные объёмы» — многоплановое исследование, своеобразную трилогию, посвящённую актуальным вопросам химии середины XIX века. Большой объём работы около 20 печатных листов не позволил издать её полностью. Опубликована была только первая часть, озаглавленная, как и вся диссертация «Удельные объёмы»; из второй части позднее был напечатан только фрагмент в виде статьи «О связи некоторых физических свойств тел с химическими реакциями»; третья же часть при жизни Д. Менделеева не была полностью опубликована — в сокращённом виде она была представлена в 1864 году в четвёртом выпуске «Технической энциклопедии», посвящённой стекольному производству. Через взаимосвязь освещаемых в работе вопросов Д. Менделеев последовательно приближался к постановке и решению наиболее существенных в его научном творчестве проблем: выявлению закономерностей при классификации элементов, построению системы, характеризующей соединения через их состав, строение и свойства, создание предпосылок формирования зрелой теории растворов.
В первой части этого труда Д. Менделеева — детального критического анализа литературы, посвящённой вопросу, им высказана оригинальная мысль о связи молекулярного веса и объёма газообразных тел. Учёный вывел формулу расчёта молекулярного веса газа, то есть впервые была дана формулировка закона Авогадро-Жерара. Позднее выдающийся русский физикохимик Е. Бирон напишет: «Насколько мне известно, Д. Менделеев первый стал считать, что можно уже говорить о законе Авогадро, так как гипотеза, в виде которой закон был сперва сформулирован, оправдалась при экспериментальной проверке…». Опираясь на колоссальный[ фактический материал в разделе «Удельные объёмы и состав кремнезёмных соединений», Д.
Менделеев приходит к широкому обобщению. Не придерживаясь, в отличие от многих исследователей Г. Копп, И. Шредер и др. Менделеев ищет не формальные количественные закономерности в объёмах, а старается установить связь между количественными соотношениями объёмов и совокупностью качественных характеристик вещества.
Менделеева снова выдвинули на соискание Нобелевской премии 1907 года русские ученые опять в этом не участвовали , но 2 февраля 1907 года Дмитрий Иванович скончался, а посмертно Нобелевской премией не награждают. Слабым утешением можно считать то, что список титулов, званий и наград, которых был удостоен Дмитрий Иванович, включает не менее сотни позиций. Уоллес Карозерс 1896—1937 В 1930-е годы Уоллес Карозерс, работавший в компании «Дюпон», разработал реакцию поликонденсации сейчас ее чаще называют реакцией ступенчатой полимеризации. В 1935 году он использовал этот процесс - взаимодействие мономеров с реакционно-способными концевыми группами, в результате которого образуется полимер и выделяется вода, - для получения нейлона, одного из самых успешных в коммерческом отношении полимерных материалов.
И сам процесс поликонденсации, и синтез нейлона вполне могли бы стать поводом для присуждения Нобелевской премии по химии, но, увы, не стали. Карозерс пришел в центральный исследовательский отдел «Дюпона» в 1927 году. Он включился в работу над научной программой, для реализации которой компания не только наняла ведущих специалистов в области органической, физической, коллоидной химии и химии полимеров зарплата вдвое превышала жалованье в университетах , но и разрешила им публиковать результаты исследований в научной литературе, чтобы они могли получить признание международного научного сообщества. Нейлон стал всемирно известным материалом, когда из него начали делать женские чулки. Сегодня полиамидные волокна, первым материалом для изготовления которых был нейлон, применяют для производства швейных ниток и галантерейных изделий кружева, тесьма, ленты , канатов, рыболовных сетей, конвейерных лент, корда, тканей технического назначения. Фирма «Дюпон» выпустила нейлон на рынок уже после преждевременной смерти Карозерса, в 1939 году, но у пионера поликонденсации были все шансы получить заветную награду и до коммерциализации нейлона. Возможно, все вышло бы иначе, если бы его кандидатуру в Нобелевский комитет внес именитый химик, обладающий значительным авторитетом в профессиональном сообществе. Идеальной фигурой для номинации Карозерса на Нобелевскую премию по химии мог бы стать Ирвинг Ленгмюр, лауреат Нобелевской премии по химии 1932 года «за открытия и исследования в области химии поверхностных явлений», проявлявший значительный интерес к только появлявшейся тогда химии синтетических полимеров. Если бы Ленгмюр предложил на рассмотрение Нобелевского комитета обоих пионеров полимерной химии - Уоллеса Карозерса и Германа Штаудингера, у обоих шансы на получение премии могли значительно вырасти.
Однако с 1931 по 1935 год Ленгмюр номинировал только Штаудингера, который предложил термин «макромолекула», показал связь между молекулярной массой полимера и вязкостью его раствора и разработал основы реакции полимераналогичных превращений реакции макромолекул с низкомолекулярными соединениями, которые не изменяют длины и строения основной цепи, но изменяют функциональные группы. Все эти годы кандидатура Штаудингера не находила одобрения у Нобелевского комитета. Возможно, номинирование Карозерса одного или вместе со Штаудингером в 1936 году принесло бы Нобелевскую премию специалистам по химии полимеров. К тому же авторитет Уоллеса Карозерса в 1936 году сильно вырос - он стал первым специалистом по промышленной органической химии, избранным в Национальную академию наук США. Но в 1936 году его никто не номинировал, а в апреле 1937 года Уоллес Карозерс, страдавший от затяжной депрессии и алкоголизма, принял смертельную дозу цианида калия, растворенного в лимонном соке. Что же касается Германа Штаудингера, свою Нобелевскую премию по химии за «исследования в области химии высокомолекулярных веществ» он получил в 1953 году. Майкл Дьюар 1918—1997 Майкл Дьюар известен как химик-теоретик, который внес наиболее значительный вклад в разработку полуэмпирических квантово-химических методов, - это методы расчета характеристик молекул или свойств веществ с использованием экспериментальных данных. По сути, полуэмпирические методы аналогичны неэмпирическим методам решения уравнения Шредингера для многоатомных молекулярных систем, однако для облегчения расчетов в полуэмпирических методах вводят дополнительные упрощения. Полуэмпирические методы квантовой химии сегодня интенсивно применяют в самых различных областях, значительно сокращая время на квантово-химическое моделирование интересующих нас свойств вещества.
Работы Дьюара, опубликованные в 1950—1980 годах, ежегодно цитируют по 400—500 раз. Почему же этот способ квантово-химического анализа, в отличие, например, от метода функционала плотности, так и не принес автору Нобелевской премии? Одна из версий - агрессивный характер Дьюара и его чересчур едкий язык. Например, известен случай, когда, выслушав доклад известного специалиста в области квантовой химии на конференции Американского химического общества, Дьюар начал обсуждение с того, что назвал докладчика «позором для науки». Он ввязывался в споры со всеми и с каждым, но наиболее серьезными конфликтами, возможно, как раз и не давшими ему стать нобелиатом, были затянувшиеся и весьма резкие по тону дискуссии с лауреатами Нобелевской премии и специалистами в области теории химической связи Лайнусом Полингом и Уильямом Липскомбом. Липскомб неоднократно критиковал идею полуэмпирических приближений в квантовой химии: «Когда их результаты верны, нет возможности точно определить, по какой причине они верны, а когда ошибочны, то также невозможно точно сказать, в чем причина ошибки». Дьюар, как правило, не реагировал на эту критику предметно, а говорил, что нужно просто брать полученные с помощью неэмпирических приближений результаты и работать с ними, поскольку ничего другого нет. Естественно, что такой ответ принижал значение и самих полуэмпирических методов расчета, и авторитет их создателя от человека, достойного Нобелевской премии, все же можно ожидать более развернутой аргументации. С другим титаном теории химической связи, Лайнусом Полингом, у Дьюара возникли разногласия по поводу теории резонанса, которую Полинг разработал еще в 1930-е годы.
Дьюар выступал с разгромной критикой этой теории и вытекающей из нее концепции делокализации связи, заявляя, что идеи Полинга - существенная помеха прогрессу теоретической химии. Следует отметить, что с подобными высказываниями выступали и некоторые участники Всесоюзной конференции по состоянию теории химического строения в органической химии 1951 года, повесив на резонанс ярлык «буржуазной» и «идеологически порочной» теории. Понятно, что эта критика не способствовала укреплению авторитета Дьюара в глазах Полинга и его сторонников. Не исключено также, что из-за этой критики органы безопасности США могли приписать Дьюару левацкую, прокоммунистическую позицию. В общем, своим острым языком Дьюар сам отрезал себе пути к Нобелевской премии по химии. Майкл Дьюар умер в 1997 году. Наверное, из его отношений с коллегами можно извлечь следующий урок: плохо быть высокомерным, и, если даже вы на сто процентов уверены в своей правоте, не стоит оскорблять человека, которого критикуешь. Луис Плак Гаммет 1894—1987 Луиса Гаммета по праву считают первопроходцем физической органической химии. Именно он ввел в обиход термин «физическая органическая химия», написал классический учебник по этому предмету и вывел впоследствии названное его именем уравнение, без которого нельзя представить ни один вузовский курс по теоретическим основам органической химии.
Уравнение Гаммета связывает изменения в константах скорости или равновесия реакций органических соединений, принадлежащих к одному ряду, со свойствами заместителей, входящих в состав этих соединений. То есть фактически оно связывает реакционную способность органических веществ с их строением. Значение уравнения Гаммета заключается в том, что с его появлением органическая химия из набора препаративных методик и разрозненных фактов превратилась в раздел науки, в котором возможно количественно предсказывать свойства веществ. Это, в частности, открыло перед химиками-органиками самые широкие возможности по изучению механизмов органических реакций. Вполне возможно, что работы Гаммета и Кристофера Ингольда, превратившие органическую химию в логичное, систематическое знание, могли бы послужить основанием для присуждения Нобелевской премии. Британец Ингольд также работал в области физической органической химии и развил концепции четырех классических механизмов органических реакций - мономолекулярного и бимолекулярного нуклеофильного замещения и конкурирующих с ними мономолекулярного и бимолекулярного элиминирования о, эти услаждающие взор органиков сокращения S N 1, S N 2, E1 и E2. Согласно одной из версий, физическая органическая химия не получила Нобелевской премии из-за того, что один из членов Нобелевского комитета - лауреат Нобелевской премии по химии 1947 года Роберт Робинсон, получивший ее «за исследования растительных продуктов большой биологической важности, особенно алкалоидов», мягко говоря, не питал дружеских чувств к Ингольду. Возможно, Робинсон использовал все свое влияние на Нобелевский комитет и добился, чтобы ни Ингольд, ни Гаммет не стали лауреатами. Говард Симмонс 1929—1997 Говард Симмонс почти полвека 1954—1992 проработал в том же центральном исследовательском отделе компании «Дюпон», в котором когда-то трудился Уоллес Карозерс, а с 1974 по 1992 год возглавлял его.
Под руководством Симмонса было сделано немало научных открытий, хотя это, конечно, не повод для присуждения Нобелевской премии ему самому. Его собственные работы по изучению криптандов краун-эфиров, которые могут вступать в селективное комплексообразование с ионами металлов и другими соединениями вполне могли быть отмечены Нобелевской премией. Ученый пришел к открытию криптандов независимо от французского химика, пионера супрамолекулярной химии, Жана Мари Лена, получившего в 1987 году Нобелевскую премию за «разработку и применение молекул со структурно-специфическими взаимодействиями высокой избирательности». По какой причине Симмонс не получил Нобелевской премии? Отчасти из-за того, что в соответствии с завещанием Нобеля и статутом Нобелевского комитета максимальное число награжденных в одной номинации не может превышать трех в год. Другой, возможно, еще более серьезной проблемой Симмонса было то, что он уделял очень мало внимания публикации собственных результатов. Как руководителю отдела исследований «Дюпона», ему приходилось постоянно заниматься административными делами, обеспечивать условия для эффективной работы своих коллег и подчиненных. Считают, что многие результаты исследований умершего в 1997 году Симмонса не опубликованы до сих пор. Помимо прочего, Симмонса отличали исключительные щедрость и благородство.
Так, он делился всеми своими результатами, полученными при изучении криптандов, в том числе и еще не опубликованными, с Жаном Мари Леном. Есть свидетельства, что, когда Лена объявили в числе нобелевских лауреатов 1987 года, первое, что он сделал, - позвонил Симмонсу из Франции в США, чтобы выяснить, не разочарован и не обижен ли тот. Симмонс ответил, что не обижается на французского коллегу, ну а сотрудники Симмонса все как один отмечают, что их патрон никогда не затрагивал тему «супрамолекулярной» Нобелевской премии в том контексте, что она должна была или могла бы достаться ему. Генри Мозли 1887—1915 Британский физик Генри Мозли, один из основоположников рентгеновской спектроскопии, без сомнения, мог бы стать нобелевским лауреатом или по химии, или по физике. Он установил зависимость между частотой спектральных линий характеристического рентгеновского излучения и атомным номером излучающего элемента. Открытие имело огромное значение: по существу, именно Мозли доказал, что фактор, определяющий организацию Периодической системы, - это не атомный вес элемента, а заряд его ядра. Этим он подтвердил проделанные еще Д. Менделеевым «рокировки», скажем, калия и аргона. Завойский 1907—1976 Евгений Константинович Завойский тоже имел все шансы стать нобелевским лауреатом в области физики или химии.
И российская, и зарубежная историография науки однозначно признают за Завойским приоритет в открытии сигналов ядерного магнитного резонанса ЯМР в конденсированных средах на ядрах водорода. Однако наблюдавшийся впервые в июне 1941 года протонный резонанс давал нерегулярные сигналы, результаты были плохо воспроизводимы, а начавшаяся вскоре война помешала продолжить исследования в этом направлении. Имя Завойского также неразрывно связано с открытием и разработкой другого типа резонанса - электронного парамагнитного резонанса ЭПР , для которого в 1940-е годы было проще получить воспроизводимый сигнал. Официальная дата открытия метода электронного парамагнитного резонанса - 12 июля 1944 года. Это открытие дало толчок к развитию научных центров во многих странах мира, метод начали применять для изучения веществ и интермедиатов химических реакций. Но самое главное, что метод ЭПР в жидкостях и твердых телах появился на два года раньше воспроизводимого метода ЯМР в конденсированных средах, о котором в 1946 году сообщили Феликс Блох и Эдвард Миллз Парселл, ставшие лауреатами Нобелевской премии по физике 1952 года. Несмотря на то что ЭПР был разработан раньше ЯМР, кампания по выдвижению Завойского началась много позже - его номинировали на Нобелевскую премию по физике в 1958—1963 годах и на Нобелевскую премию по химии в 1958—1960 годах. Но людей, выдвигавших Евгения Константиновича, было мало по слухам, в этом участвовали даже далеко не все активно работавшие советские нобелевские лауреаты по химии и физике, которых к 1962 году в СССР было уже пятеро , и момент был упущен. Нобелевский лауреат по физике 2003 года Виталий Лазаревич Гинзбург сказал, что физики СССР заведомо потеряли лишь одну Нобелевскую премию - именно ту, которую должен был получить Евгений Завойский за открытие электронного парамагнитного резонанса.
Эта статья лишь чуть-чуть приоткрывает завесу, за которой происходит присуждение самой престижной научной награды XX и XXI веков. Но уже по судьбам семи героев этой статьи можно понять, что на нобелевском Олимпе и у его подножия могут кипеть страсти не менее сильные, чем в древнегреческих трагедиях. С другой стороны, не всякий «состоявшийся» нобелиат - идеальный пример для подражания. Среди них были и люди со спорными морально-этическими позициями например, Фриц Габер, в 1915 году руководивший первой газовой атакой кайзеровской армии на позиции английских и французских войск при Ипре, а в 1918 году получивший Нобелевскую премию по химии за вклад в развитие промышленного синтеза аммиака , и страстные сторонники весьма оригинальных мнений. Некоторые нобелевские лауреаты по физиологии или медицине отрицают существование ВИЧ, а знаменитый Полинг, заложивший основы современной теории химической связи, мягко говоря, переоценивал терапевтическую и профилактическую роль аскорбиновой кислоты витамина С. Никто не отрицает, что список лауреатов Нобелевских премий - красочный образ истории науки ХХ и начала XXI века, но он, конечно же, не дает полной картины развития химии или какой-либо другой науки. Чаще всего нобелевская медаль символизирует лишь окончание пути к открытию «длиной в тысячу ли», и, увы, не каждый ученый, прошедший этот путь, попадает в заветный список. В любом случае значение Нобелевских премий для науки и общества огромно, и, очевидно, еще много лет в конце сентября - начале октября мы будем гадать, кто станет лауреатами на этот раз. А после торжественного объявления имен - радоваться, что наши предсказания сбылись, либо рассуждать о том, что им помешало сбыться.
Профессор Санкт-Петербургского университета; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук. Среди наиболее известных открытий - периодический закон химических элементов, один из фундаментальных законов мироздания, неотъемлемый для всего естествознания. Его научные интересы распространялись на химию, физическую химию, физику, метрологию, экономику, технологию, геологию, метеорологию, педагогику, воздухоплавание, приборостроение, за что Менделеева часто называют русским Леонардо Да Винчи В Санкт-Петербурге находиться музей-квартира знаменитого русского учёного, благодаря одному из величайших открытию которого в истории цивилизации стал возможен тот технологический прогресс в науке, который позволил в течение минувших ста лет выйти русскому человеку и вслед ему всему человечеству - в космос. Здесь, в квартире, где жил великий учёный, ведется систематическое изучение его научного наследия. Во многих местах Северной столицы России также увековечена память о нём. Улица в Петербурге, где расположен главный корпус Санкт-Петербургского государственного университета, носит название Менделеевской линии в его честь. Иностранным ученым, часто посещающим музей-архив Дмитрия Ивановича Менделеева в Петербургском университете, здесь задают традиционный вопрос: "Каких еще русских ученых вы знаете"? Первый рукописный вариант периодического закона. Менделеев открыл в феврале 1869 года один из фундаментальных законов природы - периодический закон химических элементов.
Менделеева «Соотношение свойств с атомным весом элементов» был прочтён Н. Меншуткиным на заседании Русского химического общества. Отдельные учёные в ряде стран, особенно в Германии, соавтором открытия считают Лотара Мейера. Существенное различие этих систем заключается в том, что таблица Л. Мейера - это один из вариантов классификации известных к тому времени химических элементов; выявленная Д. Менделеевым периодичность - это система, которая дала понимание закономерности, позволившей определить место в ней элементов, неизвестных в то время, предсказать не только существование, но и дать их характеристики. Не давая представления о строении атома, периодический закон, тем не менее, вплотную подводит к этой проблеме, и решение её было найдено несомненно благодаря ему - именно этой системой руководствовались исследователи, увязывая факторы, выявленные им с интересовавшими их другими физическими характеристиками. В 1984 году академик В. Спицын пишет: «…Первые представления о строении атомов и природе химической валентности, разработанные в начале нашего столетия, основывались на закономерностях свойств элементов, установленных с помощью периодического закона».
Немецкий учёный, главный редактор фундаментального пособия «Анорганикум» - объединённого курса неорганической, физической и аналитической химии, выдержавшего более десяти изданий, академик Л. Кольдиц так истолковывает особенности открытия Д. Менделеева, сопоставляя в высшей степени убедительные результаты его труда с работами других исследователей, искавших подобные закономерности: «Никто из учёных, занимавшихся до Менделеева или одновременно с ним исследованиями соотношений между атомными весами и свойствами элементов, не смог сформулировать эту закономерность так ясно, как это сделал он. В частности, это относится к Дж. Ньюлендсу и Л. Предсказание ещё неизвестных элементов, их свойств и свойств их соединений является исключительно заслугой Д. Стоят слева направо: Дж. Джоуль президент Ассоциации , Г. Шорлеммер, У.
Лайнус Полинг, по химии в 1954 и премия мира в 1962. Джон Бардин, две премии по физике, в 1956 и 1972. Чем увлекался Д И Менделеев? Менделеев очень увлекался музыкой среди почитаемых учёным композиторов были Бетховен, Бородин и Беллини и чтением художественной литературы, но его главной любовью всё же было искусство. В каком году родился Д И Менделеев? Где родился Д И Менделеев? Тобольск Как умер Д И Менделеев? Где учился Д И Менделеев? Он писал: «Топливо и особенно каменный уголь в наше время составляют первейшее — после людей — условие всего промышленного развития всякой страны и всякой ее части».
Воды, вишь, мы тебе принесли. Хороша водичка-то. Ключевая, студеная. А чтобы Менделеев понял, чего от него хотят, поясняли: — Ты только добавь в нее, сколько нужно этого… ну, этого самого … Которого сам знаешь! Сон о периодической таблице Сегодня все знают историю о том, что свою таблицу Менделеев увидел во сне. Но где в этой истории правда, а где — вымысел? Идея о фундаментальной связи между всеми химическими элементами не давала Дмитрия Ивановичу покоя. Найти эти закономерности пытались ученые всего мира. Менделеев знал об этих исследованиях и о попытках выстроить элементы в единую систему. И пытался тоже сделать это. Но — по своему. Он первым в мире учел атомные веса и соотнес их со свойствами элементов. А для еще не открытых оставил пустые клетки! Мысль эта пришла в его светлую голову за завтраком. Менделеев закрылся в своем кабинете. Вынул из стола пачку визиток и стал на их обратной стороне писать символы элементов и их главные свойства. Ученый перекладывал карточки из одного горизонтального ряда в другой. Потом он отвлекся на игру с маленькой дочкой, а позже прилег отдохнуть. Короткий сон, который и сном-то назвать было сложно. Решение было совсем рядом… Вот что писал Менделеев, в воспоминаниях: «…во сне мне совершенно явственно представилась таблица. Я тут же проснулся и набросал увиденную во сне таблицу на первом же подвернувшемся под руку клочке бумаги». Впрочем, все это может быть лишь шуткой гениального ученого. Ясно одно: периодическая таблица вряд ли могла присниться человеку, который был далек от ее поисков. Мало кто верил тогда, что это станет одним из величайших научных открытий. Более того, знавшие об изысканиях Менделеева серьезные химики считали его усилия странным и даже нелепым увлечением! Вот что писал по этому поводу его бывший учитель Бунзен: «Да оставьте Вы меня в покое с этими догадками! Такие правильности Вы найдете и между числами биржевого листка». В 1955 году заслуги Менделеева были увековечены: сто первый открытый химический элемент называется «Менделевий». Таблица постоянно обновляется. Сегодня в ней уже 118 элементов. Сырный бизнес Интересно, что эпохальный доклад об открытии периодического закона Менделеев делал не сам, а поручил своему коллеге. Чем же таким важным был занят профессор в то время? А он, представьте себе, ставил опыты с молочными продуктами: готовил масло и делал сыр из молока от коровы по кличке Нянька. Дело было в первом фермерском хозяйстве России. Дмитрий Иванович видел у сырного бизнеса большие перспективы и к делу подошел, густо замешав новое увлечение на научной основе. Ученый обратил внимание, что по сравнению с Европой, почти во всех крестьянских хозяйствах России не налажена переработка молока. В поездках по селам Менделеев пришел к выводу: если семьи объединятся в кооперацию, выгода будет втрое больше. В одной из деревень неподалеку от Боблово Менделеев открыл школу молочного хозяйства, при которой действовала собственная сыроварня.
Иллюстрации
- Telegram: Contact @naukatv_ru
- Дмитрий Менделеев — гениальный 17-й ребенок в семье
- Страница предпросмотра
- Дорогой керосин
Дмитрий Менделеев - биография, новости, личная жизнь
Суббота, 01 Апреля 2017 г. Эту премию присуждали с 1901 года либо за свежие работы, либо за давние труды, значимость которых подтверждалась новыми открытиями. Периодическая система элементов увидела свет в 1869 году, но на рубеже веков были открыты инертные газы, вновь подтвердившие ее состоятельность.
Спиритизм Менделеев был убежден: предрассудки одинаково опасны как для веры, так и для науки, поэтому попытался развенчать миф о модном в то время спиритизме. Он разработал специальные столики для спиритических сеансов, к которым присоединил манометры.
Итогом разоблачений стала монография «Материалы для суждения о спиритизме». Последовали неоднозначные оценки: многие говорили, что манометру не под силу фиксировать «тонкие материи». Достоевский же отмечал, что спиритизм — явление социальное, и к нему «нельзя подходить с манометром». Впрочем, важным здесь оказался не метод, который использовал Менделеев, а его желание привлечь внимание к проблеме предрассудков — и это ему удалось.
Месть империи Менделееву принадлежит фраза: «Нефть — не топливо! Топить можно и ассигнациями! С подачи Менделеева был отменен варварский четырехлетний откуп на нефтяные месторождения, и это стало первым ударом по нефтяным королям того времени братьям Нобелям. Затем последовал второй удар — Менделеев предложил транспортировать нефть по трубам.
Был построен нефтепровод Баку-Батуми и первый нефтеперерабатывающий завод. Затем Дмитрий Иванович нанес третий удар по империи Нобелей: он разработал масла на основе отходов нефтепереработки, которые стоили в несколько раз дешевле, чем керосин. Таким образом, Россия смогла не только отказаться от экспорта керосина из Америки, но и импортировать нефтепродукты в Европу. При этом Менделеев всегда выступал против бездумного разбазаривания природных богатств, считая, что будущее за промышленностью.
Менделеева трижды выдвигали на Нобелевскую премию, но он так ее и не получил. Было ли это местью Нобелей или «постарались» российские коллеги ученого, которые, к слову, ни разу не проявили инициативу по выдвижению Менделеева, остается загадкой. Менделеев Дмитрий Иванович — русский ученый, гениальный химик, физик, исследователь в области метрологии, гидродинамики, геологии, глубокий знаток промышленности, приборостроитель, экономист, воздухоплаватель, педагог, общественный деятель и оригинальный мыслитель. Детство и юность Великий ученый родился в 1834 году, 8 февраля, в Тобольске.
Отец Иван Павлович был директором окружных училищ и Тобольской гимназии, происходил из рода священника Павла Максимовича Соколова, русского по национальности. Фамилию Иван поменял в детстве, будучи учащимся Тверской семинарии. Предположительно, это было сделано в честь его крестного отца, помещика Менделеева. Позднее неоднократно затрагивался вопрос о национальной принадлежности фамилии ученого.
По одним сведениям, она свидетельствовала о еврейских корнях, по другим — о немецких. Сам Дмитрий Менделеев рассказывал о том, что фамилию присвоил Ивану его педагог из семинарии. Юноша произвел удачный обмен и тем прославился среди однокашников. По двум словам — «мену делать» — Иван Павлович был вписан в учебную ведомость.
Мать Мария Дмитриевна в девичестве Корнильева занималась воспитанием детей и домашним хозяйством, имела репутацию интеллигентной и умной женщины. Дмитрий был в семье самым младшим, последним из четырнадцати детей по другой информации — последним из семнадцати детей. В 10-летнем возрасте мальчик лишился отца, который ослеп и вскоре умер. Во время учебы в гимназии способностей Дмитрий не проявил, сложнее всего ему давалась латынь.
Любовь к науке прививала мать, она же участвовала в формировании его характера. Мария Дмитриевна увезла сына учиться в Петербург. В 1850 году в Петербурге юноша поступает в Главный пединститут на отделение естественных наук физмата. Его преподавателями были профессора Э.
Ленц, А. Воскресенский и Н. Во время учебы в институте 1850-1855 годы Менделеев демонстрирует незаурядные способности. Будучи студентом, он публикует статью «Об изоморфизме» и ряд химических анализов.
Наука В 1855-м Дмитрий получает диплом с золотой медалью и направление в Симферополь. Здесь он работает старшим учителем гимназии. С началом Крымской войны Менделеев перебирается в Одессу и получает должность преподавателя в лицее. В 1856-м он снова в Петербурге.
Учится в университете, защищает диссертацию, преподает химию. Осенью защищает еще одну диссертацию и назначается приват-доцентом университета. В 1859-м Менделеева отправляют в командировку в Германию. Работает в университете Гейдельберга, обустраивает лабораторию, исследует капиллярные жидкости.
Здесь им были написаны статьи «О температуре абсолютного кипения» и «О расширении жидкостей», открыто явление «критическая температура». В 1861-м ученый возвращается в Петербург. Создает учебник «Органическая химия», за что удостаивается Демидовской премии. В 1864-м он уже профессор, а спустя два года возглавляет кафедру, преподает и работает над «Основами химии».
В 1869-м представляет периодическую систему элементов, совершенствованию которой посвятил всю жизнь. В таблице Менделеев представил атомную массу девяти элементов, позднее добавил в свод группу благородных газов и оставил место для элементов, которые еще предстояло открыть. В 90-е годы Дмитрий Менделеев внес свой вклад в открытие явления радиоактивности. Периодический закон включал в себя доказательства связи свойств элементов и их атомного объема.
Теперь рядом с каждой таблицей химических элементов находится фото первооткрывателя. В 1865—1887 годах разрабатывает гидратную теорию растворов. В 1872-м начинает изучать упругость газов, спустя два года выводит уравнение идеального газа. Среди достижений Менделеева этого периода — создание схемы дробной перегонки нефтепродуктов, применение цистерн и трубопровода.
При содействии Дмитрия Ивановича сжигание черного золота в топках полностью прекратилось. Фраза ученого «Сжигать нефть - все равно, что топить печку ассигнациями» стала афоризмом. Еще одной сферой деятельности ученого стали географические исследования. В 1875 году Дмитрий Иванович побывал на Парижском международном географическом конгрессе, где представил на суд свое изобретение — дифференциальный барометр-высотомер.
В 1887 году ученый участвовал в путешествии на аэростате в верхние слои атмосферы для наблюдения полного солнечного затмения. В 1890-м ссора с высокопоставленным чиновником стала причиной ухода Менделеева из университета. В 1892-м химик изобретает методику получения бездымного пороха. Одновременно с этим его назначают хранителем Депо образцовых мер и весов.
Здесь он возобновляет прототипы фунта и аршина, занимается вычислениями по сравнению русских и английских эталонов мер. По инициативе Менделеева в 1899 году факультативно вводится метрическая система мер. В 1905, 1906 и 1907 годах ученого выдвигают кандидатом на Нобелевскую премию. В 1906-м году Нобелевским комитетом премия присуждается Менделееву, но Королевская академия наук Швеции это решение не подтвердила.
Менделеев, являющийся автором более чем полутора тысяч трудов, имел огромный научный авторитет в мире. За свои заслуги ученый был удостоен многочисленных научных званий, российских и зарубежных наград, был почетным членом ряда научных обществ на родине и за границей. Личная жизнь В юности с Дмитрием случился неприятный случай. Ухаживания за девушкой Соней, с которой тот был знаком с детства, закончились помолвкой.
Но изнеженная красавица к венцу так и не пошла. Накануне свадьбы, когда подготовка уже шла полным ходом, выходить замуж Сонечка отказалась. Девушка посчитала, что нет смысла что-то менять, если жизнь и так хороша. Дмитрий болезненно переживал разрыв с невестой, но жизнь шла своим чередом.
От тяжких дум его отвлекла поездка за границу, чтение лекций и верные друзья. Возобновив отношения с Феозвой Никитичной Лещевой, с которой был знаком ранее, стал с ней встречаться. Девушка была старше Дмитрия на 6 лет, но выглядела молодо, поэтому разница в возрасте была незаметной. В 1862-м они стали мужем и женой.
Первая дочь Маша родилась в 1863 году, но прожила только несколько месяцев. В 1865-м родился сын Володя, спустя три года — дочь Оля. К детям Дмитрий Иванович был привязан, но времени им уделял мало, так как жизнь была посвящена научной деятельности. В браке, заключенном по принципу «стерпится-слюбится», он не был счастлив.
В 1877-м Дмитрий знакомится с Анной Ивановной Поповой, которая стала для него человеком, способным в трудную минуту поддержать умным словом. Девушка оказалась творчески одаренным человеком: училась в консерватории игре на фортепиано, позже в Академии художеств. Дмитрий Иванович устраивал у себя молодежные «пятницы», где и познакомился с Анной. Среди них были , Николай Вагнер, Николай Бекетов и другие.
Женитьба Дмитрия и Анны состоялась в 1881 году. Вскоре у них родилась дочь Люба, сын Иван появился в 1883-м, близнецы Василий и Мария — в 1886-м. Во втором браке личная жизнь ученого сложилась счастливо. Позднее зятем Дмитрия Ивановича стал поэт , женившись на дочери ученого Любови.
Смерть В начале 1907 года в Палате мер и весов проходила встреча Дмитрия Менделеева и нового министра промышленности Дмитрия Философова. После обхода палаты ученый заболел простудой, которая вызвала воспаление легких. Но даже будучи сильно больным, Дмитрий продолжал работу над рукописью «К познанию России», последними написанными им словами в которой стала фраза: «В заключение считаю необходимым, хоть в самых общих чертах, высказать…». Смерть наступила в пять часов утра 2 февраля по причине паралича сердца.
Память Дмитрия Менделеева увековечена рядом монументов, документальных фильмов, книгой «Дмитрий Менделеев. Автор великого закона». С именем Дмитрия Менделеева связано множество интересных фактов биографии. Помимо деятельности ученого, Дмитрий Иванович занимался промышленной разведкой.
В 70-е годы в США начался расцвет нефтяной промышленности, появились технологии, которые удешевили производство нефтепродуктов. Российские производители стали терпеть убытки на международном рынке из-за неспособности конкурировать по цене. В 1876 году по ходатайству министерства финансов России и «Русского технического общества», сотрудничавшего с военным ведомством, Менделеев отправился за океан на выставку технических новинок. На месте химик изучил новаторские принципы изготовления керосина и других нефтепродуктов.
А по заказанным отчетам железнодорожных служб Европы Дмитрий Иванович попытался расшифровать метод изготовления бездымного пороха, что ему и удалось. У Менделеева было хобби — изготавливать чемоданы. Ученый шил себе одежду. Ученому приписывают изобретение водки и самогонного аппарата.
Но на самом деле Дмитрий Иванович в теме докторской диссертации «Рассуждение о соединении спирта с водою» изучил вопрос уменьшения объема смешиваемых жидкостей. В работе ученого не было и слова о водке.
В нем говорилось, что награды достойно лицо, «в течение предыдущего года принесшее наибольшую пользу человечеству». Первую формулировку Периодического закона Менделеев опубликовал еще в 1869 году - соответственно работы Менделеева могли считаться слишком старыми для номинации. В начале 1900-х годов Нобелевский фонд изменил статут присуждения премии, допустив, что награждать можно тех, кто сделал открытие не только в течение последнего года, но и в более ранние сроки , если их труды имеют существенное значение для науки. Это уже позволяло рассматривать Менделеева как номинанта. В 1904 году лауреатом Нобелевской премии по химии стал британец Уильям Рамзай «за открытие в атмосфере различных инертных газов и определение их места в Периодической системе». Начались разговоры о том, что создание Периодической системы тоже заслуживает высокой награды. Менделеева номинировали на Нобелевскую премию в 1905 году, но он ее не получил.
На следующий год Дмитрия Ивановича снова выдвинули на Нобелевскую премию любопытно, что в 1905 и 1906 годах его номинировали только зарубежные коллеги, а не российские химики , и он оказался очень близок к награде - Нобелевский комитет, рекомендующий Шведской королевской академии наук лауреатов, проголосовал за Менделеева «четверо против одного». Шведская академия, принимающая окончательное решение , не утвердила результаты голосования, а настояла на включении в состав комитета еще четырех членов и новом голосовании. По итогам второго голосования Нобелевскую премию по химии 1906 года присудили Анри Муассану «за получение элемента фтора и введение в лабораторную и промышленную практику электрической печи, названной его именем». Считают, что недоброжелателем Менделеева в Шведской королевской академии, повлиявшим на смену правил игры в ходе самой игры, был лауреат Нобелевской премии по химии 1903 года Сванте Аррениус. Менделеев критиковал некоторые положения его теории электролитической диссоциации, и Аррениус воспринял критику очень болезненно. Он не раз утверждал, что достижения Менделеева слишком стары для Нобелевской премии. Менделеева снова выдвинули на соискание Нобелевской премии 1907 года русские ученые опять в этом не участвовали , но 2 февраля 1907 года Дмитрий Иванович скончался, а посмертно Нобелевской премией не награждают. Слабым утешением можно считать то, что список титулов, званий и наград, которых был удостоен Дмитрий Иванович, включает не менее сотни позиций. Уоллес Карозерс 1896—1937 В 1930-е годы Уоллес Карозерс, работавший в компании «Дюпон», разработал реакцию поликонденсации сейчас ее чаще называют реакцией ступенчатой полимеризации.
В 1935 году он использовал этот процесс - взаимодействие мономеров с реакционно-способными концевыми группами, в результате которого образуется полимер и выделяется вода, - для получения нейлона, одного из самых успешных в коммерческом отношении полимерных материалов. И сам процесс поликонденсации, и синтез нейлона вполне могли бы стать поводом для присуждения Нобелевской премии по химии, но, увы, не стали. Карозерс пришел в центральный исследовательский отдел «Дюпона» в 1927 году. Он включился в работу над научной программой, для реализации которой компания не только наняла ведущих специалистов в области органической, физической, коллоидной химии и химии полимеров зарплата вдвое превышала жалованье в университетах , но и разрешила им публиковать результаты исследований в научной литературе , чтобы они могли получить признание международного научного сообщества. Нейлон стал всемирно известным материалом, когда из него начали делать женские чулки. Сегодня полиамидные волокна, первым материалом для изготовления которых был нейлон, применяют для производства швейных ниток и галантерейных изделий кружева, тесьма, ленты , канатов, рыболовных сетей, конвейерных лент, корда, тканей технического назначения. Фирма «Дюпон» выпустила нейлон на рынок уже после преждевременной смерти Карозерса, в 1939 году, но у пионера поликонденсации были все шансы получить заветную награду и до коммерциализации нейлона. Возможно, все вышло бы иначе, если бы его кандидатуру в Нобелевский комитет внес именитый химик, обладающий значительным авторитетом в профессиональном сообществе. Идеальной фигурой для номинации Карозерса на Нобелевскую премию по химии мог бы стать Ирвинг Ленгмюр, лауреат Нобелевской премии по химии 1932 года «за открытия и исследования в области химии поверхностных явлений», проявлявший значительный интерес к только появлявшейся тогда химии синтетических полимеров.
Если бы Ленгмюр предложил на рассмотрение Нобелевского комитета обоих пионеров полимерной химии - Уоллеса Карозерса и Германа Штаудингера, у обоих шансы на получение премии могли значительно вырасти. Однако с 1931 по 1935 год Ленгмюр номинировал только Штаудингера, который предложил термин «макромолекула», показал связь между молекулярной массой полимера и вязкостью его раствора и разработал основы реакции полимераналогичных превращений реакции макромолекул с низкомолекулярными соединениями, которые не изменяют длины и строения основной цепи, но изменяют функциональные группы. Все эти годы кандидатура Штаудингера не находила одобрения у Нобелевского комитета. Возможно, номинирование Карозерса одного или вместе со Штаудингером в 1936 году принесло бы Нобелевскую премию специалистам по химии полимеров. К тому же авторитет Уоллеса Карозерса в 1936 году сильно вырос - он стал первым специалистом по промышленной органической химии, избранным в Национальную академию наук США. Но в 1936 году его никто не номинировал, а в апреле 1937 года Уоллес Карозерс, страдавший от затяжной депрессии и алкоголизма, принял смертельную дозу цианида калия, растворенного в лимонном соке. Что же касается Германа Штаудингера, свою Нобелевскую премию по химии за «исследования в области химии высокомолекулярных веществ» он получил в 1953 году. Майкл Дьюар 1918—1997 Майкл Дьюар известен как химик-теоретик, который внес наиболее значительный вклад в разработку полуэмпирических квантово-химических методов, - это методы расчета характеристик молекул или свойств веществ с использованием экспериментальных данных. По сути, полуэмпирические методы аналогичны неэмпирическим методам решения уравнения Шредингера для многоатомных молекулярных систем, однако для облегчения расчетов в полуэмпирических методах вводят дополнительные упрощения.
Полуэмпирические методы квантовой химии сегодня интенсивно применяют в самых различных областях , значительно сокращая время на квантово-химическое моделирование интересующих нас свойств вещества. Работы Дьюара, опубликованные в 1950—1980 годах, ежегодно цитируют по 400—500 раз. Почему же этот способ квантово-химического анализа, в отличие, например, от метода функционала плотности, так и не принес автору Нобелевской премии? Одна из версий - агрессивный характер Дьюара и его чересчур едкий язык. Например, известен случай, когда, выслушав доклад известного специалиста в области квантовой химии на конференции Американского химического общества, Дьюар начал обсуждение с того, что назвал докладчика «позором для науки». Он ввязывался в споры со всеми и с каждым, но наиболее серьезными конфликтами, возможно, как раз и не давшими ему стать нобелиатом, были затянувшиеся и весьма резкие по тону дискуссии с лауреатами Нобелевской премии и специалистами в области теории химической связи Лайнусом Полингом и Уильямом Липскомбом. Липскомб неоднократно критиковал идею полуэмпирических приближений в квантовой химии: «Когда их результаты верны, нет возможности точно определить, по какой причине они верны, а когда ошибочны, то также невозможно точно сказать, в чем причина ошибки». Дьюар, как правило, не реагировал на эту критику предметно, а говорил, что нужно просто брать полученные с помощью неэмпирических приближений результаты и работать с ними, поскольку ничего другого нет. Естественно, что такой ответ принижал значение и самих полуэмпирических методов расчета, и авторитет их создателя от человека, достойного Нобелевской премии, все же можно ожидать более развернутой аргументации.
С другим титаном теории химической связи, Лайнусом Полингом, у Дьюара возникли разногласия по поводу теории резонанса, которую Полинг разработал еще в 1930-е годы. Дьюар выступал с разгромной критикой этой теории и вытекающей из нее концепции делокализации связи, заявляя, что идеи Полинга - существенная помеха прогрессу теоретической химии. Следует отметить, что с подобными высказываниями выступали и некоторые участники Всесоюзной конференции по состоянию теории химического строения в органической химии 1951 года, повесив на резонанс ярлык «буржуазной» и «идеологически порочной» теории. Понятно, что эта критика не способствовала укреплению авторитета Дьюара в глазах Полинга и его сторонников. Не исключено также, что из-за этой критики органы безопасности США могли приписать Дьюару левацкую, прокоммунистическую позицию. В общем, своим острым языком Дьюар сам отрезал себе пути к Нобелевской премии по химии. Майкл Дьюар умер в 1997 году. Наверное, из его отношений с коллегами можно извлечь следующий урок: плохо быть высокомерным, и, если даже вы на сто процентов уверены в своей правоте, не стоит оскорблять человека, которого критикуешь. Луис Плак Гаммет 1894—1987 Луиса Гаммета по праву считают первопроходцем физической органической химии.
Именно он ввел в обиход термин «физическая органическая химия», написал классический учебник по этому предмету и вывел впоследствии названное его именем уравнение, без которого нельзя представить ни один вузовский курс по теоретическим основам органической химии. Уравнение Гаммета связывает изменения в константах скорости или равновесия реакций органических соединений, принадлежащих к одному ряду, со свойствами заместителей, входящих в состав этих соединений. То есть фактически оно связывает реакционную способность органических веществ с их строением. Значение уравнения Гаммета заключается в том, что с его появлением органическая химия из набора препаративных методик и разрозненных фактов превратилась в раздел науки, в котором возможно количественно предсказывать свойства веществ. Это, в частности, открыло перед химиками-органиками самые широкие возможности по изучению механизмов органических реакций. Вполне возможно, что работы Гаммета и Кристофера Ингольда, превратившие органическую химию в логичное, систематическое знание, могли бы послужить основанием для присуждения Нобелевской премии. Британец Ингольд также работал в области физической органической химии и развил концепции четырех классических механизмов органических реакций - мономолекулярного и бимолекулярного нуклеофильного замещения и конкурирующих с ними мономолекулярного и бимолекулярного элиминирования о, эти услаждающие взор органиков сокращения S N 1, S N 2, E1 и E2. Согласно одной из версий, физическая органическая химия не получила Нобелевской премии из-за того, что один из членов Нобелевского комитета - лауреат Нобелевской премии по химии 1947 года Роберт Робинсон, получивший ее «за исследования растительных продуктов большой биологической важности, особенно алкалоидов», мягко говоря, не питал дружеских чувств к Ингольду. Возможно, Робинсон использовал все свое влияние на Нобелевский комитет и добился, чтобы ни Ингольд, ни Гаммет не стали лауреатами.
Говард Симмонс 1929—1997 Говард Симмонс почти полвека 1954—1992 проработал в том же центральном исследовательском отделе компании «Дюпон», в котором когда-то трудился Уоллес Карозерс, а с 1974 по 1992 год возглавлял его. Под руководством Симмонса было сделано немало научных открытий, хотя это, конечно, не повод для присуждения Нобелевской премии ему самому. Его собственные работы по изучению криптандов краун-эфиров, которые могут вступать в селективное комплексообразование с ионами металлов и другими соединениями вполне могли быть отмечены Нобелевской премией. Ученый пришел к открытию криптандов независимо от французского химика, пионера супрамолекулярной химии, Жана Мари Лена, получившего в 1987 году Нобелевскую премию за «разработку и применение молекул со структурно-специфическими взаимодействиями высокой избирательности». По какой причине Симмонс не получил Нобелевской премии? Отчасти из-за того, что в соответствии с завещанием Нобеля и статутом Нобелевского комитета максимальное число награжденных в одной номинации не может превышать трех в год. Другой, возможно, еще более серьезной проблемой Симмонса было то, что он уделял очень мало внимания публикации собственных результатов. Как руководителю отдела исследований «Дюпона», ему приходилось постоянно заниматься административными делами , обеспечивать условия для эффективной работы своих коллег и подчиненных. Считают, что многие результаты исследований умершего в 1997 году Симмонса не опубликованы до сих пор.
Помимо прочего, Симмонса отличали исключительные щедрость и благородство. Так, он делился всеми своими результатами, полученными при изучении криптандов, в том числе и еще не опубликованными, с Жаном Мари Леном. Есть свидетельства, что, когда Лена объявили в числе нобелевских лауреатов 1987 года, первое, что он сделал, - позвонил Симмонсу из Франции в США, чтобы выяснить, не разочарован и не обижен ли тот. Симмонс ответил, что не обижается на французского коллегу, ну а сотрудники Симмонса все как один отмечают, что их патрон никогда не затрагивал тему «супрамолекулярной» Нобелевской премии в том контексте, что она должна была или могла бы достаться ему. Генри Мозли 1887—1915 Британский физик Генри Мозли, один из основоположников рентгеновской спектроскопии, без сомнения, мог бы стать нобелевским лауреатом или по химии, или по физике. Он установил зависимость между частотой спектральных линий характеристического рентгеновского излучения и атомным номером излучающего элемента. Открытие имело огромное значение: по существу, именно Мозли доказал, что фактор, определяющий организацию Периодической системы, - это не атомный вес элемента, а заряд его ядра. Этим он подтвердил проделанные еще Д. Менделеевым «рокировки», скажем, калия и аргона.
Завойский 1907—1976 Евгений Константинович Завойский тоже имел все шансы стать нобелевским лауреатом в области физики или химии. И российская, и зарубежная историография науки однозначно признают за Завойским приоритет в открытии сигналов ядерного магнитного резонанса ЯМР в конденсированных средах на ядрах водорода. Однако наблюдавшийся впервые в июне 1941 года протонный резонанс давал нерегулярные сигналы, результаты были плохо воспроизводимы, а начавшаяся вскоре война помешала продолжить исследования в этом направлении. Имя Завойского также неразрывно связано с открытием и разработкой другого типа резонанса - электронного парамагнитного резонанса ЭПР , для которого в 1940-е годы было проще получить воспроизводимый сигнал. Официальная дата открытия метода электронного парамагнитного резонанса - 12 июля 1944 года. Это открытие дало толчок к развитию научных центров во многих странах мира, метод начали применять для изучения веществ и интермедиатов химических реакций. Но самое главное, что метод ЭПР в жидкостях и твердых телах появился на два года раньше воспроизводимого метода ЯМР в конденсированных средах, о котором в 1946 году сообщили Феликс Блох и Эдвард Миллз Парселл, ставшие лауреатами Нобелевской премии по физике 1952 года. Несмотря на то что ЭПР был разработан раньше ЯМР, кампания по выдвижению Завойского началась много позже - его номинировали на Нобелевскую премию по физике в 1958—1963 годах и на Нобелевскую премию по химии в 1958—1960 годах. Но людей, выдвигавших Евгения Константиновича, было мало по слухам, в этом участвовали даже далеко не все активно работавшие советские нобелевские лауреаты по химии и физике, которых к 1962 году в СССР было уже пятеро , и момент был упущен.
Нобелевский лауреат по физике 2003 года Виталий Лазаревич Гинзбург сказал, что физики СССР заведомо потеряли лишь одну Нобелевскую премию - именно ту, которую должен был получить Евгений Завойский за открытие электронного парамагнитного резонанса. Эта статья лишь чуть-чуть приоткрывает завесу, за которой происходит присуждение самой престижной научной награды XX и XXI веков. Но уже по судьбам семи героев этой статьи можно понять, что на нобелевском Олимпе и у его подножия могут кипеть страсти не менее сильные, чем в древнегреческих трагедиях. С другой стороны, не всякий «состоявшийся» нобелиат - идеальный пример для подражания. Среди них были и люди со спорными морально-этическими позициями например, Фриц Габер, в 1915 году руководивший первой газовой атакой кайзеровской армии на позиции английских и французских войск при Ипре, а в 1918 году получивший Нобелевскую премию по химии за вклад в развитие промышленного синтеза аммиака , и страстные сторонники весьма оригинальных мнений.
В 1906 году Д. Менделеева выдвинуло ещё большее число иностранных учёных. Нобелевский комитет присудил Д.
Менделееву премию. Члены Нобелевских комитетов выбираются на 9 лет организациями, присуждающими премии. В своей работе комитеты руководствуются многочисленными неписаными правилами. Решения комитетов обычно не оспариваются, но бывают исключения… В тот год Шведская королевская академия наук отказалась утвердить это решение комитета, в чём сыграло решающую роль влияние С. Аррениуса, лауреата 1903 года за теорию электролитической диссоциации. Менделеев категорически не принимал гипотезу шведского учёного об самопроизвольном распаде молекул в растворе на ионы. Он, как и многие ведущие учёные того времени, считали предположение Аррениуса ложным. Согласно современной физико-химической теории растворов, частицы, способные проводить электрический ток в растворе ионы образуются только в результате химического взаимодействия молекул с растворителем с образованием сольватов или автоассоциатов автосольватов.
А это и составляет суть гидратной теории растворов Менделева, которую он опубликовал в том же году 1887 , что и Аррениус свою. В те времена девяностые годы 19 века борьба между физической и химической теориями растворов была очень острой и эмоциональной. Высказывались даже мнения, что теория Аррениуса отомрёт, как и теория флогистона. Аррениус очень обижался. Ему же дали Нобелевскую премию за эту «теорию» 1903 г. Шведская королевская академия наук отказалась принять решение Нобелевского комитета о присуждении премии Д. Менделееву за периодическую таблицу элементов , и она была присуждена Ф. Муассану за открытие фтора.
Это решение было принято под давлением шведского учёного С. Аррениуса, ярым противником взглядов которого был Д. И Аррениус это хорошо знал. И после этого можно серьёзно говорить, что Нобелевские премии отражают подлинный вклад тех или иных учёных в науку? И что при присуждении этих премий участники процесса объективны и беспристрастны? Его научные интересы распространялись на химию, физическую химию, физику, метрологию, экономику, технологию, геологию, метеорологию, педагогику, воздухоплавание, приборостроение, за что Менделеева часто называют русским Леонардо Да Винчи В Санкт-Петербурге находиться музей-квартира знаменитого русского учёного, благодаря одному из величайших открытию которого в истории цивилизации стал возможен тот технологический прогресс в науке, который позволил в течение минувших ста лет выйти русскому человеку и вслед ему всему человечеству - в космос. Здесь, в квартире, где жил великий учёный, ведется систематическое изучение его научного наследия. Во многих местах Северной столицы России также увековечена память о нём.
Улица в Петербурге, где расположен главный корпус Санкт-Петербургского государственного университета, носит название Менделеевской линии в его честь. Иностранным ученым, часто посещающим музей-архив Дмитрия Ивановича Менделеева в Петербургском университете, здесь задают традиционный вопрос: "Каких еще русских ученых вы знаете"? Первый рукописный вариант периодического закона. Менделеев открыл в феврале 1869 года один из фундаментальных законов природы - периодический закон химических элементов. Менделеева «Соотношение свойств с атомным весом элементов» был прочтён Н. Меншуткиным на заседании Русского химического общества. Отдельные учёные в ряде стран, особенно в Германии, соавтором открытия считают Лотара Мейера. Существенное различие этих систем заключается в том, что таблица Л.
Мейера - это один из вариантов классификации известных к тому времени химических элементов; выявленная Д. Менделеевым периодичность - это система, которая дала понимание закономерности, позволившей определить место в ней элементов, неизвестных в то время, предсказать не только существование, но и дать их характеристики. Не давая представления о строении атома, периодический закон, тем не менее, вплотную подводит к этой проблеме, и решение её было найдено несомненно благодаря ему - именно этой системой руководствовались исследователи, увязывая факторы, выявленные им с интересовавшими их другими физическими характеристиками. В 1984 году академик В. Спицын пишет: «…Первые представления о строении атомов и природе химической валентности, разработанные в начале нашего столетия, основывались на закономерностях свойств элементов, установленных с помощью периодического закона». Немецкий учёный, главный редактор фундаментального пособия «Анорганикум» - объединённого курса неорганической, физической и аналитической химии, выдержавшего более десяти изданий, академик Л. Кольдиц так истолковывает особенности открытия Д. Менделеева, сопоставляя в высшей степени убедительные результаты его труда с работами других исследователей, искавших подобные закономерности: «Никто из учёных, занимавшихся до Менделеева или одновременно с ним исследованиями соотношений между атомными весами и свойствами элементов, не смог сформулировать эту закономерность так ясно, как это сделал он.
В частности, это относится к Дж. Ньюлендсу и Л. Предсказание ещё неизвестных элементов, их свойств и свойств их соединений является исключительно заслугой Д. Стоят слева направо: Дж. Джоуль президент Ассоциации , Г. Шорлеммер, У. Томсон; сидят: Н. Меншуткин, Д.
Менделеев, Г. Роско Развивая в 1869-1871 годах идеи периодичности, Д. Менделеев ввёл понятие о месте элемента в периодической системе как совокупности его свойств в сопоставлении со свойствами других элементов. На этой основе, в частности, опираясь на результаты изучения последовательности изменения стеклообразующих оксидов, исправил значения атомных масс 9 элементов бериллия, индия, урана и др. Предсказал в 1870 году существование, вычислил атомные массы и описал свойства трёх ещё не открытых тогда элементов - «экаалюминия» открыт в 1875 году и назван галлием , «экабора» открыт в 1879 году и назван скандием и «экасилиция» открыт в 1885 году и назван германием. Затем предсказал существование ещё восьми элементов, в том числе «двителлура» - полония открыт в 1898 году , «экаиода» - астата открыт в 1942-1943 годах , «экамарганца» - технеция открыт в 1937 году , «двимарганца» - рения открыт в 1925 году , «экацезия» - франция открыт в 1939 году. В 1900 году Дмитрий Иванович Менделеев и Уильям Рамзай пришли к выводу о необходимости включения в периодическую систему элементов особой, нулевой группы благородных газов. Участники празднования 200-летия Берлинской академии наук: Слева направо стоят: А.
Ладенбург, С. Иоргенсен, Э. Гельд, Г. Ландольт, К. Винклер, Т. Торпе; сидят: Я. Вант-Гофф, Ф. Бейльштейн, У.
Рамзай, Д. Менделеев, А. Байер, А. Он назвал Д. Менделеева "величайшим химиком мира" за открытие периодического закона химических элементов. Однако Нобелевской премии за это русский ученый не получил. Гриф секретности, который позволяет предавать гласности обстоятельства выдвижения и рассмотрения кандидатур, подразумевает полувековой срок, то есть о том, что происходило в первом десятилетии XX века в Нобелевском комитете было известно уже в 1960-е годы. Иностранные учёные выдвигали Дмитрия Ивановича Менделеева на Нобелевскую премию в 1905, 1906 и 1907 годах соотечественники - никогда.
Статус премии подразумевал ценз: давность открытия - не более 30 лет. Но фундаментальное значение периодического закона получило подтверждение именно в начале XX века, с открытием инертных газов. В 1905 году кандидатура Д. Менделеева оказалась в «малом списке» - с немецким химиком-органиком Адольфом Байером, который и стал лауреатом. В 1906 году его выдвинуло ещё большее число иностранных учёных. Менделееву премию, но Шведская королевская академия наук отказалась утвердить это решение, в чём сыграло решающую роль влияние С. Аррениуса, лауреата 1903 года за теорию электролитической диссоциации - как указано выше, существовало заблуждение о неприятии этой теории Д. Менделеевым; лауреатом стал французский учёный А.
Муассан - за открытие фтора. В 1907 году было предложено «поделить» премию между итальянцем С. Канниццаро и Д. Менделеевым русские учёные опять в его выдвижении не участвовали. Однако 2 февраля учёный ушёл из жизни. Картина художника Н. Масло Между тем, не следует забывать и о конфликте Д. Менделеева с братьями Нобелями на протяжении 1880-х годов , которые, пользуясь кризисом нефтяной промышленности и стремясь к монополии на бакинскую нефть, на её добычу и перегонку, с этой целью спекулировали «дышащими интригою слухами» о её истощении.
Менделеев тогда же, проводя исследования состава нефти разных месторождений, разработал новый способ дробной её перегонки, позволявший добиться разделения смесей летучих веществ. Он вел продолжительную полемику с Л. Нобелем и его сподвижниками, борясь с хищническим потреблением углеводородов, с идеями и методами, способствовавшими тому; в числе прочего, к превеликому неудовольствию своего оппонента, использовавшего для утверждения своих интересов не вполне благовидные приёмы, доказал необоснованность мнения об оскудении каспийских источников. Между прочим, именно Д. Менделеев предложил ещё в 1860-е годы строительство нефтепроводов, с успехом внедрённых с 1880-х Нобелями, которые, тем не менее, крайне отрицательно отнеслись к его же предложению доставки таким и другими способами сырой нефти в Центральную Россию, поскольку, хорошо сознавая выгоду в этом для государства в целом, видели в том и ущерб собственному монополизму. Нефти изучению состава и свойств, перегонке и другим вопросам, к этой теме относящимся Д. Менделеев посвятил около 150 работ.
Нобелевские нелауреаты. Почему дмитрий менделеев не получил нобелевскую премию
Военные предоставили в его распоряжение воздушный шар «Русский» и опытного аэронавта. Но как назло пошел дождь, от которого шар стал намокать все сильнее и сильнее. В тот момент, когда многие готовы были поставить крест на затее, помощник Менделеева выпрыгнул из корзины шара. Дмитрий Иванович стал медленно подниматься и вскоре исчез за облаками. Ему удалось наблюдать солнечное затмение, а перед спуском проявить не только бесстрашие, но и чудеса гибкости: для того, чтобы распутать веревку от газового клапана, ему пришлось забираться на борт корзины. Спиритизм Менделеев был убежден: предрассудки одинаково опасны как для веры, так и для науки, поэтому попытался развенчать миф о модном в то время спиритизме.
Он разработал специальные столики для спиритических сеансов, к которым присоединил манометры. Итогом разоблачений стала монография «Материалы для суждения о спиритизме». Последовали неоднозначные оценки: многие говорили, что манометру не под силу фиксировать «тонкие материи». Достоевский же отмечал, что спиритизм — явление социальное, и к нему «нельзя подходить с манометром». Впрочем, важным здесь оказался не метод, который использовал Менделеев, а его желание привлечь внимание к проблеме предрассудков — и это ему удалось.
Месть империи Менделееву принадлежит фраза: «Нефть — не топливо! Топить можно и ассигнациями! С подачи Менделеева был отменен варварский четырехлетний откуп на нефтяные месторождения, и это стало первым ударом по нефтяным королям того времени братьям Нобелям. Затем последовал второй удар — Менделеев предложил транспортировать нефть по трубам. Был построен нефтепровод Баку-Батуми и первый нефтеперерабатывающий завод.
Затем Дмитрий Иванович нанес третий удар по империи Нобелей: он разработал масла на основе отходов нефтепереработки, которые стоили в несколько раз дешевле, чем керосин. Таким образом, Россия смогла не только отказаться от экспорта керосина из Америки, но и импортировать нефтепродукты в Европу. При этом Менделеев всегда выступал против бездумного разбазаривания природных богатств, считая, что будущее за промышленностью. Менделеева трижды выдвигали на Нобелевскую премию, но он так ее и не получил. Было ли это местью Нобелей или «постарались» российские коллеги ученого, которые, к слову, ни разу не проявили инициативу по выдвижению Менделеева, остается загадкой.
Менделеев Дмитрий Иванович — русский ученый, гениальный химик, физик, исследователь в области метрологии, гидродинамики, геологии, глубокий знаток промышленности, приборостроитель, экономист, воздухоплаватель, педагог, общественный деятель и оригинальный мыслитель. Детство и юность Великий ученый родился в 1834 году, 8 февраля, в Тобольске. Отец Иван Павлович был директором окружных училищ и Тобольской гимназии, происходил из рода священника Павла Максимовича Соколова, русского по национальности. Фамилию Иван поменял в детстве, будучи учащимся Тверской семинарии. Предположительно, это было сделано в честь его крестного отца, помещика Менделеева.
Позднее неоднократно затрагивался вопрос о национальной принадлежности фамилии ученого. По одним сведениям, она свидетельствовала о еврейских корнях, по другим — о немецких. Сам Дмитрий Менделеев рассказывал о том, что фамилию присвоил Ивану его педагог из семинарии. Юноша произвел удачный обмен и тем прославился среди однокашников. По двум словам — «мену делать» — Иван Павлович был вписан в учебную ведомость.
Мать Мария Дмитриевна в девичестве Корнильева занималась воспитанием детей и домашним хозяйством, имела репутацию интеллигентной и умной женщины. Дмитрий был в семье самым младшим, последним из четырнадцати детей по другой информации — последним из семнадцати детей. В 10-летнем возрасте мальчик лишился отца, который ослеп и вскоре умер. Во время учебы в гимназии способностей Дмитрий не проявил, сложнее всего ему давалась латынь. Любовь к науке прививала мать, она же участвовала в формировании его характера.
Мария Дмитриевна увезла сына учиться в Петербург. В 1850 году в Петербурге юноша поступает в Главный пединститут на отделение естественных наук физмата. Его преподавателями были профессора Э. Ленц, А. Воскресенский и Н.
Во время учебы в институте 1850-1855 годы Менделеев демонстрирует незаурядные способности. Будучи студентом, он публикует статью «Об изоморфизме» и ряд химических анализов. Наука В 1855-м Дмитрий получает диплом с золотой медалью и направление в Симферополь. Здесь он работает старшим учителем гимназии. С началом Крымской войны Менделеев перебирается в Одессу и получает должность преподавателя в лицее.
В 1856-м он снова в Петербурге. Учится в университете, защищает диссертацию, преподает химию. Осенью защищает еще одну диссертацию и назначается приват-доцентом университета. В 1859-м Менделеева отправляют в командировку в Германию. Работает в университете Гейдельберга, обустраивает лабораторию, исследует капиллярные жидкости.
Здесь им были написаны статьи «О температуре абсолютного кипения» и «О расширении жидкостей», открыто явление «критическая температура». В 1861-м ученый возвращается в Петербург. Создает учебник «Органическая химия», за что удостаивается Демидовской премии. В 1864-м он уже профессор, а спустя два года возглавляет кафедру, преподает и работает над «Основами химии». В 1869-м представляет периодическую систему элементов, совершенствованию которой посвятил всю жизнь.
В таблице Менделеев представил атомную массу девяти элементов, позднее добавил в свод группу благородных газов и оставил место для элементов, которые еще предстояло открыть. В 90-е годы Дмитрий Менделеев внес свой вклад в открытие явления радиоактивности. Периодический закон включал в себя доказательства связи свойств элементов и их атомного объема. Теперь рядом с каждой таблицей химических элементов находится фото первооткрывателя. В 1865—1887 годах разрабатывает гидратную теорию растворов.
В 1872-м начинает изучать упругость газов, спустя два года выводит уравнение идеального газа. Среди достижений Менделеева этого периода — создание схемы дробной перегонки нефтепродуктов, применение цистерн и трубопровода. При содействии Дмитрия Ивановича сжигание черного золота в топках полностью прекратилось. Фраза ученого «Сжигать нефть - все равно, что топить печку ассигнациями» стала афоризмом. Еще одной сферой деятельности ученого стали географические исследования.
В 1875 году Дмитрий Иванович побывал на Парижском международном географическом конгрессе, где представил на суд свое изобретение — дифференциальный барометр-высотомер. В 1887 году ученый участвовал в путешествии на аэростате в верхние слои атмосферы для наблюдения полного солнечного затмения. В 1890-м ссора с высокопоставленным чиновником стала причиной ухода Менделеева из университета. В 1892-м химик изобретает методику получения бездымного пороха. Одновременно с этим его назначают хранителем Депо образцовых мер и весов.
Здесь он возобновляет прототипы фунта и аршина, занимается вычислениями по сравнению русских и английских эталонов мер. По инициативе Менделеева в 1899 году факультативно вводится метрическая система мер. В 1905, 1906 и 1907 годах ученого выдвигают кандидатом на Нобелевскую премию. В 1906-м году Нобелевским комитетом премия присуждается Менделееву, но Королевская академия наук Швеции это решение не подтвердила. Менделеев, являющийся автором более чем полутора тысяч трудов, имел огромный научный авторитет в мире.
За свои заслуги ученый был удостоен многочисленных научных званий, российских и зарубежных наград, был почетным членом ряда научных обществ на родине и за границей. Личная жизнь В юности с Дмитрием случился неприятный случай. Ухаживания за девушкой Соней, с которой тот был знаком с детства, закончились помолвкой. Но изнеженная красавица к венцу так и не пошла. Накануне свадьбы, когда подготовка уже шла полным ходом, выходить замуж Сонечка отказалась.
Девушка посчитала, что нет смысла что-то менять, если жизнь и так хороша. Дмитрий болезненно переживал разрыв с невестой, но жизнь шла своим чередом. От тяжких дум его отвлекла поездка за границу, чтение лекций и верные друзья. Возобновив отношения с Феозвой Никитичной Лещевой, с которой был знаком ранее, стал с ней встречаться. Девушка была старше Дмитрия на 6 лет, но выглядела молодо, поэтому разница в возрасте была незаметной.
В 1862-м они стали мужем и женой. Первая дочь Маша родилась в 1863 году, но прожила только несколько месяцев. В 1865-м родился сын Володя, спустя три года — дочь Оля. К детям Дмитрий Иванович был привязан, но времени им уделял мало, так как жизнь была посвящена научной деятельности. В браке, заключенном по принципу «стерпится-слюбится», он не был счастлив.
В 1877-м Дмитрий знакомится с Анной Ивановной Поповой, которая стала для него человеком, способным в трудную минуту поддержать умным словом. Девушка оказалась творчески одаренным человеком: училась в консерватории игре на фортепиано, позже в Академии художеств. Дмитрий Иванович устраивал у себя молодежные «пятницы», где и познакомился с Анной. Среди них были , Николай Вагнер, Николай Бекетов и другие. Женитьба Дмитрия и Анны состоялась в 1881 году.
Вскоре у них родилась дочь Люба, сын Иван появился в 1883-м, близнецы Василий и Мария — в 1886-м. Во втором браке личная жизнь ученого сложилась счастливо. Позднее зятем Дмитрия Ивановича стал поэт , женившись на дочери ученого Любови. Смерть В начале 1907 года в Палате мер и весов проходила встреча Дмитрия Менделеева и нового министра промышленности Дмитрия Философова. После обхода палаты ученый заболел простудой, которая вызвала воспаление легких.
Но даже будучи сильно больным, Дмитрий продолжал работу над рукописью «К познанию России», последними написанными им словами в которой стала фраза: «В заключение считаю необходимым, хоть в самых общих чертах, высказать…». Смерть наступила в пять часов утра 2 февраля по причине паралича сердца. Память Дмитрия Менделеева увековечена рядом монументов, документальных фильмов, книгой «Дмитрий Менделеев. Автор великого закона». С именем Дмитрия Менделеева связано множество интересных фактов биографии.
Помимо деятельности ученого, Дмитрий Иванович занимался промышленной разведкой. В 70-е годы в США начался расцвет нефтяной промышленности, появились технологии, которые удешевили производство нефтепродуктов. Российские производители стали терпеть убытки на международном рынке из-за неспособности конкурировать по цене. В 1876 году по ходатайству министерства финансов России и «Русского технического общества», сотрудничавшего с военным ведомством, Менделеев отправился за океан на выставку технических новинок. На месте химик изучил новаторские принципы изготовления керосина и других нефтепродуктов.
А по заказанным отчетам железнодорожных служб Европы Дмитрий Иванович попытался расшифровать метод изготовления бездымного пороха, что ему и удалось.
Идеальной фигурой для номинации Карозерса на Нобелевскую премию по химии мог бы стать Ирвинг Ленгмюр, лауреат Нобелевской премии по химии 1932 года «за открытия и исследования в области химии поверхностных явлений», проявлявший значительный интерес к только появлявшейся тогда химии синтетических полимеров. Если бы Ленгмюр предложил на рассмотрение Нобелевского комитета обоих пионеров полимерной химии — Уоллеса Карозерса и Германа Штаудингера, у обоих шансы на получение премии могли значительно вырасти. Однако с 1931 по 1935 год Ленгмюр номинировал только Штаудингера, который предложил термин «макромолекула», показал связь между молекулярной массой полимера и вязкостью его раствора и разработал основы реакции полимераналогичных превращений реакции макромолекул с низкомолекулярными соединениями, которые не изменяют длины и строения основной цепи, но изменяют функциональные группы. Все эти годы кандидатура Штаудингера не находила одобрения у Нобелевского комитета. Возможно, номинирование Карозерса одного или вместе со Штаудингером в 1936 году принесло бы Нобелевскую премию специалистам по химии полимеров. К тому же авторитет Уоллеса Карозерса в 1936 году сильно вырос — он стал первым специалистом по промышленной органической химии, избранным в Национальную академию наук США. Но в 1936 году его никто не номинировал, а в апреле 1937 года Уоллес Карозерс, страдавший от затяжной депрессии и алкоголизма, принял смертельную дозу цианида калия, растворенного в лимонном соке.
Что же касается Германа Штаудингера, свою Нобелевскую премию по химии за «исследования в области химии высокомолекулярных веществ» он получил в 1953 году. Майкл Дьюар 1918—1997 Майкл Дьюар известен как химик-теоретик, который внес наиболее значительный вклад в разработку полуэмпирических квантово-химических методов, — это методы расчета характеристик молекул или свойств веществ с использованием экспериментальных данных. По сути, полуэмпирические методы аналогичны неэмпирическим методам решения уравнения Шредингера для многоатомных молекулярных систем, однако для облегчения расчетов в полуэмпирических методах вводят дополнительные упрощения. Полуэмпирические методы квантовой химии сегодня интенсивно применяют в самых различных областях, значительно сокращая время на квантово-химическое моделирование интересующих нас свойств вещества. Работы Дьюара, опубликованные в 1950—1980 годах, ежегодно цитируют по 400—500 раз. Почему же этот способ квантово-химического анализа, в отличие, например, от метода функционала плотности, так и не принес автору Нобелевской премии? Одна из версий — агрессивный характер Дьюара и его чересчур едкий язык. Например, известен случай, когда, выслушав доклад известного специалиста в области квантовой химии на конференции Американского химического общества, Дьюар начал обсуждение с того, что назвал докладчика «позором для науки».
Он ввязывался в споры со всеми и с каждым, но наиболее серьезными конфликтами, возможно, как раз и не давшими ему стать нобелиатом, были затянувшиеся и весьма резкие по тону дискуссии с лауреатами Нобелевской премии и специалистами в области теории химической связи Лайнусом Полингом и Уильямом Липскомбом. Липскомб неоднократно критиковал идею полуэмпирических приближений в квантовой химии: «Когда их результаты верны, нет возможности точно определить, по какой причине они верны, а когда ошибочны, то также невозможно точно сказать, в чем причина ошибки». Дьюар, как правило, не реагировал на эту критику предметно, а говорил, что нужно просто брать полученные с помощью неэмпирических приближений результаты и работать с ними, поскольку ничего другого нет. Естественно, что такой ответ принижал значение и самих полуэмпирических методов расчета, и авторитет их создателя от человека, достойного Нобелевской премии, все же можно ожидать более развернутой аргументации. С другим титаном теории химической связи, Лайнусом Полингом, у Дьюара возникли разногласия по поводу теории резонанса, которую Полинг разработал еще в 1930-е годы. Дьюар выступал с разгромной критикой этой теории и вытекающей из нее концепции делокализации связи, заявляя, что идеи Полинга — существенная помеха прогрессу теоретической химии. Следует отметить, что с подобными высказываниями выступали и некоторые участники Всесоюзной конференции по состоянию теории химического строения в органической химии 1951 года, повесив на резонанс ярлык «буржуазной» и «идеологически порочной» теории. Понятно, что эта критика не способствовала укреплению авторитета Дьюара в глазах Полинга и его сторонников.
Не исключено также, что из-за этой критики органы безопасности США могли приписать Дьюару левацкую, прокоммунистическую позицию. В общем, своим острым языком Дьюар сам отрезал себе пути к Нобелевской премии по химии. Майкл Дьюар умер в 1997 году. Наверное, из его отношений с коллегами можно извлечь следующий урок: плохо быть высокомерным, и, если даже вы на сто процентов уверены в своей правоте, не стоит оскорблять человека, которого критикуешь. Луис Плак Гаммет 1894—1987 Луиса Гаммета по праву считают первопроходцем физической органической химии. Именно он ввел в обиход термин «физическая органическая химия», написал классический учебник по этому предмету и вывел впоследствии названное его именем уравнение, без которого нельзя представить ни один вузовский курс по теоретическим основам органической химии.
К счастью, за него вписался Оствальд, один из создателей физхимии, и его заступничество помогло после стажировки получить позицию в свежесозданном Стокгольмском университете, ректором которого он стал на рубеже веков. Теория была в конце концов признана всеми, и в 1903 году за нее Сванте Аррениусу дали Нобелевскую премию по химии. Группа Людвига Больцмана в 1887 году, Аррениус стоит, третий слева. Первым слева стоит Вальтер Нернст Дальнейшая научная работа Аррениуса была посвящена развитию физической химии в частности, изучению зависимости скорости химических реакций от температуры , применению методов физики к метеорологии и космологии, а также исследованиям в области физиологии — он заложил основы иммунологии в ту первобытную эпоху развития биохимии, когда представления о происходящих в организме человека реакциях отсутствовали напрочь. Его исследования взаимодействия токсинов и антитоксинов предвосхитили современную теорию антител. Интересно, что именно Аррениус первым оценил влияние углекислого газа в атмосфере на температуру Земли и впервые предположил, что рукотворные выбросы могут влиять на климат. По иронии судьбы, Грета Тунберг является его дальней родственницей. Грета Тунберг: начало. Сообщение о первой теории глобального потепления, созданной Аррениусом Сейчас Аррениус считается одним из создателей физической химии, без которой не было бы, например, всей химической промышленности. В 1896 году умер Альфред Нобель, завещав большую часть своего состояния на выплаты премий выдающимся ученым. Наш герой стал фактическим создателем Нобелевских комитетов по физике и химии и имел, скажем так, очень серьезное влияние на их деятельность и выбор и утверждение лауреатов.
Версия, которая подразумевала участие Павлова в интригах, ничем не подтверждается. Зато нобелевским неудачам Менделеева находится более резонное объяснение. Окончательно периодический закон Менделеев сформулировал в 1871 году. Первое время химики не спешили им пользоваться. Потом классификация начала подтверждаться опытами. Учёные поняли: Менделеев создал универсальный инструмент. Перед смертью Нобель наказал выдавать премию за свежие открытия. В силу обстоятельств назвать таблицу новым открытием было нельзя. На момент первой номинации в 1906 году таблица существовала около 30 лет. Возможно, этим и руководствовалась комиссия во время принятия решения. Кроме того, Дмитрия Менделеева неохотно поддерживали в совете. На тайных заседаниях Нобелевского комитета все кандидатуры обсуждались. Согласно протоколам, за Менделеева выступало в среднем 3-4 человека. В то время как других учёных «одобряли» сразу 30-40 членов комитета. Основатели Русского химического общества, 4 января 1868 года Расстраивало ли Менделеева отсутствие «нобелевки»?
Почему Менделеев не стал академиком и не получил Нобелевку
Именно иностранные коллеги, а не соотечественники выдвигали кандидатуру Дмитрия Ивановича на Нобелевскую премию в 1905, 1906 и 1907 годах. Любопытный факт: знаменитый русский химик дважды выдвигался на Нобелевскую премию. В 1907 году было предложено "поделить" Нобелевскую премию между итальянцем царо и еевым (русские учёные опять в его выдвижении не участвовали). Почему же Дмитрий Менделеев не получил премию позже, в 1907-м году?
Почему Менделеев не стал академиком и не получил Нобелевку
В то же время другие историки скептически относятся к версии о подковёрной борьбе. По их мнению, причины лежат на самой поверхности: согласно завещанию Нобеля, присуждать премию надо было учёным за их недавние открытия. А периодический закон Менделеевым был открыт аж в 1869 г. Формально, конечно, его выдвинули — поскольку примерно в этот период открыли инертные газы, подтвердившие состоятельность теории русского химика. Однако выдвигали его кандидатуру всего пару человек, в то время как за другими кандидатами стояли группы по 20-30 иностранных специалистов. Август Аррениус Август Аррениус Стоит отметить, что сам Менделеев был ничуть не расстроен тем, что так и не получил нобелевку. На тот момент премия была относительно «молодая» первую Нобелевскую премию вручили в 1901 г. Николай Васько 60-70-е гг. Александр Бутлеров 1828-1886 разработал теорию химического строения,основные положения которой не потеряли значение до настоящего времени. Во второй половине 19в.
Родился он в Тобольске в семье директора гимназии.
Пауль Эрлих и Сахачиро Хата, создатели химиотерапии Вальтер Нернст, автор аж целого третьего закона термодинамики и много еще чего, поругавшийся с Аррениусом во время стажировки того в Лейпциге, получил Нобелевку только после его смерти. Дмитрий Менделеев же, когда-то критиковавший теорию растворов Аррениуса, не получил Нобелевку за периодический закон. Дело дошло до скандала с отказом Королевской академии наук поддержать представление Нобелевского комитета по химии, когда крайне важное нет мнение Аррениуса в комитете проигнорировали. Наше все, Дмитрий Менделеев Спор между Аррениусом и Менделеевым, если вкратце, сводился к роли различных взаимодействий в образовании растворов. Аррениус топил за роль чисто физических процессов, а Менделеев — за химию.
Традиционный холивар между физиками и химиками как он есть. И что характерно, правы и неправы были оба: без учета сразу обоих взаимодействий получается ерунда. Помимо всего прочего, Аррениус довольно много занимался научпопом, а в конце жизни еще и обмазался расовой гигиеной, что было весьма популярно в начале XX века. Умер Аррениус в 1927 году, похоронен в Уппсале. С его уходом из Нобелевского комитета по химии аналогичную роль в нем занял Вальтер Нернст которому Аррениус когда-то попортил много крови и сам начал самодурствовать, но это уже совсем другая история… Автор: Иван Прихно.
Возможно, Робинсон использовал все свое влияние на Нобелевский комитет и добился, чтобы ни Ингольд, ни Гаммет не стали лауреатами. Говард Симмонс 1929—1997 Говард Симмонс почти полвека 1954—1992 проработал в том же центральном исследовательском отделе компании «Дюпон», в котором когда-то трудился Уоллес Карозерс, а с 1974 по 1992 год возглавлял его. Под руководством Симмонса было сделано немало научных открытий, хотя это, конечно, не повод для присуждения Нобелевской премии ему самому. Его собственные работы по изучению криптандов краун-эфиров, которые могут вступать в селективное комплексообразование с ионами металлов и другими соединениями вполне могли быть отмечены Нобелевской премией. Ученый пришел к открытию криптандов независимо от французского химика, пионера супрамолекулярной химии, Жана Мари Лена, получившего в 1987 году Нобелевскую премию за «разработку и применение молекул со структурно-специфическими взаимодействиями высокой избирательности». По какой причине Симмонс не получил Нобелевской премии? Отчасти из-за того, что в соответствии с завещанием Нобеля и статутом Нобелевского комитета максимальное число награжденных в одной номинации не может превышать трех в год. Другой, возможно, еще более серьезной проблемой Симмонса было то, что он уделял очень мало внимания публикации собственных результатов.
Как руководителю отдела исследований «Дюпона», ему приходилось постоянно заниматься административными делами, обеспечивать условия для эффективной работы своих коллег и подчиненных. Считают, что многие результаты исследований умершего в 1997 году Симмонса не опубликованы до сих пор. Помимо прочего, Симмонса отличали исключительные щедрость и благородство. Так, он делился всеми своими результатами, полученными при изучении криптандов, в том числе и еще не опубликованными, с Жаном Мари Леном. Есть свидетельства, что, когда Лена объявили в числе нобелевских лауреатов 1987 года, первое, что он сделал, — позвонил Симмонсу из Франции в США, чтобы выяснить, не разочарован и не обижен ли тот. Симмонс ответил, что не обижается на французского коллегу, ну а сотрудники Симмонса все как один отмечают, что их патрон никогда не затрагивал тему «супрамолекулярной» Нобелевской премии в том контексте, что она должна была или могла бы достаться ему. Генри Мозли 1887—1915 Британский физик Генри Мозли, один из основоположников рентгеновской спектроскопии, без сомнения, мог бы стать нобелевским лауреатом или по химии, или по физике. Он установил зависимость между частотой спектральных линий характеристического рентгеновского излучения и атомным номером излучающего элемента.
Открытие имело огромное значение: по существу, именно Мозли доказал, что фактор, определяющий организацию Периодической системы, — это не атомный вес элемента, а заряд его ядра. Этим он подтвердил проделанные еще Д. Менделеевым «рокировки», скажем, калия и аргона. Завойский 1907—1976 Евгений Константинович Завойский тоже имел все шансы стать нобелевским лауреатом в области физики или химии. И российская, и зарубежная историография науки однозначно признают за Завойским приоритет в открытии сигналов ядерного магнитного резонанса ЯМР в конденсированных средах на ядрах водорода. Однако наблюдавшийся впервые в июне 1941 года протонный резонанс давал нерегулярные сигналы, результаты были плохо воспроизводимы, а начавшаяся вскоре война помешала продолжить исследования в этом направлении. Имя Завойского также неразрывно связано с открытием и разработкой другого типа резонанса — электронного парамагнитного резонанса ЭПР , для которого в 1940-е годы было проще получить воспроизводимый сигнал. Официальная дата открытия метода электронного парамагнитного резонанса — 12 июля 1944 года.
Это открытие дало толчок к развитию научных центров во многих странах мира, метод начали применять для изучения веществ и интермедиатов химических реакций. Но самое главное, что метод ЭПР в жидкостях и твердых телах появился на два года раньше воспроизводимого метода ЯМР в конденсированных средах, о котором в 1946 году сообщили Феликс Блох и Эдвард Миллз Парселл, ставшие лауреатами Нобелевской премии по физике 1952 года. Несмотря на то что ЭПР был разработан раньше ЯМР, кампания по выдвижению Завойского началась много позже — его номинировали на Нобелевскую премию по физике в 1958—1963 годах и на Нобелевскую премию по химии в 1958—1960 годах. Но людей, выдвигавших Евгения Константиновича, было мало по слухам, в этом участвовали даже далеко не все активно работавшие советские нобелевские лауреаты по химии и физике, которых к 1962 году в СССР было уже пятеро , и момент был упущен. Нобелевский лауреат по физике 2003 года Виталий Лазаревич Гинзбург сказал, что физики СССР заведомо потеряли лишь одну Нобелевскую премию — именно ту, которую должен был получить Евгений Завойский за открытие электронного парамагнитного резонанса.
Согласно современной физико-химической теории растворов, частицы, способные проводить электрический ток в растворе ионы образуются только в результате химического взаимодействия молекул с растворителем с образованием сольватов или автоассоциатов автосольватов.
А это и составляет суть гидратной теории растворов Менделева, которую он опубликовал в том же году 1887 , что и Аррениус свою. В те времена девяностые годы 19 века борьба между физической и химической теориями растворов была очень острой и эмоциональной. Высказывались даже мнения, что теория Аррениуса отомрёт, как и теория флогистона. Аррениус очень обижался. Ему же дали Нобелевскую премию за эту "теорию" 1903 г. В 1906 г.
Шведская королевская академия наук отказалась принять решение Нобелевского комитета о присуждении премии Д.
Сколько Нобелевская премия у Менделеев?
Менделеев не получит и Нобелевскую премию, хотя иностранные учёные выдвигали его в 1905, 1906 и 1907 годах (соотечественники — никогда). Поэтому считается, что и Нобелевку Менделеев не получил из-за враждебных отношений между ним и учредителем престижной премии. Выделяя список причин, из-за которых Дмитрий Иванович мог не получить премию, одни историки заявляют, что дело в личной ссоре Менделеева с семьёй Нобелей – из-за вопроса с бакинской нефтью.
Остались вопросы?
не государственная организация и платится из личных денег Нобеля. Эту премию нельзя считать международной ввиду того, что Нобелевский комитет в свое время не считал нужным присудить эту премию выдающимся деятелям науки и культуры нашей страны (еев, й, , й)». Менделеев неоднократно посещал Бакинские нефтепромыслы, Донецкие месторождения Дмитрий Менделеев. Эту премию нельзя считать международной ввиду того, что Нобелевский комитет в свое время не считал нужным присудить эту премию выдающимся деятелям науки и культуры нашей страны (еев, й, , й)».
Историк Майкл Гордин рассказывает про десятилетия жизни таблицы Менделеева и славу ее создателя
- Менделеев Дмитрий Иванович
- Telegram: Contact @naukatv_ru
- Зависть и Боблово
- Почему Дмитрий Менделеев не получил Нобелевскую премию
- Менделеев: биография, личная жизнь, открытия ученого
Менделеев: биография, личная жизнь, открытия ученого
Почему не получил Нобелевскую премию. Как известно, Менделеев, как и Толстой, Чехов, Горький неожиданно для всех не были удостоены международной премии Нобеля. Поэтому считается, что и Нобелевку Менделеев не получил из-за враждебных отношений между ним и учредителем престижной премии. Поэтому считается, что и Нобелевку Менделеев не получил из-за враждебных отношений между ним и учредителем престижной премии. Кроме того, Игорь Дмитриев сообщил, что Дмитрий Иванович Менделеев не был расстроен отсутствием Нобелевской премии, поскольку эта награда была еще очень молодой, и стала набирать авторитет лишь в 1910–1920 годах, уже после смерти Дмитрия Ивановича.