Новости лазерная связь

В России создан прототип компактного терминала космической лазерной связи, который можно использовать на спутниках формата кубсат.

Все новости

  • «Роскосмос» проведет эксперимент по лазерной связи в 2023 году — Реальное время
  • 22.08.2022. - Будущее лазерной связи НАСА
  • Лазерный сигнал
  • Семейства, модели и их особенности
  • Российская сеть лазерных станций

NASA испытало систему лазерной связи на орбите

Кроме того, в составе станций имеется метеоаппаратура, предназначенная для определения параметров атмосферы и коррекции результатов измерений по условиям распространения сигналов, аппаратура единого времени, обеспечения электропитания, безопасности информации и укрытие. Точностные характеристики станций: среднеквадратическая погрешность измерения дальности - 3.. Решаются следующие задачи: Дальномерная информация используется для высокоточного определения параметров орбит и координат наземных пунктов в общеземной геоцентрической системе координат, а также для контроля целевых характеристик и координатно-временного обеспечения ГНС ГЛОНАСС; угломерная информация используется для определения орбит космических объектов, в том числе при выведении высокоорбитальных КА на орбиту, а также для реализации однопунктовой схемы вместе с дальностью навигационно-баллистического обеспечения полетов; фотометрическая информация используется для оценки параметров ориентации КА; видовая информация детальные изображения используется для распознавания КА и оценки его развертывания.

Лавинные фотодиоды применяются в машинном зрении, оптоволоконной телекоммуникации и лазерной дальнометрии. В рамках экспозиции демонстрируются гетероструктуры на основе полупроводниковых материалов A3B5 арсенида галлия, нитрида галлия, карбида кремния , которые являются основой для изготовления любых лазерных диодов, светодиодов и фотоприемников.

Разработка и освоение технологий выпуска опто- и фотоэлектронной компонентной базы — один из приоритетов Стратегии развития электронной промышленности России до 2030 года, и на выставке «Связь» наши предприятия уже демонстрируют образцы таких изделий», - рассказали в «Росэлектронике». Кроме того, Концерн «Созвездие» показывает на выставке серийные образцы гражданских радиостанций стандарта DMR.

Исследование опубликовано в журнале Physical Review Letters, а коротко о нем рассказывает Phys. Сообщается, что предыдущий рекорд дальности передачи стабильного лазерного луча значительно превзойден. Исследователям удалось передать его на расстояние 2,4 километра, что сделало этот сигнал в 100 раз более стабильным, чем все предыдущие лазерные лучи, переданные через атмосферу.

Это важный аспект, так как, отмечают исследователи, существующая технология ограничена природными факторами. На оборудование воздействуют, например, такие факторы, как ветер и незначительные вибрации. Однако в новой работе авторы уверяют, что переданный ими лазерный сигнал оказался даже более стабильным, чем атомные часы.

В частности, с ее помощью можно будет в режиме реального времени собирать данные со всех систем самолета и отправлять их на землю, где они будут анализироваться с целью прогнозирования отказов. То есть, если сейчас они с охраняются бортовыми самописцами и анализируются только после катастрофы и мы знаем, что послужило ее причиной , то в будущем можно будет эти катастрофы предотвратить. Кроме того, в режиме реального времени можно будет транслировать на землю изображение с камер, так что уж точно не повторится ситуация с малайзийским «Боингом» MH370 , который просто «потерялся». Илья Шатилин.

Деятельность

  • Лазерные системы связи
  • В России создали образец терминала космической лазерной связи
  • НАСА протестировало лазерную связь в космосе на расстоянии свыше 16 000 000 км
  • В России создали образец терминала космической лазерной связи
  • Роскосмос. Проект «Сфера» переходит к практической реализации - Новости - Госкорпорация «Роскосмос»

Лазерная связь заработает в России

В 2024 году «Росатом» протестирует технологию космической лазерной связи. В NASA сообщили, что 8 апреля провели очередное испытание дальней космической связи по оптическому каналу. Лазерная связь, использующая инфракрасный свет для передачи данных, обладает рядом преимуществ перед радиосвязью, включая высокую скорость и возможность передачи на. NASA передало информацию к зонду Psyche, который отправляется к астероиду Психея, с помощью лазерной системы связи. Лазерная связь позволит на высокой скорости обмениваться информацией не только между аппаратами на орбите, но и с наземными станциями. Технологический эксперимент NASA на Международной космической станции обеспечил первую лазерную связь с орбитальной лазерной ретрансляционной системой.

Airbus внедрит высокоскоростную лазерную связь

Ранее мы рассказывали, что Facebook строит обсерватории для лазерной связи со спутниками. Использовать же на больших расстояниях ранее ее не удавалось, так как это довольно проблематично. Дело в том, что для передачи сигнала необходимо навести лазерный луч на приемник. Соответственно, чем больше расстояние, тем требуется более высокая точность. Кроме того, сигнал фотонов становится слабее, поэтому требуется больше времени, чтобы преодолеть необходимое расстояние. Схема работы системы оптической связи DSOC Лазерный сигнал из космоса принят на Земле Как сообщает Лаборатории реактивного движения НАСА , благодаря невероятно точному маневру, 14 ноября лазерный приемопередатчик на аппарате Психея зафиксировался на мощном маяке связи JPL, что позволило приемопередатчику DSOC направить на него лазер с расстояния 16 миллионов километров. К слову, это в 40 раз дальше, чем расстояние до Луны. Как сообщается в исследовании, фотонам потребовалось около 50 секунд, чтобы добраться от космического корабля до Земли.

Когда же аппарат достигнет самого дальнего расстояния, лазеру понадобится 20 минут, чтобы достичь Земли, а затем вернуться назад к космическому аппарату. За это время сместится и Земля, и сам аппарат.

В NASA пояснили, что новая система лазерной связи предназначена для передачи данных из глубокого космоса. С помощью таких лазеров в будущем ученые планируют поддерживать связь с пилотируемыми миссиями, например, на Марсе. Без рекламы и подписки. NASA запустило собственный стриминговый сервис К следующей новости.

Почта России протестировала беспилотный грузовик Evocargo N1… На более близких дистанциях скорость оптической связи ощутимо выше. Например, первый сеанс оптической связи с «Психеей» состоялся, когда она улетела от Земли на 31 млн км. Подобные скорости в оптике будут на один—два порядка выше, чем в радиочастотном диапазоне. Оптика на порядок увеличила бы его пропускную способность.

Более современная космическая связь может ускорить научные исследования в ходе миссий в дальний космос реклама 14 ноября НАСА смогло принять лазерный сигнал, исходящий от прибора, находящегося на борту космического аппарата «Психея», который в настоящее время удалился от Земли на дистанцию свыше 16 миллионов километров. Это расстояние более чем в 40 раз превышает среднее расстояние от Земли до Луны. Зонд "Психея" направляется к одноименному металлическому астероиду. Аппарат "Психея" у одноименного астероида в представлении художника реклама Испытания системы дальней космической оптической связи DSOC начались в Калифорнии, на базе Лаборатории реактивного движения в Столовой горе. Там, на холмах недалеко от Лос-Анджелеса, инженеры включили маяк исходящей линии связи — лазер ближнего инфракрасного диапазона, направленный в сторону "Психеи".

НАСА тестирует двустороннюю высокоскоростную лазерную систему космической связи

Переход на лазерную связь позволит увеличить пропускную способность от 10 до 100 раз по сравнению с радиосвязью. Кроме того, лазерная связь обеспечивает повышенную безопасность по сравнению с традиционными радиоволнами, поскольку ее сложнее перехватить и декодировать. Организуемый канал лазерной связи имеет высокую защищённость, скрытность и малозаметность. Лазерная связь относится к беспроводным оптическим системам связи и является одним из самых актуальных направлений. При этом инфракрасный свет, который может использовать лазерная связь, имеет гораздо более высокую частоту, чем радиоволны.

В МФТИ создан терминал космической лазерной связи

Спутники российской орбитальной группировки «Сфера» будут общаться друг с другом с помощью лазерной связи. При помощи инфракрасной лазерной системы можно реализовать связь с орбитой и космосом нового качественного уровня. Лазерная связь может обеспечить высокоскоростную передачу данных с Марса, что очень важно для будущих колонистов. Лазерная связь может обеспечить высокоскоростную передачу данных с Марса, что очень важно для будущих колонистов.

Земля впервые получила лазерный сигнал с расстояния 16 миллионов километров

Эта технология повысит скорость передачи данных в 10-100 раз по сравнению с текущими возможностями, потенциально прокладывая путь к новому стандарту связи в дальнем космосе. НАСА планирует важный шаг к достижению этой цели, запустив и протестировав свою первую двустороннюю сквозную лазерную систему связи. Она известна как демонстрационный модем для пользователей с интегрированной лазерной ретрансляцией на низкой околоземной орбите и терминал усилителя ILLUMA-T.

Сфера Спутники российской орбитальной группировки «Сфера» будут общаться друг с другом с помощью лазерной связи. Об этом сообщили представители Роскосмоса. Спутники российской орбитальной группировки «Сфера» будут общаться друг с другом с помощью лазерной связи. Развертывание системы «Сфера», состоящей из 600 спутников, начнется в 2023 году и продлится до 2028 года.

Лазерные каналы находятся в той области электромагнитного спектра, которая не регламентируется, и специальных разрешений на её использование получать не придётся. Сейчас в институте заканчивают разработку конструкторской документации для изготовления аппаратуры. Все работы планируют завершить к 2024 году.

После этого пройдёт эксперимент — один аппарат установят на «Прогрессе», второй — на МКС, и между отработают процедуру связи. Проект аппаратуры для межспутниковой связи носит название «НИР-лазер».

Во время теплового испытания, имитирующего экстремальные температуры, расплавились волокна в усилителе оптического сигнала. Чтобы решить эту проблему, исследователи работали с поставщиком усилителя. Устройство модифицировали так, чтобы оно выделяло тепло за счёт проводимости. Кроме того, лазерные лучи могут искажаться из-за атмосферных воздействий и погодных условий.

Это может привести к потере мощности и, в свою очередь, к потере данных. Чтобы решить проблему, учёные разработали собственную версию автоматического повторного запроса ARQ — протокола для контроля ошибок при передаче данных по каналу связи. Наземный терминал использует низкоскоростной сигнал восходящей линии связи, чтобы сообщить спутнику, что он должен повторно передать любой блок данных или кадр, которые были потеряны или повреждены. Ещё одна проблема, с которой столкнулись учёные, была связана с тем, что лазеры формируют гораздо более узкие лучи, чем радио.

Росатом запланировал эксперимент с космической лазерной связью на 2024 год

Его выполнение позволит закрепить за Россией выделенный орбитально-частотный ресурс и начать развертывание орбитальной группировки. Если мы пропустим очередь, нам придется заново договариваться с Союзом электросвязи. И здесь надо учитывать, что в Бюро радиосвязи МСЭ после нас заявлено еще где-то 280 систем со всего мира, так как многие идут по этому пути». Параллельно подготовке демонстратора запуск осенью 2022 г. Планируется, что пропускная способность одного аппарата «СКИФ» составит 150 гигабит в секунду, соответственно вся система может считаться группировкой террабитного класса. В первую очередь «СКИФ» предназначен для снабжения скоростным интернетом малодоступных и удаленных районов страны, а также судов, передвигающихся по Северному морскому пути. Сборка демонстратора будет проходить в ИСС имени М.

Запущенный аппарат должен будет в тестовом режиме подтвердить работоспособность всей концепции. Своевременная передача сигнала — об утечках, возгораниях и других неполадках — через космос позволит предотвратить техногенные и экологические катастрофы в нефте- и газодобыче, химической и лесной промышленности, сельском хозяйстве и других отраслях. Предполагается разместить 264 спутника в 12 орбитальных плоскостях на высоте 750 км. Этого достаточно, чтобы осуществлять глобальное покрытие всей территории Земли и обеспечивать передачу данных от десятков миллионов абонентов. От лазерной связи до цифровой полезной нагрузки Отработка технологий — другая важная составляющая первого этапа «Сферы». Намечено несколько научно-исследовательских работ НИР.

Одна из них — «Лазер» — предусматривает создание высокоскоростных каналов оптической связи. Передача больших объемов данных актуальна не только для телекоммуникационных спутников, но и для космических аппаратов, ведущих съемку Земли. Одна из идей предполагает переброску результатов съемки не напрямую, а через другой спутник: например, из среднеорбитальной группировки системы «СКИФ» или геостационарный спутник-ретранслятор. В этом плане лазерная связь является одной из самых перспективных по скорости передачи данных и конфиденциальности. В рамках НИР «Лазер» планируется разработка двух терминалов межспутниковой связи, а в последующем — наземного оборудования для связи «космос — Земля». В рамках другой работы — «Типоряд» — будет вестись поиск технологий создания масштабируемых унифицированных спутниковых платформ для группировок связи и ДЗЗ.

Идеология проста: несмотря на разную специфику, космические аппараты должны базироваться на одних и тех же технических решениях. Тем не менее все эти спутники относятся к малым, и для них будет создана линейка унифицированных платформ».

Лазерная связь не только обеспечит передачу колоссальных массивов данных с научных миссий, но также послужит надежным средством коммуникации между астронавтами и Землей во время исследования Луны, Марса и дальних границ космоса — доктор Джейсон Митчелл, директор дивизиона по передовым коммуникационным и навигационным технологиям SCaN. Сразу после монтажа оборудования, инженеры приступили к проведению испытаний и контрольных проверок с целью убедиться в нормальной работе ILLUMA-T. В настоящее время они осуществляют обмен данными с LCRD, ретранслятором, запущенным в 2021 году, который провел более 300 экспериментов по совершенствованию технологий лазерной связи в рамках программы NASA. Лазерная связь может изменить всю парадигму исследований для ученых на Земле, занимающихся научными и технологическими исследованиями на борту космической станции. Астронавты проводят исследования в различных областях, таких как биологические и физические науки, технологии, наблюдение Земли и многое другое, в орбитальной лаборатории во благо всего человечества. ILLUMA-T способен обеспечить высокую скорость передачи данных для этих экспериментов и отправить на Землю гораздо больше информации одновременно. Фактически, при скорости передачи 1,2 гигабит в секунду ILLUMA-T способен передать объем данных, сравнимый с продолжительностью среднего фильма, за считанные секунды. Мы продемонстрировали, что можем преодолеть технические проблемы успешной космической связи с использованием лазерной связи.

Прибор размером с холодильник был установлен снаружи японского экспериментального модуля "Кибо". Оба прибора — часть программы космической связи и навигации NASA SCaN, которая должна протестировать то, как технологии лазерной связи могут быть полезны для научных исследований. Далее специалисты будут проводить эксперименты, которые позволят оптимизировать внедрение новой технологии в проекты NASA, чтобы сделать научные исследования максимально эффективными.

Ещё одна проблема, с которой столкнулись учёные, была связана с тем, что лазеры формируют гораздо более узкие лучи, чем радио. Для успешной передачи данных эти лучи должны быть направлены точно на их приёмники. Из-за небольшого размера TBIRD он направляет несущий кубсат, используя любые полученные сигналы об ошибке для исправления ориентации. По словам Рисинга, архитектура TBIRD может поддерживать несколько каналов связи за счёт разделения длин волн, что обеспечивает более высокие скорости передачи данных. Следующим шагом исследовательской группы станет изучение того, где можно применить технологию в предстоящих миссиях. Учёные также хотят выяснить, как расширить применение технологии для различных сценариев, в том числе геостационарной орбиты. Новая технология может также найти применение в высокоскоростных каналах передачи данных об атмосфере на Земле. Работа проводилась с помощью одного лазера и одного оптического чипа.

Лазерная передача научных данных из глубокого космоса

  • Космический аппарат «Психея» провел сеанс лазерной связи с расстояния 16 миллионов километров
  • Учёные протестировали лазерную связь на расстоянии 226 000 000 км (2 фото + видео)
  • Навигация по записям
  • NASA запускает лазерную связь сегодня, 5 декабря
  • Росатом запланировал эксперимент с космической лазерной связью на 2024 год — Новости Космонавтики

Луч на Землю: В NASA сообщили о получении лазерного сигнала из космоса

В США решили отложить испытания межспутниковой лазерной связи, проект создания которой получил наименование Blackjack. Как объяснили ученые, современные системы подводной лазерной связи имеют высокую стоимость и способны поддерживать широкий канал связи только на небольших дистанциях. НАСА планирует важный шаг к достижению этой цели, запустив и протестировав свою первую двустороннюю сквозную лазерную систему связи. Лазерный луч обеспечивает высокоскоростную связь с очень низкой вероятностью обнаружения, малыми затратами на. Миссия НАСА Psyche, которая отправилась на исследование астероида 16 Psyche в Главном поясе, успешно провела первый тест лазерной связи в глубоком космосе.

Космическая лазерная связь - это будущее подключения к Интернету

DSOC настроен на передачу тестовых данных с высокой пропускной способностью на Землю в ходе двухлетней демонстрации технологии во время полета Psyche к главному поясу астероидов между Марсом и Юпитером. Как DSOC впервые будет использован для тестирования высокоскоростной передачи данных за пределы лунной орбиты и как это может изменить исследование дальнего космоса. После этого можно будет продемонстрировать высокую пропускную способность передачи данных от приемопередатчика к Паломару на различных расстояниях от Земли. Эти данные имеют форму битов, закодированных в фотонах — квантовых частицах света, излучаемых лазером.

Цель эксперимента DSOC — продемонстрировать скорость передачи данных, в 10-100 раз превышающую возможности современных радиочастотных систем, используемых сегодня на космических аппаратах.

На этой площадке было установлено специальное зеркало, которое отразило луч и вернуло его обратно к источнику. Эксперимент занял примерно пять минут.

Он открывает новые возможности перед наукой. Исследователи пишут, что их работа стала очередным шагом на пути создания эффективных систем передачи лазерных сигналов на большие расстояния. Такие системы в будущем могут использоваться для связи между наземными станциями и спутниками или орбитальными космическими кораблями.

Их можно использовать и для подключения атомных часов.

Airbus внедрит высокоскоростную лазерную связь Комплекс UltraAir обеспечит доселе невиданную скорость На самолётах Airbus появится лазерная связь. На самолётах Airbus появится лазерная связь. Аэрокосмический гигант в сотрудничестве с голландской компанией VDL Group разработает и внедрит принципиально новую систему связи под названием UltraAir. Технология позволит воздушным судам обмениваться большими объёмами данных с помощью лазерных лучей через сеть наземных станций и спутников на геостационарной орбите 36 000 км над Землёй.

Применять разработку планируется, в том числе, в военной сфере. Передача данных ускорится примерно в 10 раз.

Блок лазерного приёмопередатчика «Психеи» не предназначен для передачи научных данных с борта зонда на Землю. Для демонстрации и испытаний возможностей оптической связи видео и другие данные были записаны в него ещё на Земле. Тем не менее, команда зонда смогла продублировать передачу фрагмента инженерных данных с борта зонда по оптическому каналу в то же время, как эти данные передавались по основному радиоканалу. Тем самым NASA получило возможность заявить, что впервые по оптике были переданы инженерные данные с борта космического корабля из глубокого космоса. Также был поставлен другой эксперимент, когда одна наземная станция по мощному лазеру передала большой пакет данных на зонд, а зонд передал их обратно на другую наземную станцию на телескоп Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния.

Похожие новости:

Оцените статью
Добавить комментарий