Рассказ о музее Экспериментаниум в Москве, где науку можно буквально потрогать руками.
Дом экспериментов. Поход в Экспериментаниум. Экспериментариум. Куда сходить с ребёнком.
Головоломки нашлись очень разной сложности. Место для детей и взрослых технического склада ума, естествоиспытателей, инженерных, логиков. Увлекательный физмат. Основное правило — науку можно трогать!
Здесь можно зажечь лампу, взявшись за руки, и поймать в темной комнате собственную тень; сыграть в воздушный хоккей, направляя шарик теплом собственного тела, и поразмыслить над хитрыми логическими задачами. Льва Толстого, 9а Стоит увидеть: детский зал, «Черная комната» с лазерами и световыми эффектами. Deutsches Museum Мюнхен Немецкий музей в Мюнхене полон невероятных и притягательных экспонатов, демонстрирующих достижения науки и техники.
Здесь есть залы, посвященные авиа- и кораблестроению, автомобильному и железнодорожному транспорту, истории развития компьютерной техники. Можно заглянуть в двигатель внутреннего сгорания, увидеть, как работает динамо-машина, покрутиться, как белка в колесе, побыть химиком-экспериментатором. Для детей отведено целое «детское королевство», в котором найдется много интересного для пытливых умов. Узнайте больше о Немецком музее в Мюнхене на странице нашего сайта! Музей «Эврика» в Вантаа Финляндия Его можно назвать музеем научных аттракционов — посетители экспериментируют с лентой Мебиуса и бутылкой Клейна, проводят опыты в лаборатории и даже поднимают автомобиль. Тут можно совершить экскурсию внутрь клетки человеческого организма или улететь на дальнюю планету — в сферическом кинотеатре музея демонстрируют фильмы об этом.
Можно также прокатиться на транспорте будущего или построить из кубиков идеальный город. Спецпредложение музея — возможность проехаться на велосипеде по канату или пройтись в скафандре по поверхности Луны. Его выставки посвящены фундаментальным наукам, но экспонаты рассчитаны на то, чтобы вызывать у посетителей непосредственную реакцию. Например, тут можно задать вопрос Моне Лизе — и получить ответ, шепнуть что-то на ухо стоящему в другом конце зала человеку, воспользовавшись каменной воронкой, полетать на авиасимуляторе.
Льготы предусмотрены для многодетных семей и инвалидов. Билеты на шоу и мастер-классы приобретаются дополнительно к входному билету. Подробнее ознакомиться с информацией о стоимости посещения можно на официальном сайте Экспериментаниум. Дети до 14 лет могут посещать музей только в сопровождении взрослых. Те, кому исполнилось 14 лет, должны предъявить паспорт. Экспозиции В нескольких залах размещены экспонаты, дающие представление об основных областях науки. Процесс познания построен на принципе интерактивности — все предметы можно трогать, тщательно изучать со всех сторон и вообще нужно всячески взаимодействовать с ними. Это превращает изучение серьезных вещей в захватывающее и запоминающееся действо. Например, посетители смогут узнать об устройстве Вселенной, о том, как образуется и распространяется звук, и даже увидеть его. Также здесь размещена водная инсталляция, открывающая причину образования морских волн и механизм работы шлюза и водяной мельницы. Испытателей, заглянувших на экспозицию, ждут и многие другие научные открытия. Мастер-классы и шоу По выходным, праздникам и в период школьных каникул Экспериментаниум проводит развлекательно-познавательные мероприятия с элементами научных опытов. Игровая форма позволяет приковать внимание любознательных и неугомонных детей к экспериментам, которые раскрывают многие физические и химические законы.
Выходные с пользой Выходные с пользой Юные исследователи 3д класса и их родители попробовали свои силы в науке,посетив музей " Экспериментаниум" в Москве. На уникальном электрическом шоу " Тесла" детей и взрослых ждали зрелищные и познавательные научные аттракционы с электричеством. Заряд электрического настроения был обеспечен!
Музей занимательных наук «Экспериментаниум»
«Экспериментаниум» — еще одна площадка для увлекательного изучения законов науки и явлений окружающего мира, место для открытых уроков и музей, где экспонаты трогать не только можно, но и нужно. Экспериментаниум: музей занимательных наук. Недавно с сыном побывали в удивительном месте, которое называется «Экспериментаниум». Экспериментаниум, научно-развлекательный центр: адреса со входами на карте, отзывы, фото, номера телефонов, время работы и как доехать. В Музее Занимательных Наук «Экспериментаниум» не чувствуешь себя как в гостях у великих художников прошлых веков, которые укоризненно смотрят на твоих скучающих детей и грозят пальцем, если ты подойдешь к какому-нибудь экспонату ближе дозволенного. Музей занимательных наук «Экспериментариум», 5+.
Обзор музея занимательных наук в Москве
Экспозиция регулярно обновляется, в том числе экспонатами из аналогичных американских и европейских научных музеев [5]. На экспозициях представлены образцы машин, механизмов и устройств, многие из которых приводятся в действие с помощью рычага или магнита [7].
Гигантская мебель - пешком под стол! Высота стульев и стола примерно в два раза больше, чем обычно.
Площадь стола примерно в 4 раза больше площади вашего кухонного стола. Именно такой казалась вам кухонная мебель, когда вам было 3 года! Когда вы пешком под стол ходили!
Взгляд в бесконечность Посмотрите в глазок данного экспоната и вы увидите бесконечный туннель. Дело в том, что вы наблюдаете серию отражений. Закрепленное зеркало отражает свет от лампы, который попадает к вам в глазок и на второе зеркало.
Второе зеркало, в свою очередь, отражает его обратно в первое и так далее. Туннель кажется изогнутым на больших расстояниях, потому что оба зеркала установлены не совсем параллельно! Когда вы наклоняете зеркало, увеличивается угол падения света, и туннель искривляется сильнее.
Линза Френеля Попросите кого-нибудь встать с одной стороны пластинки, а сами встаньте с другой стороны. Посмотрите через пластинку. Пластинка увеличивает!
Данная пластинка - линза Френеля - сложная составная линза, которая состоит из отдельных примыкающих друг к другу концентрических колец небольшой толщины, которые в сечении имеют форму призм специального профиля. Линза имеет малую толщину и вес. Линзы Френеля применяются в системах морских маяков, в проекционных телевизорах.
Зеркало-шпион Обычное зеркало - это стекло, покрытое тонким слоем металла. На данном зеркале этот слой совсем тонкий. Благодаря этому через зеркало проходит только часть света, а другая часть отражается.
Отражение будет сильнее с той стороны, которая лучше освещена. Такое зеркало часто называют зеркалом Гизелла, по имени американского детского психолога, который активно использовал его для наблюдения за детьми во время своих экспериментов. Его также можно встретить в стеклах машин и комнатах для допроса.
Бесконечный коридор Подойдите к зеркалу и вы увидите бесконечный коридор! Почему мы видим бесконечно много лампочек? На самом деле, лампочек не бесконечно много.
Они лишь располагаются по краю зеркала! Весь фокус возможен благодаря тому, что зеркало состоит из двух частей! Передняя часть - полупрозрачная.
За счет многократных отражений от передней и задней поверхности создаётся много мнимых образов от лампочек. При каждом прохождении через переднюю поверхность луч разделяется на отраженный и проходящий преломленный. Следовательно, чем "дальше" образ лампочки, тем меньше его яркость.
Полосатое зеркало Сядьте с одной стороны и попросите кого-нибудь сесть с другой. Сможете ли вы узнать себя? Зеркало состоит из полосок с промежутками между ними, из-за этого вы видите лицо, составленное из частей своего лица и лица человека, сидящего перед вами.
Цвет и свет Посмотрите на выемки. Кажется, они обе зеленые. Не так ли?
Поместите в выемки руки, и вы поймете, что это не так. Кажется, что обе выемки зеленого цвета. Если поместить в них руки, то отличие будет очевидно.
Одна из выемок окрашена в зеленый цвет и освещается белым светом. Белый свет - это "смесь" всех цветов радуги. Но от зеленого тела будут отражаться только зеленые лучи.
Другая выемка окрашена в белый цвет, который отражает лучи всех цветов. Но она освещается зеленым светом. Поэтому она будет выглядеть зеленой.
Поместив руки в выемки, Вы увидите, какая из них освещается зеленым светом, а какая белым. Плазменный шар Убедитесь, что ваши руки сухие. Прикоснитесь к стеклянному шару, чтобы "поймать" ползущий разряд.
Посмотрите, что происходит, если поместить одну руку в основу шара, а другую - на самую вершину. Плазменный шар был изобретен Николой Тесла, и представляет собой герметичный сосуд. Он заполнен смесью инертных газов при низком давлении.
Внутрь шара помещен электрод. На электрод подается высокое напряжение, которое вызывает пробой через газ и создает тлеющие разряды. Летящие электроны при столкновении с атомами возбуждают их.
При переходе атомов в невозбужденное состояние происходит излучение, которое мы видим. Примером трубок с тлеющим зарядом могут быть люминесцентные лампы. Изменяя напряжение, его частоту или давление газа, можно менять размеры и цвет разряда.
За счет высокой частоты и скин-эффекта ток проходит по коже без вреда для здоровья. Тепловизор Подойдите к экрану и вы увидите распределение температуры вашего тела. Перед вами тепловизор.
Тепловизор - устройство, позволяющее видеть нагретые тела. Тепловизор регистрирует инфракрасное тепловое излучение, преобразует его в электрический сигнал, который затем воспроизводится на мониторе. На мониторе отображается цветовое поле: определенной температуре соответствует определенный цвет.
Стоит отметить, что тепловизор калибруется относительно температуры центральной точки. Современные тепловизоры способны регистрировать изменение температуры менее 0. Как вы думаете, может ли тепловизор "видеть" сквозь прозрачное стекло?
Не может! Если перед тепловизором поместить стекло, на экране вы увидите распределение температуры в стекле. Стекло прозрачно для видимого диапазона, а тепловизор регистрирует инфракрасное излучение.
Первые тепловизоры были созданы в 1960-е годы. Тепловизорные системы широко применяются в тех отраслях промышленности, где необходимо контролировать распределение температуры. При строительстве домов тепловизор используется для определения участков наибольших тепловых потерь.
В военных целях с помощью тепловизоров можно определить, где находится противник. Маятник Фуко Это устройство наглядно демонстрирует вращение Земли. Его изобретение приписывают физику Фуко.
Вначале опыт был выполнен в узком кругу, но так заинтересовал Бонапарта позднее ставшего Наполеоном III, французским императором , что он предложил Фуко повторить его публично в грандиозном масштабе под куполом Пантеона в Париже. Уменьшенные копии маятника Фуко в наше время используют для релаксации. Раскачивающийся маятник рисует на песке концентрические узоры и своим плавным завораживающим движением снимает стресс и усталость.
Стробоскоп Наблюдайте за вращающимся диском, изменяя частоту вспышек. Стробоскоп - прибор, быстро воспроизводящий повторяющиеся яркие световые импульсы. Стробоскопический эффект - зрительная иллюзия, которая возникает при наблюдении движущегося предмета в течение отдельных периодически повторяющихся интервалов времени.
Данный эффект обусловлен инерцией зрения, то есть сохранением в сознании наблюдателя воспринятого зрительного образа на некоторое малое время после того, как вызвавшая образ картина исчезает. Если время, разделяющее дискретные акты наблюдения, меньше времени "гашения" зрительного образа, то образы, вызванные отдельными актами, сливаются. Мигающий свет вызывает повышенную утомляемость глаз.
Кроме того, возможно головокружение. Не рекомендуется смотреть на освещаемый стробоскопом вращающийся диск в течение долгого времени. Хаотический маятник При помощи ручки приведите маятник в движение.
Пронаблюдайте за его движением. Раскачайте маятник сильнее, посмотрите, как изменится его движение. Колебания данного маятника - наглядный пример хаотических процессов, которые нельзя или очень сложно и громоздко точно описать математически.
Для хаотических процессов характерно большое число параметров и начальных условий, от которых зависит динамика процесса. Поскольку данный маятник сам состоит из связанных маятников, то динамика всего процесса сложная и трудно описываемая математически. При этом мы можем с разной силой каждый раз раскручивать маятник, что делает невозможным предсказание развития дальнейшего процесса.
Несмотря на всю сложность процесса, необходимо помнить, что суммарная энергия системы сохраняется. Это значит, что постоянно происходит переход энергии из одной части хаотического маятника в другую. Есть еще, конечно, трение, которое уменьшает энергию системы со временем.
Вследствие трения колебания затухают. Рисующий маятник Рисующий маятник Отклоните маятники на произвольные небольшие углы. Посмотрите, какой рисунок при этом получился.
Это устройство состоит из двух маятников. Маятники качаются в одной плоскости. К одному из маятников прикреплен лист бумаги, а к другому - карандаш.
Расстояние между ними подобрано так, что при колебаниях карандаш касается бумаги. Длина нарисованной линии определяется разницей отклонений маятников от положений равновесия. Постепенно маятники будут терять энергию из-за трения, и амплитуда колебаний будет уменьшаться.
Эта установка позволяет создавать художественные гармоничные узоры. Все работы, созданные с помощью этого экспоната, являются уникальными. И это несмотря на то, что узоры создаются одними и теми же карандашами, на одной и той же установке.
Закон сохранения импульса Бросьте шарик в трубу. Когда шарик вылетит из трубы, изогнутая часть сместится влево. Изогнутая часть находится на колесиках и может свободно перемещаться.
До попадания в нее шарика, горизонтальные составляющие импульса шарика и трубы равны нулю. По закону сохранения импульса сумма импульсов тел замкнутой системы остается постоянной. Вначале изогнутая часть и шарик покоились, их суммарный импульс был равен нулю.
После броска шарик вылетает горизонтально, значит, его импульс направлен горизонтально. Изогнутая часть трубы тоже имеет горизонтальный импульс, направленный в противоположную сторону. Поэтому движение шарика вызывает смещение изогнутой части влево.
Сила формы Существует множество конструкций, разных по своей прочности. Прочность определяется не только качеством материала. Важным фактором является то, как устроен объект.
Данная конструкция - квадрат, по углам соединенный шарнирами. Легким толчком сбоку можно опрокинуть его. Значит, такая конструкция непрочная.
Возьмите теперь две дощечки, сделайте из них крест и вставьте его в квадрат. Попробуйте теперь расшатать квадрат! Не выйдет.
Конструкция сразу стала намного прочнее. Внутри квадрата появилось 4 треугольника. Треугольник - жесткая фигура.
Квадрат и фигуры с большим числом углов легче деформируются. Треугольник - нет. Поэтому в архитектуре и инженерии часто используют треугольные подпорки.
Останкинскую башню удерживают стальными тросами в равновесии. Башня, трос, земля - три стороны треугольника. Поэтому она не падает и не кренится даже при сильном ветре.
Вечный двигатель Вечный двигатель По идее древних инженеров, продумавших данный механизм, это колесо должно крутиться вечно. Грузики на шарнирах в правой части колеса перевешивают остальные и вращают колесо. В основе задумки лежит правило рычага.
Одна из его формулировок: для уравновешения груза на длинном рычаге требуется больше усилия, чем для уравновешения груза на коротком. Проверить утверждение просто. Попробуйте удержать сумку или другой предмет потяжелее на вытянутой руке.
Затем прижмите руку поближе к груди. Чувствуете разницу? На вытянутой руке это сложно, так как рука - это как бы рычаг.
Прижав руку к груди, мы утрачиваем рычаг, потому и удержать проще. Так думали и создатели двигателя рычаги на шарнирах - полная аналогия с нашими руками. Более длинные рычаги должны перевешивать.
При повороте будут подключаться новые шарниры-рычаги, откидываясь под действием своей тяжести. В идеале это должно продолжаться вечно. Причина, по которой данный двигатель работает не вечно, проста.
Да, рычаги справа - длиннее. Но слева грузиков-рычагов больше, чем справа. Их количество компенсирует действие длинных рычагов.
Именно поэтому колесо не будет вращаться вечно. Подпорка Подпорка Посмотрите на конструкцию. Выглядит прочной?
Тогда уберите боковую подпорку и дайте легкий толчок конструкции. Она сложится как карточный домик. Подпорки можно встретить везде в нашей жизни.
Это и трость она как бы подпирает пожилых людей, чтобы те не упали. Это и боковые опоры столбов электропередачи. Часто подпорки используют в строительстве для поддержания стен и других конструкций.
Подпорки делают из камня, дерева, металла. Строительные подпорки существуют давно, их использовали еще древние римляне. Некоторые подпорки выполняют не только опорные, но и декоративные функции.
В величественных соборах и храмах много прекрасных колонн-подпорок. Стальной мост Надавите сверху на стальную пластину. Пронаблюдайте за тем, как она прогнётся.
Посредством приложенной силы стальная пластина начнёт прогибаться. В результате этого прикреплённые к нижней стороне пластины кубики раздвинутся. Данный экспонат наглядно показывает процессы, происходящие в балочном мосту.
Простейший балочный мост представляет собой балку, находящуюся на двух неподвижных точках опоры. Чем больше расстояние между точками опоры, тем сильнее прогибается балка. Кубики показывают, как сильно деформируются различные части балки.
Одинаковые предметы Перед вами два дугообразных предмета. Когда мы говорим о размере предмета, мы сравниваем его с характерными размерами других предметов. Только тогда мы можем говорить о его величине.
Даже измерение длины в физическом эксперименте - это сопоставление с эталонным метром. Таким образом, если мы будем по отдельности рассматривать предметы данной модели, то мы не сможем определить, какой из них больше. Более того, если мы положим эти предметы так, чтобы длинная сторона одного соприкасалась с короткой стороной другого, нам покажется, что предметы различаются!
Для того, чтобы убедиться, что предметы одинаковы, наложите один на другой. Воображаемый кубик Данный экспонат демонстрирует работу человеческого воображения. На жёлтом фоне находятся восемь отдельных изображений в виде красных кругов с тремя белыми прямыми отрезками внутри.
Некоторые из них можно поворачивать вокруг оси, меняя ориентацию белых линий. В начальном положении нам кажется, что в каждом таком круге изображена вершина кубика. Из каждой вершины выходят по три стороны кубика.
Только стороны не соединены между собой. Человек устроен так, что он во всем стремится видеть правильные фигуры. Когда мы видим несимметричные объекты, они нам кажутся сложными и некрасивыми.
Поэтому в данном случае нашему воображению легко "нарисовать" недостающие прямые, которые объединят восемь независимых рисунков в один. Нам будет казаться, что мы видим симметричный кубик. Но стоит нам повернуть три круга из этого экспоната, как прямые отрезки из разных рисунков не будут лежать на одной прямой.
То есть нельзя будет просто соединить между собой отдельные фрагменты в единое целое. Это значит, что наше воображение не сможет увидеть красивого цельного объекта. Эффект домино Каждая костяшка домино изначально обладает некоторым количеством потенциальной энергии.
Чем больше костяшка, тем большей потенциальной энергией она обладает. В процессе падения костяшки домино потенциальная энергия переходит в кинетическую энергию. В процессе столкновения первая костяшка передаёт часть своей энергии второй костяшке.
Вследствие этого, изначально неподвижная вторая костяшка падает. И так далее. Размер и расстояние должны быть такими, что начальной энергии костяшки достаточно для падения соседней.
В музее представлены аппараты, способные имитировать зарождение торнадо и облаков. Посетители могут наблюдать, как вихревые движения формируются и преображаются перед их глазами. Механизмы, объясняющие принцип образования водоворота и морских волн. Особенностью музея является кинотеатр, внутри которого располагается сфера-киноэкран.
Как образуется торнадо? Как Леонардо да Винчи построил мост без единого гвоздя?
Что такое тепловизор? Умеют ли магниты летать, а маятники — рисовать?
Выходные с пользой
Рассказ о музее Экспериментаниум в Москве, где науку можно буквально потрогать руками. это уникальный музей науки в Москве, который был открыт в 2011 году. Теперь все гораздо интереснее, дети могут изучать законы науки и окружающий мир в интерактивной форме в музее «Экспериментаниум».
Музей Экспериментаниум в Москве
Музей «Экспериментаниум» в Москве готов взять на себя заботу о ваших торжествах. В Музее Занимательных Наук «Экспериментаниум» не чувствуешь себя как в гостях у великих художников прошлых веков, которые укоризненно смотрят на твоих скучающих детей и грозят пальцем, если ты подойдешь к какому-нибудь экспонату ближе дозволенного. «Экспериментаниум» — частный музей науки в Москве, открытый в 2011 году.
Музей «Экспериментаниум»
Расписание выставок, а также отзывы о музее «Экспериментаниум», Москва. Посетители московского музея занимательных наук «Экспериментаниум» изучают физику, химию и биологию собственными силами – нажимая, трогая, и приводя в действие различные механизмы. В музее «Экспериментаниум» представлена интерактивная экспозиция, которая охватывает основные области науки. адрес, цены, как пройти, режим работы, фотографии и отзывы посетителей. Многолетний партнер агентства «МОСГОРТУР» и самый занимательный научный музей Москвы Экспериментаниум переезжает в новое здание на Ленинградском.
Топ-15 самых неординарных музеев и развлечений Москвы
Спасибо за все, что вы делаете! Анна Левадная педиатр, кандидат медицинских наук, блогер Ребенку так нравятся занятия в кружке «Естественная наука», что он отказался от намерения стать футболистом и решил выучиться на химика. К тому же кружок очень помогает в его школьной жизни: многие темы, которые входят в курс окружающего мира, обсуждались на кружке и оказались гораздо интереснее, чем в школе. Мы всей семьей смотрим рекомендованные преподавателями документальные фильмы, а викторины на ваших программах по выходным — любимый досуг мамы и бабушки.
Александра Скрипченко декан факультета математики Высшей школы экономики Когда Петя был маленький, одной из наших главных радостей был проект «Умная Москва» с их великими научными шоу и наборами для опытов, спасавшими нас на даче в пандемию. Петя уже вырос, как и УМ, поменявшая название и размножившаяся по самым разным городам. Поздравляю ребят с первым юбилеем и желаю, чтобы дальше было еще лучше, несмотря ни на что.
Анна Красильщик детский писатель, журналист, блогер Старший сын вырос вместе с Sciencely. По выходным он ходил на научные программы, на Новый год вместо хороводов с классом проводил эксперименты и расследования, а на дачу ездил расставлять ловушки.
Вход будет доступен только совершеннолетним. Адрес: Новый Арбат, 15. Музей индустриальной культуры Посмотреть повседневные вещи прошлых поколений: игрушки родителей, швейные машинки своих бабушек или автомобили пап, уже ставшие историей, можно в музее индустриальной культуры. Вход свободный. Адрес: станция метро «Люблино», ул.
Заречье, 3А. Время работы: 11:00-19:00, ежедневно. Подземный музей «Бункер-42» У жителей Москвы есть отличная возможность побывать в единственном в мире музее, находящимся на глубине 65 метров, ознакомиться с образцами вооружения и средствами связи Вооруженных сил СССР, почувствовать себя связистом и даже запустить ядерную боеголовку. Стоимость: от 700 рублей. Посещение по предварительной записи: 8 495 500-05-54, 500-05-53 Адрес: 5-й Котельнический пер. Единственная в Москве фотокабинка «Шнельфото» Прикоснуться к частичке прошлого, причем функционирующего, можно на территории центра современного искусства «Винзавод». Заряд положительных эмоций от процесса и память в виде снимка останутся надолго.
Стоимость: 150 рублей. Время работы: круглосуточно, без праздников и выходных. Музей анимации в Москве Все началось с передвижной выставки, организованной сотрудниками студии «Союзмультфильм» еще в 2006 году. После каждой новой работы у художников-мультипликаторов оставалось все больше вещей, поэтому музей вынуждены были сделать стационарным. Уже в 2010 году он стал международным и начал сотрудничество со знаменитым детским каналом Nikelodeon. Адрес: ул. Необычный аттракцион переехал в Музей Москвы не просто так: в будущем организаторы планируют делать снимки на фоне экспонатов из музейной коллекции.
Стоимость фотосессии: 1800 рублей.
Механизмы, объясняющие принцип образования водоворота и морских волн. Особенностью музея является кинотеатр, внутри которого располагается сфера-киноэкран. В кинотеатре ежедневно проводятся показы научно-популярных фильмов. Также, музей был удостоен множества наград, в том числе и от Российской Академии наук «За верность науке.
Всё о физике света, об оптических иллюзиях и принципах работы органов зрения. Почувствуйте себя настоящим волшебником. Научные законы — это чуть-чуть всегда волшебство. Неожиданные вопросы, связанные с возникновением электрического тока. Водная комната. Здесь вы сможете изучить законы гидродинамики, познакомиться с механизмом образования водоворота и морских волн и многое другое. Здесь собраны развивающие головоломки и конструкторы, которые будут интересны как самым маленьким посетителям музея, так и взрослым. Тут вы сможете провести занимательные опыты и самостоятельно проверить, насколько облегчают нашу жизнь механические изобретения. Завораживающий мир астрофизики и космонавтики и увидите уникальные фотографии знаменитого телескопа Хаббл. Одним из основных принципов музея является интерактивность. Все экспонаты можно трогать, включать и участвовать в их работе.
Топ-15 самых неординарных музеев и развлечений Москвы
Многолетний партнер агентства «МОСГОРТУР» и самый занимательный научный музей Москвы Экспериментаниум переезжает в новое здание на Ленинградском. Музей занимательных наук «Экспериментаниум» это самый большой в Москве интерактивный музей науки. Музей занимательных наук «Экспериментаниум». Подержать в руках молнию, построить мост без единого гвоздя, увидеть, как образуется торнадо — всё это возможно в музее занимательных наук «Экспериментаниум». Посещение музея занимательных наук Экспериментаниум пришлось на апрель 2021 года. В музее занимательных наук "Экспериментаниум" ребят ждут более 250 интерактивных экспонатов, которые увлекательно рассказывают о механике, электричестве, магнетизме, акустике, демонстрируют оптические иллюзии, головоломки и многое другое.