Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. ПРОСТО ФРАКТАЛ. Фракталы в природе. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах.
Фрактальные закономерности в природе
Фракталы в природе | В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. |
Фракталы в природе презентация - 97 фото | Фракталы в природе. |
Фракталы в природе. | Смотрите 65 фотографии онлайн по теме фракталы в природе животные. |
Фрактал. 5 вопросов | чудо природы, с которым я предлагаю вам познакомиться. |
Фракталы. Чудеса природы. Поиски новых размерностей
Деревья – один из самых квинтэссенциальных фракталов в природе. А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений. Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».
Онлайн-курсы
- Содержание
- Физики нашли фракталы в лазерах
- Фрактальная природа
- Оглавление:
- Открытие первой фрактальной молекулы в природе — математическое чудо
Фракталы в природе. Мир вокруг нас. Ч.2
Ананасы растут по фрактальным законам, а кристаллы льда формируются фрактальными формами, такими же, как в дельтах рек и венах вашего тела. Часто говорят, что Мать-Природа - чертовски хороший дизайнер, и фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи. Фракталы сверхэффективны и позволяют растениям максимально эффективно использовать солнечный свет и сердечно-сосудистую систему. Фракталы прекрасны везде, где они появляются, поэтому есть множество примеров, которыми можно поделиться.
Такие структуры обладают самоподобием на различных масштабах и нередко встречаются в природе. Результаты опубликованы в журнале Physical Review A. Фракталы — это объекты, для которых характерно самоподобие, то есть точное или частичное совпадение фрагментов различных размеров. С точки зрения математики фракталы являются особенными фигурами, так как обладают дробной размерностью. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой.
Красота Природы Принцип фрактальности заложен в устройстве самой Природы, где из одного семени или из одной клетки путём многократного дробления создаётся новая структура, похожая, но не идентичная первоначальной. Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Природа сама создана из самоподобных фигур, просто мы этого не замечаем. Человек тоже весь построен на основе фракталов: кровеносные сосуды, лёгкие, бронхи имеют фрактальную природу. Посмотрите через увеличительное стекло на свою кожу, и вы увидите фракталы. Примеров фракталов можно привести массу, потому что, они окружают нас повсюду. Самыми интересными, простыми и популярными фрактальными свойствами в природе обладают — кроны деревьев, цветная капуста, облака, кровеносная система человека и животных, кристаллы, снежинки, горные хребты, берега рек, морозные узоры на стекле, многие растения и морские раковины… Галактика и Вселенные тоже фракталы и обладают свойством самоподобия.
Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств: Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких, как окружность, эллипс, график гладкой функции : если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину. Является самоподобной или приближённо самоподобной. Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.
Созерцание великого фрактального подобия
Анализ рынков[ Последнее время фракталы стали популярным инструментом у трейдеров для анализа состояния биржевых рынков. Физика и другие естественные науки[ ] В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов система кровеносных сосудов.
Фракталы — это нечто гораздо большее, чем математический курьёз. Они дают чрезвычайно компактный способ описания объектов и процессов. Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же фундаментальные элементы. Эти повторяющиеся закономерности определяют дробную, или фрактальную, размерность структуры. Фрактальная геометрия описывает природные формы изящнее и точнее, чем Еклидова геометрия. Рисунок 2. Книга Мальдеброта.
Фракталы — это прежде всего язык геометрии. Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур. Эти алгоритмы трансформируются в геометрические формы с помощью компьютера. Овладев языком фракталов, можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. Язык — это очень подходящая метафора для концепции, лежащей в основе фрактальной геометрии. Буквы не несут в себе никакого смыслового значения до тех пор, пока они не соединены в слова. Точно так же евклидова геометрия состоит лишь из нескольких элементов прямая, окружность и т. Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.
Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки, мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна. Оно может употребляться, когда рассматриваемая фигура обладающая какими-либо из перечисленных ниже свойств: - обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких, как окружность, эллипс, график гладкой функции : если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину; - является самоподобной или приближённо самоподобной; - обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке например, множество Кантора. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Самые большие группы это: геометрические фракталы алгебраические фракталы стохастические фракталы Однако существует и другая классификация: деление на рукотворные и природныефракталы. К рукотворным относятся те фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования — то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства. Именно с них и начиналась история фракталов. Этот тип фракталов — самый наглядный, потому что в нем сразу видна самоподобность. Получается он путем простых геометрических построений.
Более того, оказалось, что свойства логистического отображения универсальны, они характерны для динамики любой системы, поведение которой описывается гладкой функцией вблизи ее минимума. Развитие систем, описываемых логистическим отображением, очень напоминает античные натурфилософские и мифологические сценарии рождения мира. Сначала, при некотором значении коэффициента пропорциональности, в системе имеется только одно устойчивое положение равновесия - Единое еще не начало свой путь творения. При изменении коэффициента наступает момент, когда точка равновесия раздваивается, возникают два устойчивых состояния, в которых система пребывает по очереди, то в одном, то в другом, шаг за шагом во времени. Потом каждая из этих точек вновь раздваивается, и ситуация повторяется, сохраняя общий рисунок. Рано или поздно множество точек равновесия плотно заполняют все множество состояний, система переходит к хаосу, полностью разрушая свою структуру. Но затем, при дальнейшем росте параметра, из хаоса вновь возникает некоторое конечное число упорядоченных состояний, которые в конце концов "схлопываются" в единственное, и все начинается сначала.
В математической модели этого явления обнаружено множество подобных, скейлинговых элементов; эти свойства в науке носят названия универсальности Фейгенбаума. Здесь переменная z и константа с - комплексные числа, отображаемые точками на координатной плоскости, где и формируется пространственный образ множества. Работа алгоритма состоит в последовательном вычислении сумм, причем в формулу каждый раз подставляется значение z, полученное на предыдущем шаге. Ясно, что в этом случае алгоритм сводится к бесконечной формуле... Для любого значения числа с возможен один из двух результатов вычислений. Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм на практике берется не более 1000, что вполне достаточно. По мере роста числа шагов алгоритма выявляются новые и новые причудливые и стройные фрактальные структуры, неисчерпаемое богатство форм.
А самое удивительное в том, что многие из них напоминают различные природные объекты: инфузории и снежинки, морские коньки и галактики, раковины и облака... Вот оно, самоподобие! Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях: в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной. Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей. Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии. Например, прочитать генетическую информацию ДНК человека в принципе возможно, не расшифровывая последовательно год за годом три миллиарда буквенных обозначений, а установив ключ, лежащий в основе кода. Несмотря на внешнее разнообразие встречающихся в природе самоподобных структур, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается.
Сложные биологические структуры и сигналы могут быть численно охарактеризованы всего лишь одним параметром - показателем фрактальной размерности 1993г. Первая международная конференция "Фракталы в естественных науках". Как уже отмечалось, фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Хрестоматийный пример фрактала - крона дерева. Крона имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: ветви разных масштабов похожи между собой и на дерево в целом. Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления. Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега.
Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них. В 1992 году вышла книга М. Маковского "Лингвистическая генетика".
Стоппард «Розенкранц и Гильденстерн мертвы» сцена с представлением перед королём. В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому: Х. Борхес «В кругу развалин».
Фрактал. 5 вопросов
Такая симметрия приводит к тому, что в крупном масштабе форма выглядит однородной. Фрактальный белок нарушает правило симметрии. Разные цепочки белков вступают в различных точках фрактала в не полностью идентичные взаимодействия. Пока исследователям не ясно, несет ли такая фрактальная структура фермента цианобактерии какую-то пользу. Возможно, это всего лишь безобидная случайность эволюции. Недавно ученые из США открыли «нейтронные молекулы». Они смогли сделать так, чтобы нейтроны слиплись при помощи сильного взаимодействия в квантовую точку, состоящую из десятков тысяч атомных ядер.
Он представляет собой такой слегка деформированный цилиндр. Поднимем глаза выше. От ствола начинают выходить ветви. Каждая ветвь, в своем начале, имеет такую же структуру, как ствол — цилиндрическую, с точки зрения геометрии. Но структура всего дерева изменилась. Она стала намного более сложной. А теперь посмотрим на эти ветви. От них отходят более мелкие ветки. У своего основания они имеют ту же слегка деформированную цилиндрическую форму. Как тот же ствол.
А потом и от них отходят куда более мелкие ветки. И так далее. Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной. Это ли не фрактал? Кровообращение А вот кровеносная система человека. Она тоже имеет фрактальную структуру. Есть артерии и вены. По одним из них кровь подходит к сердцу вены , по другим поступает от него артерии. А далее, кровеносная система начинает напоминать то самое дерево, о котором мы говорили выше.
Сосуды, сохраняя свое строение, становятся все более тонкими и разветвленными. Они проникают в самые отдаленные участки нашего тела, доносят кислород и другие жизненно важные компоненты до каждой клетки. Это типичная фрактальная структура, которая воспроизводит саму себя все в более и более мелких масштабах. Стоки реки «Из далека долго течет река Волга». На географической карте это такая голубая извилистая линия. Ну, притоки крупные обозначены. Ока, Кама. А если мы уменьшим масштаб? Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы.
А у них есть и свои притоки, только более мелкие. А у тех — свои. Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла — все понятно. В любом учебнике можно прочитать. А если все измерять? Опять в пределе бесконечность получается. Наша Вселенная Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно.
Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота. Почему распределение материи подчиняется иррегулярным иерархическим законам.
По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный. Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика.
Теоретические оценки также указывают, что лазеры должны формировать и трехмерные фракталы, но обнаружить их предстоит в будущих исследованиях. Понравился материал? Добавьте Indicator. Ru в «Мои источники» Яндекс. Новостей и читайте нас чаще.
Молния фрактал
Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock.
Прекрасные фракталы в природе
Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике.
Фракталы – Красота Повтора
Фракталы в природе (53 фото). Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе.
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
Есть несколько отличных программ, с помощью которых вы сможете самостоятельно изучать особенности фрактальной вселенной. XaoS Open Source Project. Бесплатный, открытый, кроссплатформенный инструмент для масштабирования и изучения множества Мандельброта и десятков других фракталов. Еще одна кроссплатформенная в том числе с мобильной версией программа, основанная на Java с открытым исходным кодом, для обработки изображений. Она известна в основном своим сложным генератором пламенных фракталов. Mandelbulber Mandelbulb3D. Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др.
По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде. Посмотрите потрясающие примеры фракталов в природе.
Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба!
Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www. В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности.
Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www.
Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной.
Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем. Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении.
Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла. Аналогичные результаты были в исследованиях полимеров. Оказалось, что полимерные цепочки образуют сложные и запутанные структуры, которые определяют ключевые показатели полимеров.
И эти запутанные цепочки — тоже фракталы! Отдельное развитие получили алгоритмы для генерации фракталов. Часть из них придумали еще в XIX веке, другие появились, когда возникла теория фракталов. Вместе они стали основой раздела в искусстве, посвященного фрактальным узорам.
Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании. По ссылке вы найдете множество других программ. Заключение Исследование фракталов началось в 1975 году. То есть фактически мы только приступили к изучению этой огромной и неизведанной территории. Фракталы выходят за рамки чистой математики, искусства, схожего с музыкой и поэзией, или практического инструмента решения прикладных задач. Они могут дать гораздо больше: например, объяснить явления, находящиеся вне нашего понимания при текущем развитии науки.
Фракталы в природе (53 фото)
Случайность как художник: учёные обнаружили первую фрактальную молекулу | Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. |
ФРАКТАЛЫ КАК СПОСОБ ОПИСАНИЯ ОКРУЖАЮЩЕГО МИРА | Фото подборка встречающихся в природе или искусственно созданных фракталов. |
Фракталы: что это такое, какими они бывают и где они применяются / Skillbox Media | Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. |
Созерцание великого фрактального подобия | Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры. |
Прекрасные фракталы в природе: topbloger — LiveJournal | Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. |
Популярные фоны
- ФРАКТАЛ • Большая российская энциклопедия - электронная версия
- Физики нашли фракталы в лазерах
- Фракталы: что это такое и какие они бывают
- ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
Что такое фрактал? Фракталы в природе
Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. Самым известным примером фракталов в природе является снежинка.