NASA собирается испытать новый солнечный парус в космосе, Sierra Space решит проблему доставки гуманитарных грузов в места бедствий за 90 минут, а Starship вырастет до 150 метров. Получившаяся выборка пульсаров может помочь пролить свет на эволюцию звёзд и обеспечит нам навигацию в глубоком космосе.
Астрономы нашли в космосе планету-алмаз
С момента открытия первого пульсара в 1967 году всего было обнаружено менее трех тысяч этих космических тел, добавил он. Рентгеновский пульсар RX J0440.9+4431 впервые перешел в сверхкритический режим аккреции. Международная команда астрономов обнаружила белый карликовый пульсар, который считается одной из самых редких звезд в нашей галактике. Одна из основных задач FAST — поиск пульсаров, и за первый год работы телескоп обнаружил несколько десятков потенциальных кандидатов. Рентгеновский пульсар RX J0440.9+4431 впервые перешел в сверхкритический режим аккреции.
Нестандартный пульсар
Наблюдение «в оба глаза» позволило открыть новый пульсар СТВ 87, который, по их учению, является остатком некогда взорвавшейся сверхновой (SNR – SuperNova Remnant). Пульсары и сверхновые связаны, потому что сверхновая может породить пульсар. пишет Роскосмос. Журнал Все о космосе, включает в себя новости космоса, космонавтики, астрономии и технологий, научные и информативные статьи посвященные космосу, документальные. Первый пульсар, открытый Джоселин Белл, посылал в космос электромагнитные вспышки с частотой 1.33733 секунды.
Астрономы поймали необычно упорядоченный «радиосигнал пришельцев»
Первый подобный сигнал был случайно пойман в 2007 году во время наблюдений за нейтронными звездами-пульсарами на австралийской обсерватории Паркс. Российские ученые заинтересовались стабильностью пульсаций космического тела и предположили, что пульсар пригодится, чтобы сверять время. Найден самый яркий в радиодиапазоне внегалактический пульсар PSR J0523−7125. На эту роль подошли скопления миллисекундных пульсаров, быстро вращающихся нейтронных звезд, своего рода маяков в космосе.
Найдено неожиданное объяснение странному мерцанию далекого пульсара
Российские ученые заинтересовались стабильностью пульсаций космического тела и предположили, что пульсар пригодится, чтобы сверять время. Пульсар PSR J1023+0038 находится на расстоянии около 4500 световых лет от Земли и вращается по орбите вблизи другой звезды. Vela Pulsar Wind Nebula Takes Flight in New Image From NASA’s IXPE.
Пульсар в космосе
Нейтронный Пульсар. Чайная ложка нейтронной звезды. Нейтронная звезда. Космос нейтронная звезда.
Двойная нейтронная звезда. Взрыв нейтронной звезды. Чандра Хаббл Спитцер.
Магнетар Нибиру. Пульсар Vela. Элит денджерос пульсары.
Пульсар звук. Звезда-магнетар SGR 1806-20. Пульсар и Пульсарная Планета.
Столкновение планет в космосе. Столкновение нейтронных звезд. Радионаблюдение пульсаров экзопланеты.
Гравитация нейтронной звезды. Пульсар обои. Гамма излучение Пульсар.
PSR j0737-3039. Аккреционный диск черной дыры. Диск аккреции черной дыры.
Миллисекундный пульсар PSR J1719-1438 в созвездии Змеи в 4 тысячах световых лет от Земли астрономы обнаружили с помощью австралийского радиотелескопа Паркс. Период обращения пульсара составляет 5,7 миллисекунды, он в 1,4 раза массивнее Солнца, при этом его диаметр составляет всего лишь 20 километров. Исследования британского телескопа Ловелла и телескопа обсерватории Кека на Гавайях показали, что новый пульсар — часть двойной системы с периодом обращения около двух часов. Дистанция между пульсаром и его компаньоном составляет около 600 тыс. Мы заключаем, что вторая звезда планета в системе — скорее всего, остатки мертвого ядра звезды, которая восстановила пульсар, и, вероятно, состоит из гелия или более тяжелых элементов, например, углерода.
А сравнивая их между собой, проще найти переменные источники. Кроме того, это помогает сгладить последствия непредвиденных событий. В отличие от прошлых обзоров программа была модифицирована таким образом, чтобы команда проекта получила возможность прерываться и наблюдать интересные космические объекты, например, сверхновую SN2024ggi и миллисекундный пульсар SRGA J144459.
Система теперь видна примерно через 10 000 лет после взрыва. Он в конечном счете покинет нашу Галактику Млечный Путь. Один из возможных механизмов связан с нестабильностью в коллапсирующей звезде, образующей область плотной, медленно движущейся материи, которая существует достаточно долго, чтобы служить «гравитационным буксиром», ускоряя зарождающуюся нейтронную звезду.
Искусственные затмения и космический кефир от белорусов
История открытия Первым учёным предсказавшим возможность существования звезды с плотностью атомного ядра, был советский учёный Лев Давидович Ландау [4]. В 1934 году астрономы Вальтер Бааде и Фриц Цвикки опубликовали статью, в которой предположили существование нейтронных звёзд, возникающих после взрыва сверхновых. Ранние эксперименты по поиску нейтронных звёзд ограничивались попытками обнаружить тепловое рентгеновское излучение их поверхности [3]. В этом же году Виталий Лазаревич Гинзбург написал статью о том, что нейтронные звёзды могут иметь очень сильные магнитные поля и достаточно быстрое вращаться [4]. Радиотелескопы с чувствительностью, достаточной для обнаружения пульсаров, существовали с 1950-х годов. В 1964 году Николай Кардашев вплотную подошёл к открытию пульсара в Крабовидной туманности в теоретическом плане [4] , исследуя проблему происхождения магнитного поля Крабовидной туманности.
Для объяснения наблюдаемых особенностей ученый предложил простую и изящную модель, суть которой изложена ниже. В результате вспышки сверхновой звезды её внутренние части катастрофически сжимаются коллапсируют. Хотя размеры звезды уменьшаются в сотни тысяч раз, две важные величины должны сохранить почти неизменное значение. Это, во-первых, момент количества движения, и во-вторых, магнитный поток. При этом масса звезды за вычетом выброшенной во время взрыва части не меняется, а радиус уменьшается в сотни тысяч раз.
Следовательно, из условия сохранения момента количества движения следует, что экваториальная скорость сжимающейся звезды должна увеличиться во столько раз, во сколько раз уменьшился её радиус. На конечной стадии сжатия, когда образуется нейтронная звезда, её экваториальная скорость вращения может быть огромной, близкой к скорости света. В дальнейшем наблюдения Николая Кардышева подтвердились [5]. В 1964 году в Кавендишской лаборатории Кембриджского университета проводились наблюдения сцинтилляций потока радиоизлучения от космических источников , возникающих при прохождении этого излучения через неоднородности плазмы внешней короны Солнца и прилегающих к ней областей межпланетной среды. Энтони Хьюиш решил использовать метод сцинтилляции, чтобы иметь возможность выделить квазары среди других наблюдаемых космических источников радиоизлучения [6].
Для работы использовался Кембриджский радиотелескоп , сконструированный Хьюишем для изучения межпланетных мерцаний компактных радиоисточников [6]. Телескоп представлял собой прямоугольную антенную решётку, содержащую 2048 волновых диполей, с рабочей частотой 81,5 МГц и занимаемой площадью почти 2 га [3]. В 1967 году Энтони Хьюиш и аспирантка Джоселин Белл , собиравшая материал для своей диссертации, провели первые наблюдения мерцаний компактных радиоисточников, возникающих вследствие рассеяния радиоволн на неоднородностях солнечного ветра. Задача Д. Белл состояла в просмотре записей с самописцев телескопа, обработке данных наблюдения и выявлении сигналов от компактных источников.
Среди первых же мерцающих источников, обнаруженных Белл на этом инструменте спустя два месяца наблюдений, был сигнал, состоящий целиком из «мерцаний». Дальнейшие наблюдения показали, что источник излучает очень правильные последовательности узких импульсов с периодом 1,33730113 с [7]. Повторяющиеся сигналы не были похожи ни на сигналы от привычных небесных источников, ни на паразитные сигналы от наземных источников. Хьюиш счел сигналы помехой от земного источника, однако, поиски источника помех ни к чему не привели. Белл предположила, что найденный сигнал порождается точечным источником — звездой.
Однако период излучения импульсов этим источником был чуть более секунды, что не характерно для переменных звёзд и не может быть вызвано протекающими в них процессами [8]. Когда было обнаружено еще три подобных пульсирующих источника, стало очевидным, что они должны иметь естественное происхождение [3]. Импульсы с интервалом в 1,3373 секунды казались подозрительно искусственными. Более того, 1,3373 секунды - это слишком высокая частота пульсаций для такого большого объекта, как звезда. Источник не мог быть связан с Землей, потому что сохранял звёздное время если только это не были другие астрономы.
Мы рассмотрели и исключили отражённые сигналы от Луны, спутники на орбитах и аномальные эффекты, вызванные большим зданием с крышей из гофрированного металла чуть южнее телескопа. Затем Скотт и Коллинз наблюдали пульсации с помощью другого телескопа, что устранило инструментальные эффекты. Джон Пилкингтон измерил дисперсию сигнала, которая установила, что источник находится далеко за пределами Солнечной системы, но внутри галактики. Так были ли эти пульсации рукотворными, или созданы человеком из другой цивилизации? Но тогда они должны были бы подвергаться эффекту Доплера вследствие обращения планеты с «зелёными человечками» вокруг своей звезды, но измерения Хьюиша не обнаружили ничего, кроме подтверждения того факта, что Земля действительно обращается вокруг Солнца.
Джоселин Белл. В статье были представлены основные факты и их интерпретация, в частности предложена модель, отождествляющая пульсар с белым карликом или нейтронной звездой.
Российский орбитальный телескоп первым «увидел» рентгеновское излучение сверхновой 24 апреля 2024 года, 07:52 Евгений Статецкий Не прошло и двух месяцев с момента открытия российскими учеными нового чрезвычайно яркого пульсара, как последовал очередной решительный успех. В негласном соревновании, кто первый уловит рентгеновское излучение от только что вспыхнувшей сверхновой, победила команда телескопа ART-XC имени Павлинского космической обсерватории «Спектр-РГ». Ранее в апреле при рутинном обзоре неба в оптическом диапазоне была замечена яркая вспышка. Практически сразу ученым удалось установить, что происходит она из галактики NGC3621. Галактика эта расположена относительно недалеко, поэтому рассмотреть вспышку получилось довольно неплохо.
Электроны, втиснутые в ядро, реагируют с протонами, и в результате образуются нейтроны. С течением времени все вещество звезды становится гигантским клубком спрессованных нейтронов. Рождается нейтронная звезда. Когда возникли пульсары? Ученые полагают, что пульсары звезды существуют с незапамятных времен. Во всяком случае, они были задолго до того, как их открыли. Первые свидетельства их существования получены в ноябре 1967 года, когда несколько радиотелескопов в Англии нащупали в небе неведомый ранее источник излучения. В космосе есть много источников радиоволн. Например, молекулы воды и аммония, дрейфующие в межзвездном пространстве, излучают радиоволны. Эти волны улавливаются тарелочными антеннами радиотелескопов. Новый источник радиоволн, однако, не был похож на другие. Студентка — старшекурсница Джослин Белл изучала радиоволны, зарегистрированные самописцами радиотелескопа. Она обратила внимание на регулярно повторяющиеся вспышки электромагнитного излучения, которые поступали на антенну телескопа с интервалом в 1,33733 секунды. Когда новость об открытии Белл стала достоянием широкой публики, то некоторые ученые решили, что Белл приняла послание чужой цивилизации. Несколько месяцев спустя был зарегистрирован другой источник пульсирующего радиоизлучения. Ученые оставили мысль об их искусственном происхождении. Было решено, что эти источники — сверхплотные звезды. Их назвали пульсарами из — за пульсирующего характера излучения. Пульсары оказались теми самыми нейтронными звездами, за которыми ученые уже давно охотились.
Но при повторном измерении импульс вновь появился во всей своей красе, и настроение под куполом обсерватории поднялось. Он отнёсся к моему сообщению скептически и предложил изменить кое-что в аппаратуре, чтобы устранить возможные ошибки. Лишь на следующую ночь, наблюдая своими глазами за накоплением импульса, он перестал сомневаться. Дисней Схематический вид пульсара. Сфера в середине представляет собой нейтронную звезду, кривые указывают на силовые линии магнитного поля, а выступающие конусы представляют зоны излучения. В 1978 году советский астрофизик Михаил Сажин из Института астрономии им. Штернберга в Москве первым предложил использовать пульсары для прямой регистрации гравитационных волн наногерцового диапазона. Через год астроном Йельского университета Стивен Детвейлер также описал метод поиска гравитационных волн путем измерения времени прибытия излучения пульсаров [1]. В 1974 году был открыт пульсар, входящий в двойную систему. Его изучение дало подтверждение общей теории относительности , и возможность излучения гравитационных волн. Решающую роль в изучении пульсаров сыграл 64-метровый радиотелескоп в Парксе Новый Южный Уэльс , Австралия. Почти половина известных пульсаров в Млечном Пути была открыта посредством этого телескопа. Несмотря на устаревшую технологию, телескоп продолжает фиксировать пульсары. Номенклатура Вначале пульсары было принято обозначать двумя буквами, например СР: С — сокращенное название обсерватории Cambridge — Кембридж и Р — сокращение слова pulsar пульсар , за которыми следовало четырехзначное число, обозначающее прямое восхождение в часах и минутах, например 1919 19 часов, 19 минут. С началом более обширных наблюдений оказалось, что эта система не в состоянии дать однозначные обозначения для многих объектов. По этой причине, а также вследствие стремления к более однородной и чёткой номенклатуре, для всех пульсаров было принято обозначение PSR сокращение от pulsar. Когда необходимо дополнительное разрешение, склонение дается с точностью десятых долей градуса добавлением ещё одной цифры [3]. Первоначально системой координат , в которой указывалось прямое восхождение и склонение пульсара, были координаты 1950 года , позднее стали использовать координаты 2000 года , хотя для некоторых знаменитых пульсаров обычно используются прежние обозначения. Возникновение пульсаров Заключительная фаза эволюции звезды, наступающая после того, как будут в значительной степени исчерпаны ресурсы её ядерного водородного горючего, существенно определяется её массой. Внутренние слои массивных звёзд под влиянием силы тяготения, которой уже не может противодействовать газовое давление, обрушиваются к центру звезды. Это явление наблюдается как вспышка сверхновой [5]. След, остающийся в межзвёздной среде от этой гигантской космической катастрофы, называется остатком вспышки сверхновой ОВС. Современные всеволновые методы исследований показали, что комплекс явлений ОВС охватывает область межзвёздной среды размером порядка десятков парсеков и наблюдается в течение десятков и сотен тысяч лет. Масса выброшенного при взрыве сверхновой вещества достигает нескольких масс Солнца , скорость его разлета 10-20 тыс. При взрыве сверхновой ядро массивной звезды сжимается, образуя ядро нейтронной звезды. При этом высвобождается огромное количество нейтрино , что приводит к распространяющейся наружу ударной волне, которая — если она будет достаточно сильной — выбросит внешние слои в космос. Внутренние слои звёзды сжимаются в результате свободного падения, а объём звезды уменьшится в 1015 раз, её средняя плотность увеличиватся во столько же раз, при том, что линейные размеры сжимаются до порядка 10 км. Достигнув подобных размеров и плотности, звезда стабилизируется, её дальнейшее сжатие практически прекращается, но условия равновесия образовавшейся конфигурации качественно отличаются от равновесия обычной звезды. Физические свойства такого сверхплотного вещества, давление которого уравновешивает силу гравитационного притяжения сколлапсировавшей звезды, во многом сходны со свойствами вещества атомного ядра , представляющего собой смесь сильно взаимодействующих протонов и нейтронов. Но в отличие от ядерного вещества, для сколлапсировавшей звезды, по причине её большой массы, фундаментальное значение имеет гравитационное взаимодействие её элементов, между тем как для ядер гравитация несущественна. Из-за этого свойства звезду, образовавшуюся в результате гравитационного коллапса, теоретики ещё в 1930-х годах назвали «нейтронной» [5]. Сравнительно недавно выделен новый компонент излучения: инфракрасное свечение пыли, нагревшейся от контакта с горячим газом остатка сверхновой до температуры 30-50 К [13]. В нашей Галактике пока открыто шесть сравнительно молодых остатков сверхновых, вспыхнувших в последнем тысячелетии. Наиболее известны Крабовидная туманность и Кассиопея А [13]. Известно 4 типа пульсаров, классифицируемых по типу излучений: рентгеновские; гамма-пульсары; магнетары. Рентгеновские пульсары. Это тип нейтронных звёзд , испускающих рентгеновское излучение ; как правило, они представляют собой аккрецирующие нейтронные звезды с сильным магнитным полем в тесных двойных системах. Такой источник космического излучения характеризуется переменными импульсами [14].
«Чандра» показала 22 года жизни пульсара в Крабовидной туманности
Так в 2003 году период вращения составлял 1,43 сек, а спустя 11 лет уже 1,13 сек. Если бы тоже самое случилось с Землей, то наш день сократился бы на 5 часов. До сих пор астрофизики не могут объяснить причину светимости пульсаров. Существует гипотеза, что нейтронные звезды могут обладать сильным многополюсным магнитным полем.
С тех пор, как начался этот процесс накопления вещества, пульсар начал переключаться между двумя режимами. В «высоком» режиме он излучает рентгеновские лучи, ультрафиолетовое и видимое излучение, в то время как в «низком» режиме он менее яркий на этих частотах и излучает больше радиоволн.
Пульсар может находиться в каждом режиме несколько секунд или минут, а затем переключаться. Эти переключения озадачивали астрономов. Kornmesser «Наша работа была направлена на понимание поведения этого пульсара.
Их периоды вращения колеблются от более 10 секунд до нескольких миллисекунд. С момента их открытия в 1967 году в ходе различных исследований было обнаружено более 2600 пульсаров. Расположенный на расстоянии около 6500 световых лет в созвездии Кассиопея, этот пульсар вращается 8,7 раза в секунду, производя импульс гамма-излучения при каждом вращении. Пульсары очень редко получают достаточный толчок для того, чтобы мы это увидели», — сказал д-р Фрэнк Шинзель, астроном Национальной радиоастрономической обсерватории NRAO.
От обзора всей небесной сферы ART-XC перешёл к выполнению собственной программы наблюдений, одной из основных задач которой стал глубокий обзор нашей Галактики — Млечного пути. Помимо этого проводились наблюдения наиболее интересных областей неба и источников, в том числе, впервые обнаруженных. Обзор Галактики был завершен осенью 2023 года, после чего ART-XC вернулся к решению основной задачи проекта и возобновил программу обзора всего неба. Пятый полный осмотр небесной сферы проводился с 19 октября 2023 по 24 апреля 2024 г. В отличие от предшествующих обзоров, сейчас программа работы была модифицирована таким образом, чтобы у команды проекта была возможность прерываться и наблюдать интересные объекты, которые неожиданно появляются на небесной сфере. Такими объектами стали, например, сверхновая SN2024ggi, вспыхнувшая две недели назад 11 апреля , или миллисекундный пульсар SRGA J144459. Алексей Ткаченко, который отвечает за эту работу, стал просто виртуозом своего дела.
Пульсар в космосе
Все о космосе и НЛО - Главная страница | Самые интересные новости из мира космоса. Земля из космоса. МКС Онлайн. Телескоп онлайн. Инопланетная жизнь. Американцы на Луне. Сигналы из космоса. |
Искусственные затмения и космический кефир от белорусов | Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные. |
Новости науки и техники "Космос" | астрономические объекты, испускающие мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне. |
Обнаружен самый яркий пульсар во Вселенной | Техкульт | Главная» Новости» Сигналы из космоса последние новости. |
Пульсар в космосе
Роскосмос опубликовал «музыку звезд» | Первый пульсар, открытый Джоселин Белл, посылал в космос электромагнитные вспышки с частотой 1.33733 секунды. |
Астрономы обнаружили летящий в космосе пульсар | Роскосмос готовит два космических запуска: на Байконуре завершили сборку ракеты-носителя "Союз-2.1б", а на Восточном подготовили стартовый комплекс для испытаний "Ангары-А5". |
Планеты возле пульсаров: странные миры у мертвых звезд - | Первый подобный сигнал был случайно пойман в 2007 году во время наблюдений за нейтронными звездами-пульсарами на австралийской обсерватории Паркс. |