Новости авария на аэс три майл айленд

Авария на АЭС «Три-Майл Айленд» произошла через несколько дней после выхода в прокат кинофильма «Китайский синдром», сюжет которого построен вокруг расследования проблем с надёжностью атомной электростанции. В 1979 году произошла крупнейшая авария в истории атомной энергетики США – авария на АЭС Три-Майл-Айленд. Авария на Три-Майл-Айленде произошла в США и получила «5 уровень». это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США. Энергоблок №1 АЭС Три-Майл-Айленд во время аварии не пострадал и продолжает свою работу и сейчас.

28 марта 32 года назад произошла авария на АЭС Три-Майл-Айленд

Уроки аварии реактора pwr на АЭС три-майл-айленд в США в 1979 г. 28 марта 1979 года в США на АЭС «Три-Майл-Айленд» в штате Пенсильвания произошло повреждение активной зоны реактора. Однако, авария на Три-Майл-Айленд вызвала, в первую очередь, широкий информационный резонанс и, получив пятый уровень опасности по шкале ИНЕС, ускорила развитие антиядерной кампании в США, которая привела к застою в атомной энергетике страны на десятилетия.

Ядерная авария на Три-Майл-Айленде

Диссидент во главе государства Картер — нетипичный человек для Белого дома. По сути, он правозащитник в кресле президента. Слишком левый и либеральный для своей эпохи деятель, избрание которого стало возможным только из-за кризиса доверия к власти на фоне разоблачения Никсона и «Уотергейта». Картер был близок к простому народу, много занимался проблемами бедных и меньшинств в те годы болезненно актуальных , верил в возможности мира во всем мире, отказался от поддержки «своих сукиных сынов» в Латинской Америке именно благодаря этому в Никарагуа пал диктатор Сомоса и к власти пришел Ортега и от военных вторжений туда же. Джимми Картер во время визита на АЭС Три-Майл-Айленд Впоследствии он активно занимался международной миротворческой деятельностью вручение ему Нобелевской премии мира отнюдь не постыдно, в отличие от случая Обамы , критиковал состояние американской демократии и по сей день обладает большим авторитетом в Демократической партии, несмотря на крайне неудачное президентство и разгромное поражение на выборах от Рейгана. Да, экономика страны сбоила. А в остальном прогрессивному Картеру просто не повезло: на его каденцию пришлась цепь событий, по совокупности ввергнувших Америку в депрессию. В этом ряду и ввод советских войск в Афганистан что резко обострило отношения с Москвой, хотя сам Картер хотел обратного , и захват посольства в Иране, и авария на Три-Майл-Айленд. В конце концов американцам просто надоело жить «по-картеровски», эдак по-диссидентски — каяться за ошибки Родины и отказываться от своей исключительности. Им захотелось вновь побеждать — и Картеру указали на дверь. Кстати, он был одним из немногих американских политиков, кто, вникнув в проблему, сдержанно-нейтрально отнесся к воссоединению России и Крыма.

Отдельные «ястребы» посчитали это примером чуть ли не национального предательства, но большинство восприняло как старческое чудачество. Сейчас Картеру 94 года, то есть он самый долгоживущий из всех американских президентов, хотя побывал на АЭС вскоре после опасной аварии.

Однако по мере падения давления в емкости и в первом контуре образовывались «пустоты» фактически водяной пар. Эти пустоты генерировали сложные движения воды, которые парадоксальным образом заполнили компенсатор давления водой, причем компенсатор давления в это время был холоднее, чем бак из-за: выпуск пара из первичных клапанов, который охладил компенсатор давления за счет испарения содержащейся воды; остаточного тепла сердца, которое повысило температуру воды в резервуаре.

Из-за этой разницы температур высокое расположение компенсатора давления не препятствовало его заполнению водой проходя под вакуумом, как в «поилке для птиц». В то же время в другом месте появилась другая проблема: система аварийного водяного охлаждения парогенераторов прошла испытания за 42 часа до аварии. Во время этого теста клапан был закрыт, и его пришлось снова открыть в конце теста. Но на этот раз из-за человеческой или административной халатности клапан не открыли, что помешало работе системы аварийного охлаждения.

С этого момента первичный контур опорожнялся непосредственно в защитную оболочку третий и последний барьер сдерживания радиоактивности. В следующие часы В диспетчерской операторы утонули в потоке сигналов тревоги и не могли точно понять, что происходит очень сложная ситуация, стресс, давление, слишком много людей в диспетчерской и т.

Давление наоборот, стало резко падать. Падение давления до 12 МПа должно было привести к закрытию клапана барботёра, но этого не случилось.

При этом пульт оператора показывал, что клапан закрыт. На деле оказалось, что сигнал на пульте управления означает не закрытие клапана барботёра, а отключение его от электричества. Так что, теплоотвод уже спустя минуту полностью прекратился. Но уровнемер давал некорректные показания и падение давления в реакторе продолжалось из-за некомпенсированной течи.

Это привело давление к точке насыщения, когда из воды стали появляться пузырьки пара, еще больше увеличивая неверные показания уровнемера. Тогда операторы стали сливать воду также через дренажную линию первого контура реактора. Операторы поняли, что вода в парогенератор не поступает и открыли эти задвижки. Отсутствие воды в парогенераторе в течение восьми минут не могло сильно навредить реактору, но отвлекло персонал, который решил, что проблема на реакторе решена.

Хотя датчик температуры показывал превышение 100 градусов, операторы посчитали это остаточным разогревом от сброса пара в начале инцидента, что считалось нормой. Через 14 минут операторы обратили внимание на срабатывание предохранителей в барботере из-за роста давления. Это означало поступление пара в помещение гермооболочки реактора. Насосы были выключены, так как не было понимания о большом количестве воды в баке.

Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура. Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками! Первые 12 секунд после аварии.

Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду она скапливалась в специальной емкости — барботере. Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа — за это время барботер переполнился, из-за критического уровня давления лопнули расположенные на нем предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой.

Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку. Первая грубая ошибка операторов. Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур.

Операторы, наконец, обнаружили, что аварийные насосы второго контура не работают, но их запуск не особо исправил ситуацию. Вплоть до 6. В результате активная зона реактора, лишенная охлаждения, начала в прямом смысле слова плавиться, хотя цепная ядерные реакции уже были остановлены.

Перегрев был обусловлен распадом высокоактивных продуктов деления урана именно из-за этого ядерный реактор не может быть остановлен сразу, в одно мгновение. Лишь в 6. Однако насосы аварийного охлаждения, остановленные двумя часами ранее, по разным причинам удалось запустить лишь в 7.

Казалось бы, авария предотвращена, и теперь можно спокойно заниматься полной остановкой реактора. Однако уже днем 28 марта выяснилось, что в корпусе реактора образовался огромный водородный пузырь, который мог в любую секунду вспыхнуть и взорваться — такой взрыв на АЭС привел бы к страшной катастрофе.

Авария на АЭС Три-Майл-Айленд

  • УРОКИ АВАРИИ РЕАКТОРА PWR НА АЭС ТРИ-МАЙЛ-АЙЛЕНД В США В 1979 г.
  • Авария на Три-Майл-Айленде
  • Шкала ядерных событий INES : оценка аварий на АЭС
  • ПОДПИСКА. Мы обещаем присылать письма только о самом важном
  • Катастрофа на Три-Майл-Айле
  • Ядерная авария на Три-Майл-Айленде -

26 апреля — День памяти жертв радиационных аварий и катастроф

5. Авария на АЭС «Три-Майл-Айленд» в США случилась в 1979 году. Крупнейшая авария в истории атомной энергетики США произошла 28 марта 1979 года на втором энергоблоке АЭС Три-Майл-Айленд по причине своевременно не обнаруженной утечки теплоносителя первого. А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные. А три реактора, оставшиеся на Чернобыльской АЭС, были постепенно выведены из эксплуатации.

«Американскому Чернобылю» приписывали катастрофу для Китая

А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные. После аварии на АЭС Три-Майл-Айленд в США было принято решение больше не строить атомных электростанций, что привело к застою в американской атомной энергетике. Авария на Три-Майл-Айленд произошла на АЭС 5-го уровня. Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав. Но авария на Три-Майл-Айленд фактически остановила расширение отрасли, что заставило американцев обратить внимание на развитие альтернативных источников и изменить свою международную энергетическую политику. Авария на АЭС Три Майл Айленд к несчастью подтвердила правильность технических решений в области безопасности.

Топ-5 крупнейших радиационных катастроф и аварий, которые потрясли мир

Во-первых, задвижки на напоре аварийных питательных насосов оказались ошибочно закрыты и охлаждение через парогенераторы было временно потеряно ошибочное состояние задвижек было определено уже через 8 минут и не оказало значительного влияния на последствия аварии [14]. Фактически это означало, что на станции имелась нераспознанная персоналом авария, связанная с «малой» течью теплоносителя в противовес «большой» течи, возникающей при разрыве трубопроводов максимального диаметра [16]. Действуя по стандартной при аварийной остановке реактора процедуре [17] , операторы предприняли шаги для компенсации ожидаемого уменьшения объёма теплоносителя первого контура [2] [примечание 4] : подача воды подпитка в реакторную установку была увеличена, а отбор её на очистку продувка уменьшен. Образовавшийся в активной зоне пар вытеснял воду в компенсатор давления, создавая иллюзию полного заполнения жидкостью первого контура [20]. Однако, с точки зрения операторов, состояние реакторной установки казалось относительно стабильным, хотя и необычным [22] [23].

Это обманчивое впечатление сохранялось до тех пор, пока работа главных циркуляционных насосов не стала ухудшаться из-за перекачивания неоднородной пароводяной среды, плотность которой снижалась в результате продолжавшегося кипения теплоносителя. После остановки циркуляции в первом контуре произошло разделение жидкой и паровой сред, пар занял верхние участки контура, а граница кипения теплоносителя в реакторе установилась примерно на 1 метр выше верхней плоскости активной зоны. Реакция операторов [ править править код ] Сложившаяся ситуация с течью теплоносителя из верхнего парового объёма компенсатора давления не была учтена при проектировании АЭС, и подготовка персонала станции для управления реакторной установкой в таких условиях была недостаточной [19] [25]. Операторы столкнулись с симптомами, которых не понимали: сочетание снижавшегося давления и растущего уровня в компенсаторе давления не было описано в эксплуатационной документации и не рассматривалось при их тренировке.

С другой стороны, по мнению комиссии, проводившей расследование, правильное понимание базовой информации, предоставляемой приборами, позволило бы операторам исправить положение [26]. Основной вклад в развитие аварийной ситуации внесли как неспособность операторов вовремя распознать утечку через неисправный клапан, так и их вмешательство в автоматическую работу системы аварийного охлаждения. Устранение любого из этих факторов превратило бы аварию в сравнительно малозначительный инцидент. С точки зрения безопасности, отключение насосов аварийного охлаждения является более значимой ошибкой, так как всегда можно представить себе случай возникновения протечки которую невозможно устранить закрытием арматуры [26].

Анализ действий персонала показал неудовлетворительное понимание им основных принципов работы реакторов типа PWR , одним из которых является поддержание достаточно высокого давления в установке для предотвращения вскипания теплоносителя [27]. Обучение операторов было нацелено прежде всего на их работу при нормальной эксплуатации, поэтому, наблюдая конфликтующие симптомы, персонал предпочёл отдать приоритет регулированию уровня в компенсаторе давления [28] , а не обеспечению непрерывной работы системы аварийного охлаждения, способной поддерживать высокое давление в контуре при протечках [29]. Операторы не восприняли всерьёз автоматическое включение системы безопасности ещё и потому, что на Три-Майл-Айленд эта система за последний год срабатывала четыре раза по причинам, никак не связанным с потерей теплоносителя [30]. Недостатки щита управления и длительная работа станции с неустранёнными дефектами не позволили персоналу быстро определить состояние электромагнитного клапана компенсатора давления.

Указателя фактического положения запорного органа клапана предусмотрено не было, а лампа на панели управления сигнализировала лишь о наличии питания на его приводе, соответственно, сигнал указывал на то, что клапан закрыт [16]. Косвенные признаки, такие как повышенная температура в трубопроводе после клапана и состояние бака-барботера также не были восприняты однозначно. Срабатывание предохранительных устройств бака-барботера также не осталось незамеченным, но персонал никак не связал это событие с продолжительной утечкой из первого контура [33] , приписав его скачку давления при кратковременном срабатывании электромагнитного клапана в самом начале аварии [34]. В эксплуатационной документации был определён перечень признаков течи из первого контура [35] , одни из них действительно имели место, например падение давления в реакторной установке, повышение температуры под гермооболочкой и наличие воды на её нижнем уровне.

Однако операторов привело в замешательство отсутствие симптомов, которые они считали ключевыми: не было снижения уровня в компенсаторе давления он, наоборот, возрастал , также не было сигнализации о повышенном уровне радиации в атмосфере гермооболочки возможно, порог срабатывания датчика был некорректно установлен. Таким образом, даже зная о наличии воды в помещениях гермооболочки, персонал не смог адекватно определить источник её происхождения [36] [37]. Разрушение активной зоны [ править править код ] Конечное состояние активной зоны реактора: 1 — вход 2-й петли B; 2 — вход 1-й петли А; 3 — каверна; 4 — верхний слой обломков топливных сборок; 5 — корка вокруг центра активной зоны; 6 — затвердевший расплав; 7 — нижний слой обломков топливных сборок; 8 — вероятный объём расплава, который стёк вниз; 9 — разрушенные гильзы внутриреакторного контроля; 10 — отверстие в выгородке активной зоны; 11 — слой затвердевшего расплава в полостях выгородки; 12 — повреждения плиты блока защитных труб Прибывший в 6 часов утра персонал следующей смены, благодаря свежему взгляду, смог наконец определить состояние электромагнитного клапана компенсатора давления [38] [25]. Установив тем самым факт продолжительной потери теплоносителя, операторы должны были приступить к ликвидации аварии, запустив систему аварийного охлаждения, однако по неустановленным причинам это действие не было незамедлительно выполнено [22] [40] [41].

Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода. Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44]. Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны.

Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43]. На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48].

Возобновление охлаждения реактора [ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях. Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок.

Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии.

С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно.

Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного.

Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65].

Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось. По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67]. За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды.

А также новости, исторические факты и прогнозы футурологов, медицина и образование, гендерные отношения. Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года 16:01 28 марта 2017 Далекий 1979-й был славным годом. В этом году случилось несколько революций, советские хоккеисты взяли «Кубок Вызова» у команды НХЛ, в Сахаре целых полчаса шел снег, а на Джимми Картера напал кролик. И за три недели до памятной атаки кролика произошла крупнейшая в США а на тот момент — и в мире авария на атомной станции. Эта катастрофа поставила крест на американской ядреной энергетике, и показала, что с атомом, хоть и мирным, шутки плохи. Дата: 28 марта 1979 года, примерно 4 часа утра. Причины Можно выделить две причины катастрофы на АЭС Three Mile Island: «Спусковым механизмом» аварии стал вышедший из строя питательный насос второго контура охлаждения реактора. Аварийное развитие событий было обусловлено просто невероятным сочетанием целого ряда технических неполадок заклинивание клапана, неправильные показания приборов, отказ нескольких насосов , грубых нарушений правил ремонта и эксплуатации, и пресловутого «человеческого фактора». Люди, впервые столкнувшиеся с такой аварией, просто-напросто растерялись, у них не было ни соответствующей подготовки к подобного рода нештатным ситуациям в то время вообще никто не был готов , ни понимания того, что происходит. Усугубили ситуацию безбожно вравшие приборы и большое количество проблем технического плана. Поэтому и получилось то, что получилось — первая серьезная авария на АЭС, которая до трагических событий на Чернобыльской АЭС оставалась крупнейшей в мире. Хроника событий Авария на втором энергоблоке АЭС началась примерно в четыре утра 28 марта, и борьба за реактор велась до самого вечера, а полностью устранить опасность удалось лишь ко 2 апреля. Хроника событий этой аварии обширна, однако имеет смысл остановиться только на ее ключевых моментах. Примерно 4. Остановка питательного насоса второго контура, в результате чего циркуляция воды прекратилась, а реактор начал перегреваться. Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура. Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками!

За последние 40 лет не было сделано ни одного заказа на строительство новых реакторов. В ближайшее десятилетие ожидается начало массового вывода старых реакторов из эксплуатации. Авария на АЭС Три-Майл Айленд не только показала насколько опасна атомная энергетика, но и вселила пессимизм в частных инвесторов, негативное отношение которых так не позволило начаться "ядерному ренессансу" в США. Срок окупаемости в среднем составит 15-20 лет. Для сравнения, недавно были обнародованы экономические показатели для запланированных на Кольском полуострове ветропарков.

Смертельный исход исключен. Чаще всего такие аварии угрожают персоналу АЭС. Например, когда в 1989 году был пожар в Испании на атомной станции «Вандельос» или когда произошла авария на Хмельницкой АЭС в 1996 году, радиация распространилась только в помещениях. Когда внештатные ситуации на АЭС оценивают от 4 до 8 баллов, их называют авариями. Они характеризуются взрывами, пожарами, выбросом радиоактивных веществ в окружающую среду, а также множественными жертвами не только среди сотрудников атомного объекта, но и среди населения. Необходима массовая эвакуация. Читайте также: Чернобыльская катастрофа: что происходит в зоне отчуждения сегодня 4 балла: «Токаймура», Япония Авария случилась в 1999 году на небольшом радиохимическом заводе, где занимались очисткой урана, чтобы в дальнейшем изготавливать ядерное топливо. За три года до трагедии руководство завода самовольно изменило процедуру очистки урана с автоматической на ручную. Сотрудники вручную смешивали закись-окись урана и азотную кислоту в обычных ведрах из нержавеющей стали. В этот день работникам была поставлена задача очистить уран высокой степени обогащения. Но ранее они работали только с обычным ураном и смешали его в привычном количестве. В итоге оказалось, что урана они взяли в 7 раз больше, чем было разрешено в инструкциях. Началось настолько интенсивное излучение, что сработал сигнал тревоги. Из домов, которые находились в радиусе 350 метров от завода, было эвакуировано более 150 человек. Даже спустя 11 часов в близлежащих районах был зафиксирован показатель излучения, который в 1000 раз превышал допустимый. И только через двое суток людям разрешили вернуться в свои дома. Трое рабочих, которые очищали уран в день аварии, получили высокие дозы облучения и умерли спустя несколько месяцев. Всего же в городе по официальным данным от облучения пострадало 667 человек. К счастью, дозы не были смертельно опасными. Тогда расплавилась часть ядерного топлива и была повреждена активная зона ядерного реактора.

Похожие новости:

Оцените статью
Добавить комментарий