Где хранится информация о структуре белка?и где осуществляется его. Информация о первичной структуре белка содержится в его генетической. Проблема, решению которой посвящены многотомные монографии и работа целых институтов, кому-то может показаться несложной — как предсказать трехмерную структуру любого белка по его аминокислотной последовательности, где эта структура однозначно закодирована.
Биосинтез белка. Генетический код и его свойства
Первичная структура белка. Каждая белковая молекула в живом организме характеризуется определенной последовательностью аминокислот, которая задается последовательностью нуклеотидов в структуре гена, кодирующего данный белок. Информация о таких структурах хранится в банке данных Protein Data Bank, который уже сейчас содержит почти 90 тыс. моделей биологических макромолекул, включая не только сами белки, но и ДНК, РНК, а также их комплексы. 2. В какой структуре хранится информация о первичной структуре белка?
Где хранится информация о структуре белка
Информация о первичной структуре белка содержится в его генетической. Информация о первичной структуре белка хранится в базах данных, доступных для исследователей и ученых. Информация о структуре белка хранится в базах данных, таких как Protein Data Bank (PDB) и RCSB PDB. Следовательно, одна молекула ДНК хранит информацию о структуре многих белков. Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез.
Где хранится генетическая информация в клетке?
В 1994 году Джон Моулт вместе с коллегами дал старт масштабному эксперименту CASP, который проводится каждые два года. Участникам этого эксперимента раздаются аминокислотные последовательности около сотни белков, структура которых неизвестна. Одни группы ученых вычисляют структуру для каждой последовательности, в то время как другие группы определяют ее экспериментально. Затем организаторы эксперимента сравнивают расчетные прогнозы с результатами лабораторных исследований с помощью показателя измерения точности оценки GDT , который варьируется от нуля до ста.
По словам Моулта, считается, что при оценке выше 90 GDT расчетные прогнозы практически соответствуют экспериментальным. Уже в 1994 году ученые добились того, что предсказанные ими структуры небольших простых белков могли соответствовать экспериментальным результатам. Однако для более крупных и сложных белков результаты вычислений составили около 20 GDT — а это «полный провал», как выразился один из судей CASP Андрей Лупас Andrei Lupas , эволюционный биолог из Института биологии развития им.
Макса Планка. К 2016 году соревнующиеся команды ученых набрали около 40 GDT для самых сложных белков в основном за счет анализа известных белковых структур, известных для CASP. Когда в 2018 году компания DeepMind впервые приняла участие в конкурсе, предложенный ею алгоритм под названием AlphaFold опирался на описанный выше метод сравнения теоретических и практических результатов.
Но AlphaFold также использует методы глубокого обучения: программный софт обучается на огромных массивах данных в данном случае — на последовательностях и структурах известных белков и учится выявлять закономерности. И все же, по мнению говорит Джона Джампера John Jumper , отвечающего за разработку алгоритма AlphaFold в компании DeepMind, сделанные прогнозы были слишком грубы, чтобы ими можно было воспользоваться для практических целей. Чтобы добиться более качественных результатов, Джампер и его коллеги объединили глубокое обучение с «алгоритмом внимания», имитирующим способность человека, которая позволяет ему собирать картины-паззлы.
В этой работе участвует компьютерная сеть, состоящая из 128 процессоров машинного обучения; им удалось обучить алгоритм примерно на 170 тысячах известных белковых структурах. И это сработало!
Используя генетический код, клетка «читает» последовательность кодонов и синтезирует соответствующую последовательность аминокислот. Таким образом, генетическая информация в ДНК определяет структуру белка и его функцию.
Место сохранения генетической информации в клетке — ядро. В первичной структуре ДНК информация о белке записывается в последовательности нуклеотидов. После этого РНК транслируется в белковую цепь. Хранение информации в форме ДНК является важным механизмом, который обеспечивает стабильность генетического наследия и передачу информации из поколения в поколение.
Оцените статью.
Но AlphaFold также использует методы глубокого обучения: программный софт обучается на огромных массивах данных в данном случае — на последовательностях и структурах известных белков и учится выявлять закономерности. И все же, по мнению говорит Джона Джампера John Jumper , отвечающего за разработку алгоритма AlphaFold в компании DeepMind, сделанные прогнозы были слишком грубы, чтобы ими можно было воспользоваться для практических целей. Чтобы добиться более качественных результатов, Джампер и его коллеги объединили глубокое обучение с «алгоритмом внимания», имитирующим способность человека, которая позволяет ему собирать картины-паззлы. В этой работе участвует компьютерная сеть, состоящая из 128 процессоров машинного обучения; им удалось обучить алгоритм примерно на 170 тысячах известных белковых структурах. И это сработало! При анализе самых сложных белков алгоритм AlphaFold набрал в среднем 87 баллов, что на 25 баллов выше самых точных прогнозов, сделанных ранее. Алгоритм даже справился с анализом структур белков, которые находятся в клеточных мембранах и отвечают за многие заболевания человека, однако, при этом, трудно поддаются изучению с помощью рентгеновской кристаллографии.
Специалист в области структурной биологии Венки Рамакришнан Venki Ramakrishnan из Лаборатории молекулярной биологии Медицинского исследовательского совета, назвал полученный результат «ошеломляющим достижением в решении задачи предсказания структуры белка». По словам Джона Моулта, в конкурсе, проведенном в нынешнем году, все группы ученых продемонстрировали еще более точные результаты. Но если говорить об алгоритме AlphaFold, то по словам Андрея Лупаса, «ситуация изменилась радикально». И Лупас поставил перед собой отдельную задачу: выяснить структуру мембранного белка вида архей представитель группы древних микроорганизмов. На протяжении десяти лет его исследовательская команда пыталась получить рентгенограмму кристаллической структуры этого белка. Но, по словам Лупаса, эту задачу решить не удалось. Однако, у алгоритма AlphaFold никаких проблем не возникло. На выходе было получено подробное изображение трехкомпонентного белка с двумя спиралевидными ответвлениями посередине.
Специфичность генетического кода заключается в том, что каждый триплет шифрует только одну аминокислоту. Код считается неперекрывающимся, при этом один и тот же нуклеотид не способен содержаться в составе двух рядом расположенных триплетов. В генетическом коде отсутствуют запятые, то есть если произойдет выпадение одного нуклеотида, его место займет ближайший нуклеотид из соседнего кодона, благодаря чему изменится весь порядок считывания. Данный сбой приводит к появлению различных мутаций на генном уровне. Однако, молекула ДНК весьма длинная и складывается из миллионов нуклеотидных пар, поэтому генетическая информация о структуре белка должна быть разграничена. И действительно, существуют триплеты-инициаторы синтеза белковой молекулы и триплеты, которые прекращают синтез белка. Данные кодоны служат своеобразными знаками препинания генетического кода. Нуклеотидный код является единым для всех живых организмов, в этом проявляется его универсальность. Это свойство кода считается убедительным доказательством общности происхождения живой природы. Из всего вышесказанного можно сделать вывод о том, что такое генетической информации. Генетической информации присущи определенные свойства: Решение задач по расшифровке генетического кода В молекулярной биологии широко используется таблица генетического кода. Ее применяют для определения последовательности аминокислот в белке. Используя таблицу для расшифровки генетического кода, следует вспомнить сокращенные названия аминокислот, которые нам понадобятся при решении задач. Рассмотри алгоритм действий при решении задач на определение генетического кода. Первый триплет начинается с аденина А ищем его в первом горизонтальном столбце. Учитываем, что нуклеотиды ДНК расположены в таблице генетического кода в скобках. Второе основание тоже аденинА расположен во втором горизонтальном столбце. Третье основание — гуанин Г, расположен в последнем столбце таблицы генетического кода. На пересечении столбцов мы находим необходимую аминокислоту — Фен, используя таблицу сокращений аминокислот, узнаем, что это фенилаланин. Таким же способом определяем аминокислоты ещё для трех триплетов. Тогда у нас получилась следующая последовательность аминокислот: Фен — Глу — Тре — Вал. Соответственно, из данного отрезка молекулы ДНК образуется белок, состоящий из полученной последовательности аминокислот. Биосинтез белка сложный, многоступенчатый процесс, который рассмотрим в следующем пункте. Биосинтез белка Структура любого белка зашифрована в ДНК, которая не участвует в его биосинтезе. Данная молекула работает лишь матрицей для создания иРНК.
Остались вопросы?
В биологии трансляция — это процесс реализации информации о структуре белка, представленной в иРНК последовательностью нуклеотидов, как последовательности аминокислот в синтезируемой молекуле белка. Поскольку структура белка определяет его функцию, база данных из 200 миллионов идентифицированных белков способна совершить революцию в биологии и медицине. Прежде ИИ умел распутывать структуру лишь небольшой доли таких белков. Поэтому вся информация о белке хранится в ядре, а точнее только о первичной структуре, а уже первичной структурой опеределяется и дальнейшие свойства этого белка. Правильный ответ на вопрос«Где хранится информация о структуре белка? и где осуществляется его синтез » по предмету Биология. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как она зашифрована в этой молекуле? Как информация из ядра передаются в цитоплазму?
Биоинформатика: Определение и предсказание структуры белков – важные методы и применение
Где хранится генетическая информация? Где хранится информация в клетке? Начнем с того, где она в клетке хранится. Остальное в митохондриях и хлоропластах в этих ребятах протекает фотосинтез. ДНК — это огромный полимер, состоящий из мономерных звеньев. Где хранится генетическая информация у вирусов? Геном — генетический состав клетки, вируса. На молекулярном уровне это индивидуальная нуклеиновая кислота ДНК или РНК , которая является носителем, хранящем генетическую информацию. Где и как записана наследственная информация в клетке? То есть стало ясно, что наследственная информация записана в молекулах ДНК в виде последовательности из четырех «букв» — нуклеотидов.
Где содержится наследственная информация?
Макса Планка. К 2016 году соревнующиеся команды ученых набрали около 40 GDT для самых сложных белков в основном за счет анализа известных белковых структур, известных для CASP. Когда в 2018 году компания DeepMind впервые приняла участие в конкурсе, предложенный ею алгоритм под названием AlphaFold опирался на описанный выше метод сравнения теоретических и практических результатов.
Но AlphaFold также использует методы глубокого обучения: программный софт обучается на огромных массивах данных в данном случае — на последовательностях и структурах известных белков и учится выявлять закономерности. И все же, по мнению говорит Джона Джампера John Jumper , отвечающего за разработку алгоритма AlphaFold в компании DeepMind, сделанные прогнозы были слишком грубы, чтобы ими можно было воспользоваться для практических целей. Чтобы добиться более качественных результатов, Джампер и его коллеги объединили глубокое обучение с «алгоритмом внимания», имитирующим способность человека, которая позволяет ему собирать картины-паззлы. В этой работе участвует компьютерная сеть, состоящая из 128 процессоров машинного обучения; им удалось обучить алгоритм примерно на 170 тысячах известных белковых структурах.
И это сработало! При анализе самых сложных белков алгоритм AlphaFold набрал в среднем 87 баллов, что на 25 баллов выше самых точных прогнозов, сделанных ранее. Алгоритм даже справился с анализом структур белков, которые находятся в клеточных мембранах и отвечают за многие заболевания человека, однако, при этом, трудно поддаются изучению с помощью рентгеновской кристаллографии. Специалист в области структурной биологии Венки Рамакришнан Venki Ramakrishnan из Лаборатории молекулярной биологии Медицинского исследовательского совета, назвал полученный результат «ошеломляющим достижением в решении задачи предсказания структуры белка».
По словам Джона Моулта, в конкурсе, проведенном в нынешнем году, все группы ученых продемонстрировали еще более точные результаты. Но если говорить об алгоритме AlphaFold, то по словам Андрея Лупаса, «ситуация изменилась радикально». И Лупас поставил перед собой отдельную задачу: выяснить структуру мембранного белка вида архей представитель группы древних микроорганизмов. На протяжении десяти лет его исследовательская команда пыталась получить рентгенограмму кристаллической структуры этого белка.
По поводу второго пункта: Здесь может быть 2 пути включения кофактора в белок: либо простое связывание, и тогда оно определяется третичной или четвертичной структурой самого белка как правило такое связывание поддерживается слабыми типами взаимодействий и обратимо , либо ферментативным путем. В этом случае однозначность присоединения кофактора определяется пространственной! Про ферменты написано конечно интересно, НО конкретные ферменты создавались в эволюции для выполнения катализа конкретных реакций, а не наоборот - появился фермент и с ним функция.....
Ссылка на комментарий.
Образование махровых цветков определяется одной рецессивной мутацией. Ученые пересадили из природы на экспериментальный участок два мутантных и одно нормальное растение.
Считая, что при опылении пыльца всех особей смешивается, пыльца из природных популяций не попадает на участок, и при этом возможно самоопыление, рассчитайте, каким может быть расщепление в потомстве первого поколения по генотипам и фенотипам. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные, а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли.
Каким может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу? Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись.
У Колокольчиковых завязь нижняя, но это не принципиально для дальнейшего решения. Можно предложить следующую формулу для типичного цветка в сем. При построении диаграммы должны выполняться следующие принципы: 1.
В двух соседних кругах органы должны чередоваться, то есть положение медианы каждого органа должно приходиться строго на промежуток между органами предыдущего круга. Для пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На рисунке видно, что плодолистики поскольку из три не могут правильно чередоваться с пятью тычинками.
Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга органы противолежат. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все линии будут проводиться через центр завязи и центральную медианную жилку органа.
На рисунке показан цветок с центрально-угловой плацентацией гинецей синкарпный. Между гнездами завязи находятся перегородки септы. Для плодолистика медианой считается линия, делящая угол между септами ровно пополам.
Обозначим ген, отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа.
Поэтому возможно два варианта расщепления среди потомков. Однако пыльцу может образовать только растение с немахровыми цветками. Вариант 1.
Немахровое растение — гомозигота АА. Вариант 2. Немахровое растение — гетерозигота Аа.
В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков по генотипам и фенотипам во втором поколении. Задание ollbio08101120172018в2 У многих видов бактерий для защиты от вирусов есть специальные ферменты — рестриктазы.
Они расщепляют ДНК по определённым симметричным последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы. Они называются по первым буквам латинского названия рода и вида бактерии, например, Bgl — рестриктаза из гнилостной бактерии Bacillus globigii. При действии такого фермента на очищенную ДНК разрывы происходят в строго определённых местах и образуются фрагменты ДНК определённой длины с определёнными последовательностями на концах.
Например, рестриктаза BglII расщепляет последовательность: При этом на концах полученных фрагментов ДНК всегда будут одинаковые и комплементарные друг другу одноцепочечные участки ДНК, называемыми «липкими концами», так как они могут соединяться между собой за счёт образования комплементарных пар оснований. Если такой комплекс обработать ферментом ДНК-лигазой, произойдёт ковалентное соединение фрагментов, соединённых «липкими концами». Это лежит в основе метода получения рекомбинантных ДНК.
При таком сшивании соединение концов одного фрагмента при его длине более 500 нуклеотидных пар происходит в 10 раз чаще, чем соединение концов двух разных фрагментов. У многих бактерий кроме основной хромосомы присутствуют небольшие дополнительные ДНК, называемые плазмидами. Они представляют собой кольцевые молекулы ДНК, способные к репликации в клетке, и несут гены, отсутствующие в основной хромосоме, например, гены устойчивости к антибиотикам.
Плазмида pСО36 несёт гены устойчивости к эритромицину и ампицилину и состоит из 4200 пар нуклеотидов. Рестриктаза BglII расщепляет эту плазмиду только по гену устойчивости к эритромицину в начале этого гена. Полученные ДНК смешали с клетками бактерий, не несущих плазмид и неустойчивых к антибиотикам.
В результате произошла генетическая трансформация: в часть клеток проникла ДНК плазмиды и изменила их свойства. Полученные клетки высеяли на твёрдую питательную среду, не содержащую антибиотиков.
Где хранится информация о структуре белка?и где осуществляется его синтез
Примеры белков ферментов. Белки ферменты примеры. Ферментативные белки примеры. Роль белков в живой системе. Строение молекулы белка первичная структура. Первичная структура белковых молекул. Молекула белка в первичной структуре. Первичная структура белковой молекулы. Где хранится информация о структуре белка Альфа спираль вторичной структуры белка. Вторичная структура белка биохимия. Белки биохимия структуры белков.
Характеристика Альфа спирали вторичной структуры белка. Первичная вторичная третичная структура белка. Первичная структура белка вторичная структура. Связи в первичной вторичной третичной и четвертичной структуре белка. Белки первичные вторичные третичные четвертичные. Где хранится информация о структуре белка Структуры белка ЕГЭ. Первичная вторичная и третичная структура белков ЕГЭ. Название структуры белка. Третичная структура белка ЕГЭ. Нуклеиновые кислоты биология 10 класс схема.
Строение нуклеиновых кислот биология 10 класс. Биосинтез белка и нуклеиновых кислот. Передача наследственной информации нуклеиновые кислоты. Структура белка в клетках организма. Структура белков в клетке. Строение и роль белка в клетке. Растительная клетка структура белка. Где хранится информация о структуре белка Где хранится информация о структуре белка Четвертичная структура белка это структура. Четвертичная структура белка структура белка. Четвертичная структура белка строение.
Структуру белков четвертичная структура. Строение нуклеиновых кислот РНК. Биологическая функция четвертичной структуры белка. Четвертичная структура белка это структура. Структура белковой молекулы биохимия. Функция четвертичной структуры структуры белка. Где хранится информация о структуре белка Клетка для белки. Строение белков в организме. Белки в растительной клетке. Белков и их роль в клетке.
Нуклеиновые кислоты хранение и передача наследственной информации. Нуклеиновые кислоты состоят из. ДНК хранение наследственной информации. Характеристика вторичной структуры белка. Вторичная структура полипептидов и белков это. Вторичная структура полипептидов. Четвертичная структура белка. Четвертичная структура белков. Первичная структура белка процесс.
Электронные репозитории Электронные репозитории представляют собой веб-платформы, разработанные для хранения и обмена информацией о первичной структуре белков.
Они позволяют ученым обмениваться данными и получать доступ к хранилищу структур, созданных другими учеными. PDB является центральным репозиторием данных о трехмерной структуре белков, полученных с помощью различных экспериментальных методов, таких как рентгеноструктурный анализ и ядерное магнитное резонансное исследование. PDB предоставляет ученым доступ к более чем 150 000 структур белков, а также инструменты для их анализа и визуализации. Другим примером электронного репозитория является UniProt. UniProt объединяет информацию о последовательности, аннотации и 3D-структурах белков, собранную из различных источников. В UniProt ученым доступны данные о миллионах белков и связанные с ними биологические аннотации. Электронные репозитории играют ключевую роль в исследованиях в области белкойной биоинформатики и структурной биологии. Они позволяют ученым обмениваться исследовательскими данными, улучшить взаимодействие между научными группами и повысить эффективность научных исследований. В заключении, электронные репозитории являются ценным инструментом для хранения и обмена информацией о первичной структуре белков. Они позволяют ученым быстро получить доступ к большому количеству данных и использовать их в своих исследованиях.
Благодаря таким платформам, исследования в области белковой структуры и функции могут продвигаться вперед, способствуя развитию науки и медицины. Биоинформационные ресурсы В настоящее время существует множество биоинформационных ресурсов, которые играют важную роль в хранении информации о первичной структуре белков. Эти ресурсы предоставляют доступ к базам данных и инструментам, которые помогают в анализе и интерпретации биологических данных. Одним из наиболее популярных ресурсов является база данных UniProt, которая содержит информацию о белках, их последовательности и функциональных свойствах. Ресурс также предлагает инструменты для анализа белковых последовательностей и предсказания их функций. PDB предоставляет доступ к 3D-структурам белков, полученных с помощью методов рентгеноструктурного анализа и ядерного магнитного резонанса. Ресурс позволяет исследователям изучать взаимодействия белков, предсказывать их функции и разрабатывать новые лекарственные препараты.
Генетические последовательности Информацию о первичной структуре белка можно получить непосредственно из генетической последовательности ДНК или РНК, которая кодирует данный белок.
С помощью методов молекулярной биологии и биоинформатики можно извлечь соответствующую информацию о последовательности аминокислот. Использование различных образцов для анализа первичной структуры белка позволяет получить ценные данные о его составе и устройстве. Эти данные могут быть использованы для изучения функций белка, в разработке лекарственных препаратов и в других областях биологии и медицины. Методы анализа первичной структуры белка Анализ первичной структуры белка включает в себя изучение порядка аминокислотных остатков в цепи белка. Для этого существуют различные методы и техники: Метод Описание Секвенирование Секвенирование дает информацию о последовательности аминокислот в белке. Существуют различные методы секвенирования, такие как Sanger-секвенирование и метод масс-спектрометрии. Картирование пептидов Картирование пептидов позволяет определить, какие аминокислоты присутствуют в белке и в каком порядке. Этот метод основан на химической разрезке белка и последующем анализе образовавшихся пептидов.
Методы масс-спектрометрии Масс-спектрометрия позволяет определить массу и состав аминокислотных остатков в белке.
Пять тычинок свободные, а плодолистиков три, и они также срослись. У Колокольчиковых завязь нижняя, но это не принципиально для дальнейшего решения.
Можно предложить следующую формулу для типичного цветка в сем. При построении диаграммы должны выполняться следующие принципы: 1. В двух соседних кругах органы должны чередоваться, то есть положение медианы каждого органа должно приходиться строго на промежуток между органами предыдущего круга.
Для пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На рисунке видно, что плодолистики поскольку из три не могут правильно чередоваться с пятью тычинками. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга органы противолежат.
Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все линии будут проводиться через центр завязи и центральную медианную жилку органа. На рисунке показан цветок с центрально-угловой плацентацией гинецей синкарпный.
Между гнездами завязи находятся перегородки септы. Для плодолистика медианой считается линия, делящая угол между септами ровно пополам. Обозначим ген, отвечающий за проявление махровости как А.
Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков.
Однако пыльцу может образовать только растение с немахровыми цветками. Вариант 1. Немахровое растение — гомозигота АА.
Вариант 2. Немахровое растение — гетерозигота Аа. В первом варианте скрещивания махровых растений не окажется.
Рассчитаем доли потомков по генотипам и фенотипам во втором поколении. Задание ollbio08101120172018в2 У многих видов бактерий для защиты от вирусов есть специальные ферменты — рестриктазы. Они расщепляют ДНК по определённым симметричным последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы.
Они называются по первым буквам латинского названия рода и вида бактерии, например, Bgl — рестриктаза из гнилостной бактерии Bacillus globigii. При действии такого фермента на очищенную ДНК разрывы происходят в строго определённых местах и образуются фрагменты ДНК определённой длины с определёнными последовательностями на концах. Например, рестриктаза BglII расщепляет последовательность: При этом на концах полученных фрагментов ДНК всегда будут одинаковые и комплементарные друг другу одноцепочечные участки ДНК, называемыми «липкими концами», так как они могут соединяться между собой за счёт образования комплементарных пар оснований.
Если такой комплекс обработать ферментом ДНК-лигазой, произойдёт ковалентное соединение фрагментов, соединённых «липкими концами». Это лежит в основе метода получения рекомбинантных ДНК. При таком сшивании соединение концов одного фрагмента при его длине более 500 нуклеотидных пар происходит в 10 раз чаще, чем соединение концов двух разных фрагментов.
У многих бактерий кроме основной хромосомы присутствуют небольшие дополнительные ДНК, называемые плазмидами. Они представляют собой кольцевые молекулы ДНК, способные к репликации в клетке, и несут гены, отсутствующие в основной хромосоме, например, гены устойчивости к антибиотикам. Плазмида pСО36 несёт гены устойчивости к эритромицину и ампицилину и состоит из 4200 пар нуклеотидов.
Рестриктаза BglII расщепляет эту плазмиду только по гену устойчивости к эритромицину в начале этого гена. Полученные ДНК смешали с клетками бактерий, не несущих плазмид и неустойчивых к антибиотикам. В результате произошла генетическая трансформация: в часть клеток проникла ДНК плазмиды и изменила их свойства.
Полученные клетки высеяли на твёрдую питательную среду, не содержащую антибиотиков. В результате деления каждая клетка образовала колонию генетически идентичных клеток. Было получено 51366 таких колоний.
Клетки из каждой колонии пересеяли на среду, содержащую ампициллин, на которой рост дали 573 колонии. Клетки из колоний, выросших на ампициллине, пересеяли на среду с эритромицином. На этой среде выросла 51 колония.
Из них выдели плазмидную ДНК, и оказалось что она представлена двумя разными по длине формами, причём каждой колонии был только один вид плазмиды. Почему не все колонии, выросшие на ампициллине, дали рост на эритромицине?
Биоинформатика: Определение и предсказание структуры белков – важные методы и применение
Считывание и передача информации Молекулы ДНК располагаются в ядре клетки могут еще содержаться в пластидах и митохондриях. В нужный момент часть молекулы ДНК деспирализируется, ее параллельные цепи расходятся. На этих цепях, в соответствии с принципом комплементарности , синтезируются небольшие молекулы и-РНК информационной РНК. Данный процесс именуется транскрипцией считыванием. Синтезированная таким образом молекула и-РНК двигается к месту синтеза белка. Определение 3 Процесс переноса и-РНК из ядра к месту синтеза белка называется трансляцией. Механизм биосинтеза белка Сам синтез белковых молекул происходит на мембранах ЭПС эндоплазматической сетки.
Таким образом: 1 Вторичная, третичная, четвертичная структура белков однозначно определяется их первичной структурой. Двух белков с разной пространственной при одинаковой первичной структуре быть не может хотя суть природы прионов мне при этом тезисе неясна. Если все так и есть, то у меня появились еще дополнительные вопросы по биосинтезу белка, которые, наверное, стоит вынести в отдельные ветки форума. Позволю себе внести некоторые дополнения.
Оказалось, что у такой мРНК достаточно одной открытой рамки считывания для трансляции мембранного белка, чтобы молекула переместилась к плазматической мембране. То есть участок мРНК, кодирующий мембранный белок, является определяющим для выбора места локализации всей молекулы. Такое происходит, даже если все остальные белки, кодируемые этой мРНК, цитоплазматические. Если же разделить такую большую молекулу мРНК на отдельные участки цистроны , которые кодируют отдельные белки, то распределение в клетке отдельных мРНК происходит в зависимости от локализации белков, которые они кодируют рис. Локализация полицистронной мРНК, кодирующей два белка мембранный и цитоплазматический определяется цистроном, который кодирует мембранный белок. Локализация моноцистронных мРНК в клетке: a — кодирует мембранный белок, b — кодирует цитоплазматический белок. Локализацию полицистронной мРНК общей для обоих белков однозначно определяет участок молекулы, который кодирует мембранный белок, независимо от места связывания с флуоресцентной меткой изображения c и d. Иллюстрация из обсуждаемой статьи в Science Дальнейший анализ показал, что у молекул мРНК, как правило, есть конкретная область, которая и определяет их распределение в клетке. Так, например, мембранные белки состоят из гидрофильных частей, которые обращены наружу мембраны, и гидрофобной части, которая находится внутри мембраны. Соответственно мРНК, которая кодирует такие сложные белки, тоже имеет несколько участков, каждый из которых кодирует определенную часть белка. Конечную локализацию мРНК мембранных белков определяет как раз участок молекулы, кодирующий гидрофобную погруженную в мембрану часть белка. Локализацию мРНК мембранного белка вблизи мембраны определяет участок, кодирующий гидрофобную часть белковой молекулы. Участок мРНК, кодирующий гидрофильный участок белковой молекулы, не определяет нужную локализацию всей молекулы мРНК a.
Глобулярные белки структура. Третичная структура белков форма. Вторичная структура белка имеет вид спирали. Вторичная структура белков функции. Вторичная функция белка. Структуры белков 9 класс. Какого строение и функции РНК. Строение структуры функции белка клетки. Строение и функции хромосомы эукариотической клетки. Белковая структура ДНК. ДНК белок строение. Денатурация куриного белка. Яичный белок денатурация. Денатурация сопровождается изменениями важнейших свойств белка. Роль нуклеиновых кислот в передаче генетической информации. Роль ДНК В передаче наследственной информации. Роль белков в передаче наследственной информации. Вторичная структура белковых молекул. Вторичная структура белка связи. При денатурации белков происходит:. Денатурация белка и коагуляция белка. Белки подвергаются. Альфа спираль вторичной структуры белка. Вторичная структура белка биохимия. Белки биохимия структуры белков. Характеристика Альфа спирали вторичной структуры белка. Клетка для белки. Строение белков в организме. Белки в растительной клетке. Белков и их роль в клетке. Нуклеиновые кислоты биология 10 класс схема. Биосинтез белка и нуклеиновых кислот. Передача наследственной информации нуклеиновые кислоты. Белки четвертичная структура связи. Белки химия четвертичная структура. Четвертичная структура белка химические связи. Четвертичная структура белка глобула. Разрушение структуры белка. Разрушение первичной структуры белка. Разрушение пептидных связей в белке. При разрушении первичной структуры белка. Свойства белка. Биологические свойства белков. Свойства белков биология. Свойства белка биология. Структура молекулы ДНК, ген.. Строение клетки ДНК. Строение ДНК человека. Определить структуру молекулы ДНК. Первичная структура белка аминокислоты. Структурное строение аминокислот. Химическое строение аминокислот. Белки и аминокислоты структура и функции. Первичная и вторичная структура белка. Строение белков. Уровни структуры белка. ДНК строение и функции. ДНК строение структура функции. Строение и функции молекулы ДНК. Строение и функции дне. Функции рибосомальной РНК. Типы структуры первичного белка.
Генетический код. Биосинтез белка | теория по биологии 🌱 основы генетики
Где хранится информация о первичной структуре белка | Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка). |
Адрес доставки белка указан уже в матричной РНК | Информация о первичной структуре белка хранится в. Наследственная информация о первичной структуре белка. |
«Ситуация изменилась кардинально»: ИИ научился предсказывать структуру белка (Science, США) | Информация о структуре белка закодирована в ДНК. Дезоксирибонуклеиновая кислота имеет очень сложную структуру, которую не до конца удалось раcшифровать ученым в наши дни. Именно это вещество отвечает за синтез белка, наследственность и прочее. |
Где хранится белок в организме?
Машинное определение структуры белка: ключ к пониманию заболеваний и медицинским инновациям | Где вырабатывается белок в организме? В печени синтезируются многие необходимые организму белки, а вырабатываемые ею пищеварительные ферменты участвуют в их усвоении. |
Где хранится информация о структуре белка (89 фото) | 2. Как называется участок хромосомы, хранящий информацию об одном белке? Найди верный ответ на вопрос«1. В какой молекуле хранится информация о первичной структуре белка? |
Где хранится информация о структуре белка?и где осуществляется его синтез | Правильный ответ на вопрос«Где хранится информация о структуре белка? и где осуществляется его синтез » по предмету Биология. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. |
Нейросеть DeepMind расшифровала структуру почти всех белков, известных науке | Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в иРНК. |