Новости формула водородной бомбы

эдакий "дедушка" многих уникальных разработок. Действие водородной бомбы основано на выделении энергии при реакциях термоядерного синтеза. Самой мощной водородной бомбой стала царь-бомба, которая была испытана нашей страной во времена Советского Союза в 1961 году. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему.

RU2477449C1 - Водородная бомба - Google Patents

Атомная бомба и Манхэтенский проект упомянуты в тексте дважды, но нет ни слова о водородной бомбе, которая в ту пору ещё находилась на этапе создания в Лос-Аламосе. В 1949 году физик Андрей Сахаров предложил основной принцип советской водородной бомбы — слойку. Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Что это Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте.

Атомная, водородная и нейтронная бомбы

Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер.

Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада.

Словом, водородная бомба - гораздо более мощное оружие, чем атомная бомба. Работа над водородной бомбой стала первой интеллектуальной гонкой в истории человечества. Для создания атомной бомбы было важно прежде всего решить инженерные задачи, развернуть масштабные работы на рудниках и комбинатах. Водородная же бомба привела к появлению новых научных направлений - физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений.

Впервые пришлось прибегнуть к помощи математического моделирования.

Развитие исследования С тех пор прошло 70 лет, и идея Тамма — Сахарова получила дальнейшее развитие, воплотившись под руководством Льва Арцимовича в установку "Токамак" только в ней для удержания плазмы используется электрический ток. Работа оказалась не только технически сложной, но и чрезвычайно затратной, поэтому ученые США, Азии, Европы, включая Россию, объединились в рамках международного научного проекта ИТЭР, чтобы получить возможность осуществить управляемую термоядерную реакцию синтеза. Показать ещё Если научная сторона деятельности Андрея Сахарова вызывает уважение и восхищение специалистов, то общественная сторона все-таки представляется неоднозначной. Он все больше и больше погружался в правозащитную деятельность в СССР, которая была изрядно политизирована, став в конце 1960-х годов одним из ее лидеров. Академик писал и подписывал письма в поддержку разных диссидентов, охотно давал интервью западным журналистам, где критиковал советский строй, лидеров страны и так далее. Личные страницы Пытаясь поддержать одного из диссидентов на процессе в Калуге в 1970 году, овдовевший Сахаров познакомился с Еленой Боннэр, которая через год стала его женой.

Женщина решительная и властная категорически не любила Советскую власть родители были репрессированы в годы "большого террора" , активно участвовала в правозащитной деятельности. Считается, что она оказывала огромное влияние на самого Сахарова. Из всех родных и приемных а это Татьяна и Алексей Семеновы от Елены Боннэр детей академика мне посчастливилось быть знакомым именно с Дмитрием, который жил в центре Москвы и, увы, в начале 2021 года ушел из жизни. Часы Судного дня не стали переводить. Стрелки замерли на отметке 90 секунд Внешне он был очень похож на отца, носил близкие по стилю вещи и при этом не скрывал обиды, особенно на мачеху и ее детей — на воспитание передали в семью родственников, когда молодому человеку едва исполнилось 15 лет.

Важное значение имеет масштаб того устройства, которое мы обсуждаем. Если есть большое устройство, то там одна иерархия процессов, в том числе рентгеновских.

Если размеры меньше, что всех как раз интересует, это другая иерархия процессов. Поэтому установка типа Ливерморской — это инструмент исследования законов подобия — масштабирования — процессов рентгеновского зажигания. На разных уровнях масштабирования — это решение целого комплекса научных и технических задач. А основные принципы рентгеновского зажигания, действительно, были сформулированы ранее, в том числе А. Lawrence Livermore National Laboratory Можно ли говорить, что США благодаря этим экспериментам получили некоторое преимущество в военном отношении? Конечно, ведь они получили инструмент, с помощью которого они много чего интересного посмотрят, научившись сжимать и поджигать такие мишени. Собственно, эти исследования и строительство этой установки преследовало в первую очередь цели, относящиеся к военным приложениям.

Расскажите об аналогичных работах в России и других странах? После разрухи 90-х годов в стране многое сделано, чтобы сократить отставание в этой критически важной технологии, хотя это было очень непросто. И сейчас в России строится установка с параметрами, даже превосходящими ливерморскую машину. В ней тоже используется неодимовый лазер, энергия которого будет примерно такая же, как у американцев. Эту установку, согласно опубликованным данным, планируется ввести в строй в 2028 году. Если бы не было лихих 80-х и 90-х, то, конечно, конкуренция с американцами была бы более острая, к этому были все основания. Архитектура строящейся российской установки схожа с американской.

Но есть и свои особенности, связанные, например, с тем, что там будет использоваться сферический конвертор. Такой конвертор улучшает симметрию обжатия термоядерной мишени, но в него сложнее ввести лазерные пучки, чем в цилиндрический. Это очень перспективная схема, поскольку для того, чтобы эффективно сжать мишень нужно очень симметрично нагреть ее рентгеновским излучением. Кроме того, система расположения лазерных пучков саровской установки позволит проводить эксперименты не только при облучении мишени рентгеновским излучением непрямое сжатие , но и при ее облучении непосредственно лазерными пучками прямое сжатие — без преобразования лазерного излучения в рентгеновское. Кроме того, во Франции создается установка LMJ. Это просто близнец американской установки, по образу и подобию которой ее и строили. Насколько я знаю, сейчас эта установка дает около 300 кДж лазерной энергии, в шесть раз меньше, чем американская.

Крупная установка, тоже на неодимовом стекле, строится в Китае. О создании термоядерного реактора для энергетики ученые мечтают более полувека. Если предположить, что настанет тот день, когда первый термоядерный реактор даст первый промышленный ток, то какого типа будет этот реактор?

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США

Однако ученые нашли источник, который способен выделить гораздо больше энергии — в 8 раз больше, чем при термоядерном синтезе. Это кварковый синтез. О чем сообщили в журнале Nature. Реакция кваркового синтеза в представлении Карлайнера и Роснера. Кварки образуются, к примеру, в результате столкновения протонов в Большом адронном коллайдере БАК , эксперименты в котором начались в 2009 году и продолжаются до сих пор. Образовавшись, кварки сливаются в барионы. В ходе этого синтеза и выделяется колоссальная энергия. Карлайнер и Роснер успокаивают: их открытие, о котором коротко рассказывает портал Futurism , для военных бесполезно.

Причина этого кроется в том, что на звездах превращение водорода в гелий происходит в несколько стадий. Сначала получаются нейтроны, а уже затем они вместе с протонами соединяются в ядро гелия. Сами протоны очень маленькие, и ждать, пока они «найдут» друг друга, придется очень долго. Вот почему звезды существуют на протяжении миллионов и миллиардов лет — чтобы столкнулись все протоны, должно пройти очень много времени. В обычном водороде, который есть у нас на Земле, на каждые 7-8 тысяч атомов «обычного» вещества попадается «необычный»: у него, помимо протона, есть еще и нейтрон. Такой изотоп водорода назвали «дейтерий». Но и тут есть небольшой нюанс: чтобы реакция началась, дейтерий должен прореагировать еще с одним изотопом водорода — тритием, у которого уже два нейтрона. Проблема в том, что на Земле его не достать, да и разрушается он очень быстро — приблизительно за 25 лет. Вопрос: где достать тритий? Из-за того, что он радиоактивен, тритий используется как источник питания Из-за того, что он радиоактивен, тритий используется как источник питания Обойти это препятствие получилось с помощью вещества под названием дейтерид лития-6. С одной стороны, это твердое вещество, и его удобно хранить, в отличие от газообразного дейтерия, а с другой — литий, если его бомбардировать нейтронами, распадается на нужный нам тритий, ненужный гелий и нейтрон. Теперь поговорим об устройстве бомбы. Она представляет собой «слоеный пирог». Снаружи у неё плутониевый заряд. Его задача — обжать внутреннюю часть бомбы, где хранится термоядерное горючее, чтобы создать давление и высокую температуру, и послужить источником нейтронов для получения трития. Эта внутренняя камера имеет в сердцевине еще один кусочек плутония, который начинает сжимать его изнутри наружу. Зажатый между двумя атомными зарядами, как кусок железа между молотом и наковальней, горючее начинает термоядерную реакцию. A - бомба до взрыва; B - подрывается плутониевый заряд; C - жесткое рентгеновское излучение проникает внутрь второй ступени дейтерида лития ; D - стрежень из плутония в самом центре второй ступени также начинает расщепляться; E - начинается термоядерная реакция.

Согласно этой теории солнечная энергия в виде света и тепла выделяется в результате превращения четырех атомов водорода в один атом гелия со скоростью расхода 500 миллионов тонн водорода в секунду. При этом получается 496 миллионов тонн гелия. Энергия, высвобождаемая в течение каждой секунды в ходе реакции, эквивалентна энергии, содержащейся в 12 квадриллионах тонн угля, что в миллион раз превышает все угольные запасы Соединенных Штатов. Хотя все это было хорошо известно, ученые были уверены, что при тогдашнем уровне знаний эта огромная сокровищница космической энергии останется навсегда за пределами досягаемости человека. Для ядерного синтеза водорода требуется температура в 20 млн. У нас был громадный запас космического топлива — водорода, но, к сожалению, не было спички, чтобы зажечь его: ни одна спичка не могла бы дать пламя по крайней мере в 20 млн. Когда ученые Лос-Аламоса, одним из руководителей которых был Бете, работали над созданием атомной бомбы из урана-235 или плутония, они знали, что успех в создании атомной бомбы даст им ключ к космической сокровищнице энергии синтеза, до сих пор являющейся монополией Солнца и звезд. Эксперименты и расчеты показывали, что при взрыве атомной бомбы из урана-235 или плутония развивается температура в 55 млн. Наконец- то удалось найти «спичку», способную зажечь космический огонь ядерного синтеза! Это означало также, что усовершенствованная атомная бомба может служить детонатором для взрыва гораздо более мощной водородной бомбы, взрывная мощность которой практически неограниченна. Однако между Солнцем и атомной бомбой была существенная разница, которая казалась непреодолимым препятствием на пути осуществления ядерного синтеза на Земле. Внутри Солнца температура в 20 миллионов градусов поддерживается постоянно, поэтому процесс синтеза гелия идет с постоянной скоростью. Хотя температура внутри атомной бомбы в три раза выше, чем в центре Солнца, она удерживается в течение времени, совершенно недостаточного для превращения обычного водорода в гелий. Это все равно, что зажигать сигарету на ветру, когда у вас всего одна спичка: если ветер достигает ураганной скорости, то совершенно ясно, что вы не успеете зажечь сигарету. Этот неумолимый фактор времени с самого начала заставил ученых прийти к выводу, что на Земле нельзя осуществить процесс синтеза, происходящий на Солнце с обычным водородом, атомный вес которого равен единице. В январе 1950 г. Исследования в Лос-Аламосе в 1944 и 1945 гг. Это сразу же создало большие трудности, так как тритий не существует в природе и для его создания необходимы затраты больших средств и дорогих стратегических материалов. Так, для производства одного килограмма трития требуется восемьдесят килограммов плутония — расщепляющегося элемента, искусственно созданного для атомной бомбы. Дело осложнялось еще и тем, что тритий — это радиоактивный элемент с периодом полураспада 12 лет. Другими словами, один килограмм трития в 1958 г. Другое серьезное препятствие заключалось в том, что как дейтерий, так и тритий не может быть синтезирован в обычном для него газообразном состоянии, а должен быть сначала превращен в жидкое вещество. Жидкий же водород кипит т. Транспортировать газообразный водород можно только в герметическом баллоне, находящемся внутри сосуда с жидким воздухом. Эти требования создавали большие трудности при его производстве, транспортировке и хранении. Создавалось парадоксальное положение. Перед синтезом двух разновидностей водорода, который происходит при температуре выше 50 млн. Естественно, возникал вопрос: удастся ли сохранить вещество в жидком состоянии даже в течение одной миллионной доли секунды при температуре 50 млн. К июню 1951 г. Именно тогда покойный Гордон Дин, бывший в то время председателем Комиссии по атомной энергии, решил провести совещание руководителей работ. На это совещание, состоявшееся в Институте прогрессивных исследований в Принстоне штат Нью-Джерси , «прибыли доктора фон Нейманн, Ферми, Бете, Теллер, Уиллер, Норрис Брэдбери, Лотар Норхайм, и каждый из них мог внести большой вклад в это дело». За столом сидели руководители всех лабораторий во главе с доктором Оппенгеймером. В гнетущей обстановке поднялся доктор Теллер и спокойно подошел к доске. На доске чертились схемы. Делались расчеты». У участников совещания появилась надежда. К концу второго дня у «всех присутствующих появилось ощущение, что впервые мы что-то имеем хотя бы в области идей». Уныние сменилось энтузиазмом, и у всех создалось впечатление, что, наконец, «мы можем на что-то надеяться в будущем». С этого дня работы по созданию водородной бомбы пошли полным ходом. Через четыре дня Комиссия по атомной энергии приняла обязательство построить новый завод, хотя в то время у нее, как заявил Дин, не было на это средств. Через год, в июне, мы были в состоянии, говоря словами Дина, «завершить работу над этим устройством». Устройство перевели на атолл Эниветок и взорвали 1 ноября 1952 г. Мощность взрыва составляла пять мегатонн пять миллионов тонн тротила. Затем в марте и в апреле 1954 г. С тех пор было испытано много других конструкций бомб. Хотя открытие, которое совершило переворот в науке и сделало возможным создание водородной бомбы, все еще является секретом, легко отгадать основные принципы ее устройства. Казалось совершенно нелепым, что до осуществления реакции между веществами при температуре 50 млн. Единственным путем устранить такое невозможное требование был отказ от превращения водорода в жидкое состояние. Надо было соединить газообразный водород с каким- то веществом так, чтобы водород стал частью твердого соединения, способного сохраняться при обычной комнатной температуре. Существуют различные твердые соединения, содержащие водород. Одно из них кажется наиболее подходящим и фактически единственным соединением, которое может служить основной составной частью водородной бомбы. Это специально созданное новое вещество, известное под названием дейтерид лития-6, представляет собой соединение редкого легкого изотопа металлического лития, состоящего из трех протонов и трех нейтронов, с дейтерием, или тяжелым водородом, ядро которого состоит из одного протона и одного нейтрона. Соединение лития и дейтерия при комнатной температуре является твердым веществом. Один атом лития-6 в этом соединении связан с одним атомом дейтерия водород-2 , поэтому общий молекулярный вес соединения равен 8. Другими словами, в восьми килограммах соединения содержится шесть килограммов легкого лития-6. Литий-6 не встречается в природе в чистом виде. Как и расщепляющийся элемент уран-235, литий существует в смеси двух своих разновидностей: одного — с атомным весом 6 и другого — с атомным весом 7. Так как различные виды одного и того же элемента невозможно разделить химическим путем, необходимо было построить специальный завод по разделению изотопов для получения чистого лития-6. Этот завод и являлся тем «новым заводом», контракт на строительство которого, как сообщил Дин, был подписан через четыре дня после заседания Комиссии в июне 1951 г. Дейтерид лития-6 очень важен по двум причинам. Он не только обеспечивает возможность хранения дейтерия при комнатной температуре и, таким образом, исключает необходимость превращения его в жидкое состояние при температуре, близкой к абсолютному нулю. Он также делает возможным получение трития — второго элемента, необходимого для создания водородной бомбы в конечной стадии — в самый момент ее взрыва.

Недостатки те же самые. Задача создания изобретения - повышение скорости полета водородной бомбы и точности попадания при бомбометании с очень больших высот. Система управления снабжена контроллером управления, соединенным с приводом хвостовых стабилизаторов и с бортовым компьютером. Она может быть снабжена контроллером двигателя, соединенным с приводом топливного насоса и с бортовым компьютером. Она может быть снабжена приемно-передающим устройством с антенной, соединенным с бортовым компьютером. Она может быть снабжена приемником системы глобального позиционирования, подключенным к антенне и к бортовому компьютеру. Она может быть снабжена видеокамерой, подключенной к бортовому компьютеру. Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Сущность изобретения поясняется на фиг. Водородная бомба фиг. Внутри корпуса 1 установлены термоядерный заряд 3, выполненный кольцевой формы в виде полого цилиндра , и топливный бак 4. Предпочтительно топливный бак 4 выполнить тороидальной формы. Также внутри корпуса 1, вдоль его оси, в центральной части установлен газотурбинный двигатель 5, работающий на жидком топливе возможно применение сверхзвукового газотурбинного двигателя. Атомная бомба имеет систему управления, установленную внутри корпуса 1. Газотурбинный двигатель 5 состоит из воздухозаборника 6, компрессора 7, состоящего в свою очередь из статора компрессора 8 и ротора компрессора 9, камеры сгорания 10 с форсунками 11, к которым подключен топливопровод 12 с топливным насосом 13, имеющим привод насоса 14.

Последние материалы

  • «Сахаровская слойка»: секреты появления в СССР водородной бомбы
  • Опасная «слойка»: как советская водородная бомба потрясла мир
  • Спецработа
  • Рассекречены данные об испытаниях «Царь-бомбы»: Оружие: Наука и техника:

Формула водородной бомбы. Водородная бомба

Литиево-водородная бомба конструкция. Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата «написана весьма поверхностно». По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть — там, где предлагается бомба, — крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части. В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А. Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы. Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом их изотопов и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко — это не подходит. Непростая бомба Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел. В современной а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития — твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород.

Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития — его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости например, вокруг или, наоборот, внутри ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово. Оба компонента термоядерной бомбы. Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.

В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. Г Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется… Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они — газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились. Проблема только в том, что ее невозможно доставить «адресату» — размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний.

Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально. Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же — это дейтерид легкого изотопа лития. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было.

Выгорание термоядерного топлива идет от оси цилиндра к его краю. Температура фронта горения достигает 300 миллионов кельвин. Полное развитие взрыва вплоть до выгорания термоядерного топлива и разрушения контейнера занимает пару сотен наносекунд. Последствия схожие с обычными ядерными боеприпасами, с двумя поправками. При чисто термоядерном взрыве образуются в основном гелий и поток быстрых нейтронов, вызывающих незначительную наведенную радиацию. Остальные ответы.

С другой стороны, новый источник энергии открывает и мирные перспективы. Как за атомной бомбой последовали атомные электростанции, за водородной — вот вот последует управляемый термоядерны синтез, так за кварковой бомбой — какие-нибудь кварковые энергосинтезаторы. Например, протоны и нейтроны. Кварки крошечные — примерно 20 тысяч раз мельче протона. Протоны и нейтроны являются барионами. Электроны — тоже барионы. Все они — вещество, привычная нам материя. А есть еще барионное антивещество — антиматерия.

Вопрос решался на самом высоком уровне. Вавилов выбрал некоторое количество людей, во главе с выдающимся физиком Игорем Таммом. Тамм подобрал небольшую группу, Сахаров, кстати, входил в эту группу», - рассказывает Владимир Визгин. В документе упоминалось два варианта. Одна из бомб должна быть создана, по сути, по американским лекалам. Это изделие проходит под кодовым названием РДС-6Т. В ней предполагалось цилиндрическое расположение заряда. Второе изделие РДС-6С. Ее конструкция представляла собой «слоеный пирог» из урана и термоядерного горючего, окруженных взрывчатым веществом. Эту альтернативную схему водородной бомбы предложил Андрей Сахаров. В итоге успешной будет именно «сахаровская слойка», а американская идея окажется тупиковой. Уже через несколько дней после принятия секретной правительственной директивы многие талантливые физики и математики окажутся в Арзамасе-16. Среди них будет выпускник физического факультета Ленинградского университета Юрий Трутнев. Они говорят: "Мы хотим вас отправить в очень интересное место, и очень интересная работа. Как вы? Мне объяснили: "Вам нужно пройти на бульвар. Напротив ресторана "Узбекистан" пройдете, двор 13, в дворницкую, там вам объяснят". Пошел, прихожу туда. Открыл дверь, смотрю - газовые горелки, кирпичи на них греются, и бабка какая-то сидит.

Как действует водородная бомба и каковы последствия взрыва.

Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы.

Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру.

При взрыве наблюдался чудовищный огромный атомный гриб, который поднимался ввысь на 67 километров, а ударная волна трижды обогнула планету. Кстати, в музее «Арзамас-16», в городе Саров, можно на экскурсии посмотреть кинохронику взрыва, хотя утверждают, что это зрелище не для слабонервных. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке.

В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия. Это была сверхбомба, проект которой получил название Super. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер. В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему.

Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу. В этом документе рассматривалась возможность использования бомбы с дейтерием. Данное выступление стало началом советской ядерной программы.

В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6. Подрыв произошел на атолле Энивотек, в Тихом океане. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия.

Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета. Испытание первой водородной бомбы было проведено советскими учеными. После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах.

Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента. Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади множества островов и Тихого океана , что привело к скандалу и пересмотру ядерной программы. План был написан выдающимся физиком Андреем Сахаровым.

Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16. Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений. Семипалатинский эксперимент был уникальным не только из-за нового вида оружия.

Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super. В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов.

От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов. Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины.

Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен. Взрыв первой термоядерной бомбы Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы.

Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва. Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность.

Снаряд помещался в бомбардировщик Ту-16. Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии.

Этот проект будет реализован в СССР через два года, в 1955-м. Водородная бомба была его детищем - именно он предложил революционные те технические решения, которые позволили успешно завершить испытания на Семипалатинском полигоне. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама. Бомбу РДС-37 собирались сбросить с самолета.

Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность. Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту. Некоторое время на Центральном командном пункте шла дискуссия о том, что делать дальше. Рассматривалось предложение сбросить бомбу в горах неподалеку, однако этот вариант был отклонен, как слишком рискованный. Меж тем самолет продолжал кружить рядом с полигоном, вырабатывая горючее.

Решающее слово получили Зельдович и Сахаров. Водородная бомба, взорвавшаяся не на полигоне, привела бы к катастрофе. Ученые понимали всю степень риска и собственной ответственности, и все-таки дали письменное подтверждение того, что посадка самолета будет безопасной. Наконец, командир экипажа Ту-16 Федор Головашко получил команду приземляться. Посадка была очень плавной. Летчики проявили все свои умения и не запаниковали в критической ситуации.

Маневр был идеальным. В Центральном командном пункте облегченно выдохнули. Создатель водородной бомбы Сахаров и его команда перенесли испытания. Вторая попытка была намечена на 22 ноября. В этот день все прошло без внештатных ситуаций. Бомбу сбросили с высоты в 12 километров.

Пока снаряд падал, самолет успел удалиться на безопасное расстояние от эпицентра взрыва. Через несколько минут ядерный гриб достиг высоты 14 километров, а его диаметр - 30 километров. Взрыв не обошелся без трагических происшествий.

В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода - простейший из всех существующих атомов.

Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий 2H. Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB.

Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап.

Рисковать было нельзя, а потому решили взорвать заряд аккуратно, не выбрасывая с самолета. Черный шар привезли в Семипалатинск, установили на 37-метровую вышку взрыв должен был быть только над землей и со специального пульта, который располагался в бункере в 10 километрах от вышки, произвели принудительный подрыв.

В бункере присутствовал сам Берия». Дело было сделано: русские доказали, что обладают секретом атомной бомбы. Но дальше, в широкую серию, советский вариант «Толстяка» не пошел. Через два года в Сарове создали более легкую бомбу РДС-2, но с мощностью заряда почти 40 килотонн — вдвое сильнее предыдущей. Ее и начали сбрасывать с самолетов, запустили в серийное производство, чем очень расстроили американцев: научные круги Соединенных Штатов рассчитывали, что русские могут овладеть атомным оружием не ранее 1952 года. В чем секрет «сахаровской слойки»? Сами же янки к этому сроку подготовили нам новый сюрприз: взорвали первую в мире термоядерную водородную бомбу, а точнее, ее прототип. В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце.

Она основана не на расщеплении ядер, а на синтезе. На фоне дома, в котором жил Андрей Сахаров. Устройство это было слишком массивным, высотой с трехэтажный дом, нагревалось так, что, опасаясь самосрабатывания, специалисты ставили возле него охлаждающую криостанцию. И военные сказали: «Ну и что? Как воевать-то с такой махиной? Давайте нам компактный заряд». Но ученые из Лос-Аламосской национальной лаборатории, которой руководил талантливый физик Эдвард Теллер, не смогли этого сделать раньше нас. Впрочем, есть мнение, что первоначально идею «слойки» предложил не Сахаров, а Виталий Гинзбург, но это, как говорится, внутренняя кухня физиков, разобраться в которой под силу только им самим.

На выходе случился успех, а победителей у нас не судят… Говорят, Теллер долго не мог успокоиться по этому поводу и даже 39 лет спустя, в 1992 году, встретившись с Харитоном, высказал свое крайнее удивление тем, что советские ученые смогли обойти американских, используя свои оригинальные разработки. После первой термоядерной бомбы в 400 килотонн последовало испытание более мощной советской термоядерной бомбы РДС-37 мощностью уже в 3 мегатонны. Однако во время эксперимента во избежание нежелательных последствий мощность была снижена до 1,5 Мт. И даже эта мера, по словам Трутнева, не помогла избежать разрушения Семипалатинского мясокомбината. Стекла в домах, как свидетельствуют открытые источники, вылетали в радиусе 200 км от эпицентра взрыва. Естественно, были и пострадавшие. Мы работали с киловольтами, миллионами градусов, с невероятными давлениями и временами. Чтобы вы могли представить, мы оперировали в мигах миг равен 10 в минус 7-й степени секунды.

И весь процесс взрыва происходил у нас за 10—40 мигов. Испытание проводилось в 1955 году». Если при испытании атомной бомбы ученые и партийные деятели находились в 10 километрах от эпицентра, то при испытании РДС-37 это расстояние пришлось увеличить в 4 раза. Когда мы увидели взрыв, то закричали: «Ура! Как нас грохнуло тогда! Кто попадал, кто остался стоять, кто лег и со страху лежал до конца… Я вскочил — и потом снова едва удержался на ногах, потому что пришла вторая волна, отразившаяся от земли. Ударная волна сопровождалась двукратным резким звуком, напоминающим грозовой разряд. Юрий Алексеевич не рассказывает про машины с погибшими козами и овцами, которых начали свозить после взрыва к командному пункту: животных держали на поле для изучения воздействия поражающих факторов на разных расстояниях от эпицентра.

Как один солдат водородную бомбу изобрел

55 лет назад Никита Хрущев объявил о создании в СССР водородной бомбы. оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. В основу водородной бомбы положен тот же процесс, который происходит в звездах: четыре атома водорода (точнее, их ядра – протоны) соединяются в атом гелия. КНДР пригрозила США «мощнейшим» испытанием водородной бомбы Пхеньян может провести «самое мощное испытание» водородной бомбы в ответ на угрозу Трампа «полностью уничтожить» КНДР, заявил глава МИД страны.

Ученые придумали, из чего можно было бы создать бомбу мощнее водородной

Атомная бомба и Манхэтенский проект упомянуты в тексте дважды, но нет ни слова о водородной бомбе, которая в ту пору ещё находилась на этапе создания в Лос-Аламосе. Уже при подготовке к взрыву термоядерной авиационной "Царь-бомбы" АН602 в 1961 году между Сахаровым и Никитой Хрущевым были сильно испорчены отношения. Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%.

50 лет назад была испытана водородная бомба

В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. 30 октября 1961 года в СССР прошли испытания самой мощной в мире термоядерной бомбы (устаревшее название – водородная бомба), принцип действия которой основан. Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов.

50 лет назад была испытана водородная бомба

Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно.

Началась гонка вооружений «холодной войны», а ядерные испытания и исследования стали широкомасштабными целями для нескольких стран, особенно для Соединенных Штатов и Советского Союза.

Но главные успехи советского ВПК были впереди. Только в 1958 году СССР испытал 36 ядерных бомб различного класса. Но ничто из того, что испытал Советский Союз, не сравнится с Царь — бомбой. Испытание и первый врыв водородной бомбы в СССР Утром 30 октября 1961 года советский бомбардировщик Ту-95 взлетел с аэродрома Оленя на Кольском полуострове на крайнем севере России. Самолёт был специально измененной версией, появившейся в эксплуатации несколько лет назад — огромный четырехмоторный монстр, которому поручено носить советский ядерный арсенал. Модифицированная версия ТУ-95 «Медведь», специально подготовленная для первого испытания водородной Царь-бомбы в СССР Ту-95 нёс под собой огромную 58-мегатонную бомбу, устройство слишком большое, чтобы вместить внутри бомбового отсека самолета, где такие боеприпасы обычно перевозились. Бомба длиной 8 м имела диаметр около 2,6 м и весила более 27 тонн и в истории осталась с именем Царь-бомба — «Tsar Bomba». Царь-бомба не была обычной ядерной бомбой.

Это был результат напряженных усилий ученых СССР создать самое мощное ядерное оружие. Царь Бомба взорвалась в 11:32 по московскому времени. Результаты испытания водородной бомбы в СССР продемонстрировали весь букет поражающих факторов данного вида оружия. Прежде, чем ответить на вопрос, что мощнее, атомная или водородная бомба, следует знать, что мощность последней ихмеряется мегатоннами, а у атомных — килотоннами. Световое излучение В мгновение ока бомба создала огненный шар шириной в семь километров. Огненный шар пульсировал от силы собственной ударной волны. Вспышку можно было увидеть за тысячи километров — на Аляске, в Сибири и в Северной Европе. Ударная волна Последствия взрыва водородной бомбы Новой Земле были катастрофическими.

В селе Северный, примерно в 55 км от Ground Zero, все дома были полностью разрушены. Сообщалось о том, что на советской территории в сотнях километров от зоны взрыва было повреждено все — разрушались дома, падали крыши, повреждались двери, разрушались окна. Радиус действия водородной бомбы несколько сотен километров. В зависимости от мощности заряда и поражающих факторов. Датчики регистрировали взрывную волну, обернувшуюся вокруг Земли не один раз, не дважды, а три раза. Звуковую волну зафиксировали у острова Диксон на расстоянии около 800 км. Электромагнитный импульс Более часа была нарушена радиосвязь во всей Арктике. Проникающая радиация Получил некоторую дозу радиации экипаж.

Радиоактивное заражение местности Взрыв Царь-бомбы на Новой Земле оказался на удивление «чистым». Испытатели прибыли в точку взрыва через два часа. Причинами были особенности конструкции бомбы и выполнение взрыва на достаточно большом расстоянии от поверхности. Тепловое излучение Несмотря на то, что самолет-носитель, покрытый особой свето- и теплоотражающей краской, в момент подрыва бомбы ушёл на расстояние 45 км, он вернулся на базу со значительными термическими повреждениями обшивки. У незащищенного человека излучение вызвало бы ожоги третьей степени на расстоянии до 100 км. Гриб после взрыва виден на расстоянии 160 км, диаметр облака в момент съёмки — 56 км Вспышка от взрыва Царь-бомбы, около 8 км в диаметре Принцип действия водородной бомбы Устройство водородной бомбы. Первичная ступень выполняет роль включателя — триггера. Происходит термоядерный взрыв.

Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой. Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6.

Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы.

Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы. Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз.

Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия».

Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы. США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам.

Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах. Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия.

Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий 2H. Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону.

Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха.

В ходе нее ядра атомов сливаются воедино, образуя более тяжелый элемент. В качестве побочного продукта выделяется огромное количество энергии — намного больше, чем при ядерном распаде. Однако для осуществления такого слияния нужно сжать вещество так, чтобы ядра его атомов буквально «вошли» друг в друга. В водородных бомбах для этого используются ядерные заряды. В момент взрыва они сжимают и нагревают находящийся в сердечнике бомбы дейтерий так, чтобы произошла реакция синтеза. Благодаря этому мощность взрыва термоядерного оружия более чем в пять раз выше, чем у атомной бомбы, а площадь распространения радиоактивных осадков увеличивается в 5-10 раз. Сам, вероятно, не знает 0 Николай Николаев 03 Декабря 2021, 03:16 Каков механизм получения из реакции ядерного синтеза энергии большей, чем затрачивается на этот синтез? Если в реакции ядерного распада используются свертяжёлые неустойчивые ядра, уже созданные природой, то есть, природа уже затратила энергию на создание критического состояния, то лёгкие ядра очень устойчивы и чтобы заставить их вступить в синтез, необходимо затратить энергии больше, чем может быть получено из этого синтеза. В любом советском учебнике по гражданской обороне написано гораздо понятнее и правильнее 1 Nicolay1 30 Апреля 2021, 16:43 При взрыве водородной бомбы основная энергия выделяется в виде выделения нейтронов при слиянии двух изотопов водорода из которых образуется один атом гелия.

В августе-декабре 1962 года, включая самые тревожные дни Карибского кризиса, "грибной сезон" продолжился. Всего в СССР, включая Семипалатинский полигон, в период с 20 октября по 5 ноября 1962 года было проведено пятнадцать ядерных взрывов. А завершилась программа таких испытаний декабрьской серией из 11 термоядерных бомб и боеголовок мегатонного класса, взорванных над мысом Сухой Нос у западного побережья Новой Земли. Причем 18, 24 и 25 декабря проводили по два испытания в день, а 23-го было проведено три... В 1961-1963 годах США провели как минимум 125 ядерных испытаний Справедливости ради отметим, что Соединенные Штаты за период 1961-1963 годов провели на трех своих полигонах в Неваде, на острове Рождества и острове Джонстона как минимум 125 ядерных испытаний в атмосфере и под водой. Советский Союз в 1963 году ядерных испытаний не проводил. А серия мощных взрывов над Новой Землей в конце декабря 1962 года вообще стала последним для нашей страны эпизодом ядерных испытаний в открытых средах: с 1964 года в СССР проводились только подземные испытания. Так что Никита Хрущев ничуть не лукавил, когда заявил в Берлине, что в Советском Союзе в интересах всего социалистического содружества создано, испытано и поставлено на боевое дежурство, передано в войска оружие невиданной силы - "и пусть только господа-империалисты сунутся". Первые американские "штучки": урановый "Малыш", жертвой которого 06. Фото: Соцсети Многие эксперты солидарны в том, что нарочито громкое, демонстративное заявление советского лидера в Берлине имело целью подтолкнуть американцев к переговорам и заключению обязывающих соглашений. А чтобы так ставить вопрос - о переговорах между Москвой и Вашингтоном на равных, - надо было как минимум обеспечить фактический паритет СССР и США в ядерных вооружениях. Советский Союз вступил в эту гонку на исходе тяжелейшей для себя войны и первые пятнадцать лет был в роли догоняющего.

Как Сахаров и Теллер чуть не взорвали мир

Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой. создания более мощного ядерного оружия, использующего энергию ядерного синтеза – термоядерной (водородной) бомбы. Водородная «Царь-бомба» Мощнейшая в истории человечества водородная бомба была взорвана. Результат взрыва водородной бомбы носит тройной характер.

Похожие новости:

Оцените статью
Добавить комментарий