Новости что такое кубит

Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. (1) Сформулировать, что такое кубит.

Физик Алексей Устинов о российских кубитах и перспективах их использования

Что скрывается за этими рекордами и почему оценивать мощность КК стоит по квантовому объему? Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Чем больше число кубитов, тем больше возможностей для решения сложных задач. Если в обычной системе вычислительная мощность растет квадратично, то есть n2, то в квантовой — экспоненциально 2n n — в данном случае число битов, или кубитов. При этом важно, сколько времени кубиты могут проводить операции без потери информации. Это время называется когерентностью. Если поделить время двухкубитной операции на когерентность, то получится количество операций, которые можно совершить за цикл жизни кубита.

Соответственно, чем больше операций, тем лучше. Однако, в отличие от классических компьютеров, для КК очень важным параметром является достоверность полученных результатов, потому что его физические свойства подразумевают вероятностный характер вычислений: результат правильный с некоторой вероятностью. Если точность операций низкая, то прирост вычислительной мощности за счет увеличения числа кубитов будет незначительным. У каждого типа КК свои преимущества и недостатки. Например, КК на ионах обладает очень высокой точностью и когерентностью, но скорость операций и число кубитов пока невелики. КК на сверхпроводниках имеет самое большое число кубитов на сегодня, но из-за особенностей технологии их точность, как правило, невысокая.

Соответственно, некорректно называть их самыми мощными. Для сравнения разных типов КК между собой был предложен квантовый объем. Если говорить упрощенно, он отражает реальную вычислительную «мощность» квантового компьютера. Где сейчас и как ускориться В России сейчас активно разрабатываются все основные типы квантовых компьютеров: на ионах, атомах, оптических интегральных схемах и на сверхпроводниках. Самый мощный КК в стране построен на ионах и насчитывает 16 кубитов. Заместитель руководителя группы «Прецизионные квантовые измерения» РКЦ Илья Семериков, который разрабатывает этот КК, рассказывает: «Нам еще только предстоит измерить экспериментально квантовый объем нашего ионного компьютера, но, судя по достоверностям двухкубитных операций и связности, я бы ожидал увидеть 25 или, может быть, 26.

Увеличение квантового объема — наша основная задача на сегодня». Такие результаты соответствуют уровню лидеров квантовой гонки начала-середины 2020 г.

Туризм и Приключения 8 подписчиков Подписаться Российские ученые изготовили и испытали первый в нашей стране сверхпроводящий кубит. Эта работа открывает перспективу создания принципиально новых приборов и устройств на основе сверхпроводниковых элементов. Мы расскажем вам о том, как интересен мир вокруг и поможем разобраться в самых сложных вещах.

В 2020 году D-Wave начала предлагать коммерческий доступ через облако к специализированным квантовым компьютерам Advantage с пятью тысячами кубитов, которые пока пригодны для решения сложных оптимизационных задач. IBM представила коммерчески доступный IBM Quantum System One, пригодный для решения более широкого круга задач, в том числе моделирования материалов для систем хранения энергии, оптимизации портфелей финансовых активов и улучшения параметров стабильности в инфраструктуре энергоснабжения. Исследователи также стремятся использовать квантовый компьютер для того, чтобы раздвинуть границы глубокого обучения.

Пока ведутся исследования, связанные с проверкой концепции, то есть демонстрации осуществимости квантовых вычислений в интересующих специалистов областях. ИИ и криптосистемы Одна из наиболее перспективных областей, на которую могут повлиять квантовые вычисления, — разработка систем искусственного интеллекта ИИ. ИИ имеет дело с огромными объемами данных, а неточности в обучении нейронных сетей приводят к значительным погрешностям. Квантовые компьютеры могут улучшить алгоритмы обучения и интерпретации. Предприниматель в области ИИ Гэри Фаулер считает, что большую роль играет способность квантовых компьютеров выходить за рамки привычного двоичного кодирования. Это влияет как на объем анализируемой информации, так и на обработку естественного языка. ИИ на базе квантового компьютера будет способен глубоко понимать и анализировать текст и речь. Это касается и распознавания образов, то есть искусственный интеллект может научиться видеть предметы и понимать, что находится перед ним, с той же точностью, что человек, и даже лучше.

Улучшенное распознавание образов позволит медицинским работникам быстрее диагностировать и лечить заболевания по снимкам МРТ. Некоторые специалисты считают, что сильный ИИ невозможен без квантовых компьютеров. Современные суперкомпьютеры не обладают мощностью для моделирования человеческого мозга с химическими взаимодействиями между отдельными частями нервных клеток. Даже с учетом закона Мура такие компьютеры не появятся и через миллион лет, однако полноценный квантовый компьютер поможет решить эту проблему. Другой областью, которая значительно изменится с появлением квантовых компьютеров, станет криптография. Специалисты обеспокоены тем, что под ударом окажутся криптосистемы с открытыми ключами. Злоумышленники, использующие достаточно мощные квантовые компьютеры, могут совершить взлом цифровых подписей и основных интернет-протоколов HTTPS TLS , необходимых для безопасного просмотра онлайн-счетов и совершения онлайн-покупок. Квантовые вычисления также поставят под угрозу безопасность систем симметричной криптографии, которая основана на обмене закрытыми ключами.

Чтобы сохранить конфиденциальность данных, обмен ключами должен оставаться безопасным. Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем. Специалисты уже работают над решением этой задачи, и NIST Национальный институт стандартов и технологий, США разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году. В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым. Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования. Полный переход к ним может затянуться на 15-20 лет.

Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка. Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера. Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно. В КК суперпозиция сохраняется, пока не производится вычисление кубита, или измерение его состояния: 0 или 1. Именно благодаря этому свойству расчеты на КК производятся быстрее, чем на классических компьютерах. Однако для выполнения сложных алгоритмов на КК важно, чтобы значения одних кубитов были связаны со значениями других. В этом помогает такое явление, как квантовая запутанность. В нем состояния двух или большего числа частиц оказываются взаимосвязанными и их значения всегда противоположные. Если у одной частицы значение 0, то у другой, «запутанной» с ним, гарантированно будет 1. Нередко для объяснения запутанности приводится пример с новой парой носков, когда один, надетый на левую ногу и ставший левым, автоматически превращает свою пару в правый, как бы далеко тот ни находился, причем происходит это моментально. Как сравнивать Многие мировые корпорации громко заявляют о прорывах в создании КК. Одни говорят о рекордном числе кубитов, другие — о рекорде связанных кубитов, третьи — о рекордной когерентности. Что скрывается за этими рекордами и почему оценивать мощность КК стоит по квантовому объему? Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Чем больше число кубитов, тем больше возможностей для решения сложных задач. Если в обычной системе вычислительная мощность растет квадратично, то есть n2, то в квантовой — экспоненциально 2n n — в данном случае число битов, или кубитов. При этом важно, сколько времени кубиты могут проводить операции без потери информации. Это время называется когерентностью. Если поделить время двухкубитной операции на когерентность, то получится количество операций, которые можно совершить за цикл жизни кубита. Соответственно, чем больше операций, тем лучше.

Рекомендации

  • Количество кубитов в квантовых компьютерах — это обман. Вот почему
  • Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
  • Квантовые вычисления для всех
  • Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир
  • Русский союз - Новость: Квантовый компьютер как способ движения в завтра
  • Как работают квантовые компьютеры

Инвестиции в квантовые компьютеры: на что стоит обратить внимание

Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела. Возможные значения кубита можно представить как поверхность сферы с единичным радиусом — специалисты называют ее сферой Блоха. На первой линейке (кубите) "q[0]" мы видим оператор синий кружок с плюсом внутри. Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа.

В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений

У других платформ есть похожие серьезные проблемы. Еще есть проблемы с оборудованием — иногда под квантовые компьютеры нужно изобретать новые устройства. Например, специальную оптику, лазеры, вакуумное оборудование, криогенные камеры. Проблем много, но это путь развития — микроэлектроника уже прошла его. Это нормально: под каждый новый процесс промышленность адаптируется и придумываются новые проводящие металлы и другие открытия. Просто вся система пока на ранней стадии зрелости. На что обратить внимание? Например, количество кубитов — это показатель?

Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение. Как, например, с количеством кубитов — на самом деле это хорошо, но не говорит о том, насколько система умеет вычислять и с какой точностью. Для меня важно количество связанных между собой логических кубитов, точность вычисления, время жизни системы и способность вычислять практические алгоритмы. Поэтому кажется, что этим занимается очень ограниченное число организаций. Не значит ли это, что такие устройства будут работать только в пользу корпораций и государств? И можно писать свои квантовые схемы и считать алгоритмы. Каждый разработчик заинтересован в увеличении количества практических задач, которые можно делать на их квантовом компьютере, поэтому стоимость удешевляется.

По количеству инвестиций в сектор можно сделать вывод о том, что прогресс есть. Это косвенный параметр — если сотни инвесторов вкладывают и отрасль растёт, это говорит о многом. Видимо, мы близки к решениям, которые станут практическими. Но при этом есть всего 80 организаций, которые делают квантовые компьютеры. Но цифры говорят, что в hardware проинвестировали 1,5 млрд. И из них львиную долю забрали 12 компаний. Специалисты здесь нужны в квантовой физике, математике, инженеры нарасхват.

Интересный факт: советская школа здесь считается сильной. Программа разделена на несколько дорожных карт — квантовые вычисления курирует Росатом , коммуникации РЖД и Центр метрологии и сенсоры Ростех. Например, уже появилась специальная квантовая линия связи между Москвой и Петербургом — это основной протокол квантовой криптографии сегодня. По моим ощущениям, они отстают от мировых компаний на 3-5 лет. Но у них серьёзные кадры и подход — они однозначно разработают что-то полезное.

Такая возможность, как и с упомянутой выше памятью 3D NAND, позволяет максимально плотно кодировать данные в накопителях, что позволяет учёным реализовывать сложные квантовые алгоритмы. К тому же, таким образом повышается производительность квантовых систем и вырастает скорость выполнения операций. Так, один куквинт кудит в пяти состояниях заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных. По словам заведующего лабораторией квантовых информационных технологий НИТУ МИСИС Алексея Фёдорова, куквинт хорош тем, что его состояние позволяет уменьшить количество физических носителей в виде кубитов и упростить декомпозицию многокубитных вентилей гейтов — сложных операций с кубитами.

В итоге в квантовой системе можно сократить число двухчастичных гейтов, которые в работе используют две физические системы.

Кубиты, которые мы здесь мерили, соответствуют среднему уровню на настоящий момент. Фактически мы просто научились мерить эти кубиты, и теперь мы планируем начать их производить здесь, в России. У нас будет инструмент для того, чтобы можно было делать с ними измерения.

Мерить время когерентности, производить квантовые манипуляции, то есть делать квантовые преобразования, которые соответствуют логическим операциям. И как скоро можно ждать первых функционирующих операций? Дело в том, что такие логические гейты, то есть схемы, реализующие простейшие логические алгоритмы на сверхпроводящих схемах, уже продемонстрированы как минимум в трех крупных университетах: это Йель, Университет Санта-Барбары в Калифорнии и группа моего бывшего аспиранта, ныне профессора Андреаса Вальрафа Andreas Wallraff в Цюрихе. Я не говорю еще о том, что, например, компания D-wave уже создала 100-битный квантовый компьютер на принципе квантовой релаксации это когда система релаксирует состояние с минимальной энергией.

Подобные компьютеры позволяют вычислять состояния определенного класса систем и решать задачи, скажем, нахождения объекта среди многих других одинаковых объектов. Поэтому у нас есть идеи делать что-то такое, что позволит привнести совершенно новый элемент, может быть, позволит в чем-то обойти основную группу команд, которые работают с кубитами. Я просто скажу, почему это имеет отношение к кубитам. В первом спины ориентированы одинаково, а в сверхпроводнике они объединены в пары в куперовских парах спины электронов противоположно направлены.

Поэтому на первый взгляд при прохождении через ферромагнетик пары должны распадаться, но если слой ферромагного материала достаточно тонкий, этого не происходит. При этом, однако, при правильном подборе материала происходит сдвиг фаз волновых функций на значение числа пи отсюда и название. На самом деле внешнее магнитное поле при работе кубита нужно ровно для этого же. На самом деле кубиты при этом живут достаточно долго по сравнению со временем, которое требуется на выполнение одной логической операции.

Кроме того, существуют специальные методы, так называемые «методы коррекции ошибок» в квантовых вычислениях. Они были предложены теоретически, и были даже первые эксперименты, которые такие методы уже продемонстрировали, в том числе со сверхпроводниками. Эти методы позволяют фактически корректировать сбои когерентности в квантовой системе. Для этого необходимо, чтобы система жила хотя бы какое-то количество определенных операций.

То есть если мы можем за время без корректировки сделать 10 тысяч операций, то оказывается, что можно принципиально построить схему исправления ошибок, которая позволит такой компьютер использовать уже долговременно. Время же одной операции на наших кубитах составляет несколько десятков наносекунд. То есть мы можем успеть выполнить порядка 100 операций даже с нашими скромными значениями. А чем эти кубиты отличаются от того, который есть у вас?

Если не вдаваться в подробности, то это тоже кольца, но в них встроены не только джозефсоновские переходы, но и более сложные элементы. Обычно СКВИДы используются в качестве сверхчувствительных магнитометров для измерения очень слабых магнитных полей. В СКВИДе волны куперовских пар электронов, пройдя через два джозефсоновских перехода, проявляют интерференцию, похожую на оптическую картину прохождения световых волн через две щели.

Однако эти базовые состояния не исчерпывают всех возможных значений квантового регистра в отличие от классического , поскольку существуют еще и состояния суперпозиции, задаваемые комплексными амплитудами, связанными условием нормировки. Классического аналога у большинства возможных значений квантового регистра за исключением базовых просто не существует. Состояния классического регистра - лишь жалкая тень всего богатства состояний квантового компьютера. Представьте, что на регистр осуществляется внешнее воздействие, например, в часть пространства поданы электрические импульсы или направлены лазерные лучи. Если это классический регистр, импульс, который можно рассматривать как вычислительную операцию, изменит L переменных.

Если же это квантовый регистр, то тот же импульс может одновременно преобразовать до переменных. Таким образом, квантовый регистр, в принципе, способен обрабатывать информацию в раз быстрее по сравнению со своим классическим аналогом. В действительности квантовое ускорение обычно значительно меньше, чем приведенная грубая оценка сверху это связано со сложностью получения большого количества амплитуд и считывания результата , поэтому практически полезный квантовый компьютер должен содержать тысячи кубитов. Но, с другой стороны, понятно, что для достижения действительного ускорения вычислений нет необходимости собирать миллионы квантовых битов. Компьютер с памятью, измеряемой всего лишь в килокубитах, будет в некоторых задачах несоизмеримо быстрее, чем классический суперкомпьютер с терабайтами памяти. Стоит, однако, отметить, что существует класс задач, для которых квантовые алгоритмы не дают значительного ускорения по сравнению с классическими. Одним из первых это показал российский математик Ю. Ожигов, построивший ряд примеров алгоритмов, принципиально не ускоряемых на квантовом компьютере ни на один такт.

И тем не менее нет сомнения, что компьютеры, работающие по законам квантовой механики, - новый и решающий этап в эволюции вычислительных систем. Осталось только их построить. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом IBM , объявила о сборке 5-битового квантового компьютера. Несомненно, это большой успех. К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности.

Существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул. Российский исследователь М. Фейгельман, работающий в Институте теоретической физики им. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводни ковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце - по часовой стрелке и против нее. Переключать такие кубиты можно магнитным полем. Валиева предложила два варианта размещения кубитов в полупроводниковых структурах.

В первом случае роль кубита выполняет электрон в системе из двух потенциальных ям, создаваемых напряжением, приложенным к мини-электродам на поверхности полупроводника. Состояния 0 и 1 - положения электрона в одной из этих ям. Переключается кубит изменением напряжения на одном из электродов. В другом варианте кубитом является ядро атома фосфора, внедренного в определенную точку полупровод ника. Состояния 0 и 1 - направления спина ядра вдоль либо против внешнего магнитного поля. Управление ведется с помощью совместного действия магнитных импульсов резонансной частоты и импульсов напряжения. Таким образом, исследования активно ведутся и можно предположить, что в самом недалеком будущем - лет через десять - эффективный квантовый компьютер будет создан. Вероятно, большой масштабируемый компьютер будет содержать тысячи управляющих элементов, действующих локально на каждый кубит.

Каким образом могло бы осуществляться это воздействие? Скорее всего, с помощью электрических импульсов, подаваемых на микроэлектроды, подведенные к кубитам. Возможно также оптическое управление пучками света, сфокусированными на кубитах. Однако в этом случае трудно избежать паразитного воздействия на соседние кубиты дифракционных краев сфокусированного пучка. Что касается электрических методов, то они уже давно и широко применяются в микроэлектронике для управления классичес кими логическими элементами. Поэтому их использование представляется наиболее перспективным и для создания масштабируемых квантовых компьютеров. Возможно, конечно, что в результате какого-нибудь технологического прорыва появится еще и третий вариант. Однако революционные открытия трудно поддаются прогнозу.

Таким образом, весьма возможно, что в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор.

Что такое квантовый компьютер и как он работает

В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. Если же взять, к примеру, десять кубитов, то будет уже 1024 классических состояния. Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0. Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Увеличение количества кубитов в процессоре не связано напрямую с увеличением его мощности, которая определяется так называемым квантовым объемом. С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами.

Что такое квантовые вычисления?

Но совсем скоро эти воры останутся не у дел. Потому что защищать наши деньги будут при помощи квантовой криптографии, или, как ее еще называют, квантового распределения ключей. То есть мы используем только одни маленькие очень сильно ослабленные лазерные импульсы. И потом с их помощью, скажем так, передаем ключ.

В этом случае не происходит передачи непосредственной информации. Мы передаем именно ключ", — пояснила кандидат физико-математических наук, доцент Московского технического университета связи и информатики Татьяна Казиева. Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов.

Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение. Это может быть что угодно: электронная подпись, информация из банка или страховой компании. При этом злоумышленники добраться до них никогда не смогут.

Система тут же отреагирует на любую попытку взлома. Но это не все, на что способны кванты. Два года назад в США сумели перевести в квантовое состояние зеркала антенны массой десять килограммов.

Это назвали едва ли не величайшим событием десятилетия — огромные зеркала подобно квантам находились в лаборатории и за ее пределами.

Но об этом мы еще поговорим в разделе про сам квантовый компьютер, терпения. Как только мы «читаем» кубит, он всегда схлопывается в 0 или 1 как та монетка, которая в итоге выпадает только орлом или решкой. Кубит после этого уничтожается, потому чтение логичнее делать в самом конце.

Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Даже если мы специально изменим один кубит — второй изменится на ту же величину, только наоборот. Нарастающее стрёмное ощущение, что всё вокруг волна — даже небо, даже кубит. Появляющиеся сомнения в объективности наблюдаемой реальности и своей роли в этом мире.

Чтобы собрать классический цифровой компьютер в домашних условиях, мы берём ленту, кладём на неё некую последовательность битов, двигаем эту ленту туда-сюда и выполняем записанные отдельно на листочке операции над ними. Так получается алгоритм. Машина Тьюринга. Такой вот фигней, только на более высоком уровне, занимаются все программисты.

В квантовом компьютере у нас такая же лента, только теперь мы кладём на неё кубиты. Список операций тоже остался, но сами операции чуть изменились. Решительно очевидно, что мы имеем полное право писать и читать наши кубиты как обычные биты. Но смысла в этом ноль.

Как колоть орехи микроскопом — никто не запретит, но это достаточно медленно и бессмысленно. Обычный компьютер справится с этим лучше. Сила же квантового компьютера именно в том, что мы берём несколько кубитов, которые как вы помните можно представлять как крутящиеся монетки, и взаимодействуем именно с вероятностями их выпадения в 0 орел или 1 решка , а не самими результатами 0 и 1. Вот это уже куда более интересно.

В наших алгоритмах мы больше не мыслим концепциями «прочитай здесь, если 1, переложи туда», а начинаем как бы настраивать взаимодействие наших монеток кубитов пока они еще крутятся, чтобы в итоге получить интересующий нас результат. Как вы понимаете, никто не гарантирует какой стороной упадёт первый кубит, а значит и нельзя ничего гарантировать про второй, и так далее. Получается как будто дерево расчёта вариантов исхода алгоритма. Это и даёт нам вот ту самую экспоненциальную скорость вычислений в квантовом компьютере.

В конце же наше дерево вычислений всё равно приведёт к одному результату с наибольшей вероятностью, а к другим с наименьшей. Это и будет ответ алгоритма. Если хотите более подробного разбора дерева по шагам, рекомендую вот эту годную статью. Мы не перебираем все варианты одновременно, как объясняют во многих статьях для новичков.

Мы скорее настраиваем вероятности наших кубитов по ходу программы так, чтобы правильный результат засветился на выходе с большей вероятностью, чем неправильный. Условно говоря, мы подкручиваем наши монетки и говорим как им вращаться друг относительно друга, чтобы в итоге они выпали на стол в комбинацию, например, «орел-решка-орел» 010. Это и будет правильный ответ алгоритма. Тогда в 1 случае из 10 квантовый компьютер будет вполне легально нам врать, выдавая неправильный ответ.

Тогда мы просто запускаем алгоритм много-много раз как настоящие боги инженерии! Побеждают, как обычно, китайцы. Белые же европейцы в это время воюют за запрет термина «превосходство» потому что оно оскорбительно и нетолерантно. Лет через пять меня точно отменят за этот пост.

На практике же момент «квантового превосходства» не означает ничего, кроме того, что можно будет открыть шампанское и выпить за технологический прогресс. Сейчас объясню. Все эксперименты по квантовому превосходству по прежнему проводятся на специально подобранных задачках, которые квантовый компьютер должен щёлкать на раз, а классический пыхтеть тысячелетиями. Читеры вставляют палки в колёса, короче, и всё равно не могут догнать.

Разве что иногда. Именно поэтому квантовое превосходство интересно журналистам и историкам, но точно не инженерам. Я как инженер жду не формального победителя первого забега, а того, кто покажет мне первый стабильный квантовый компьютер. Сейчас с этим всё плохо.

С текущим количеством шумов они попросту бесполезны для практических задач. Компьютер, который считает быстро, но постоянно врёт — разве это годится? Превосходство у них, блин. Случайно подняться на гору легко — куда сложнее подниматься на неё каждый день.

Можно использовать эту фразу как кредо по жизни. The Алгоритм Время программировать программы! На уроках информатики в 8 классе сегодня каждому школьнику рассказывают, что любой компьютер на самом деле состоит из кучки простейших операций над одним или двумя битами, называемых логическими вентилями или логическими гейтами, если вы дитя улиц и учились по английскому учебнику, как я. Хитро соединив проводами пару-тройку вентилей можно получить сумматор или простейшую память — всё это базовые элементы любого процессора.

Потом они соберут из этих операций жирные высокоуровневые языки программирования. Начнется бум кремния, крах доткомов, курсы «профессия Data Scientist за неделю» и вот уже даже бездомные пишут на React за еду. Короче, в квантовых компьютерах всё то же самое!

Первый в мире протокол квантового интернета Нидерландские ученые разработали первый в мире протокол для так называемого квантового интернета, работающего без помех и максимально защищенного от взлома. Идея принадлежит специалистам исследовательского центра QuTech. Протокол, работающий на канальном уровне, разработан группой ученых под руководством профессора Стефани Вейнер Stephanie Wehner. Также они проработали общую концепцию квантовых сетей, которые в будущем, по их мнению, могут заменить собой традиционный интернет и локальные сети. В основе идеи специалистов QuTech лежит принцип очень быстрой обработки кубитов, поскольку они не могут находиться в памяти длительное время. Это обеспечит высокую скорость передачи информации, а явление квантовой запутанности, еще одна основа протокола, даст возможность максимально защитить передаваемые данные.

Явление квантовой запутанности подразумевает взаимозависимость двух и более объектов, в данном случае кубитов, и их неразрывную связь друг с другом. Попытка перехвата данных приведет к изменению квантового состояния одного или нескольких кубитов и, как следствие, к потере передаваемой информации. Другими словами, информацию может получить исключительно целевое устройство — несанкционированный доступ к ней исключен. Технические подробности о работе первого протокола квантовой сети Стефании Вейнер оставила в тайне. Она уточнила лишь, что для работы квантового интернета вполне сгодится физическая инфраструктура обычного интернета. Какие компании разрабатывают квантовые компьютеры уже сегодня? Формально дальше всех в этой гонке продвинулась канадская компания D-Wave. Она создала и успешно продает единственные представленные сегодня на рынке квантовые компьютеры. В конце января этого года D-Wave анонсировала выпуск коммерческой версии квантового компьютера четвертого поколения D-Wave 2000Q.

В феврале 2024 г. Мы его реализовали на ионной платформе. Также у нас есть 25-кубитный компьютер на атомной платформе. Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать.

Посмотрим, может быть, получится и больше», — добавил Юнусов.

Что такое квантовые вычисления?

Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается. (1) Сформулировать, что такое кубит. Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Поисковые системы интернета переполнены запросами: «наука и технологии новости», «квантовый компьютер новости», «что такое кубит, суперпозиция кубитов?», «что такое квантовый параллелизм?». С точки зрения физики кубит — это элементарная частица, например электрон, а значение кубита — это значение одного из физических свойств этой частицы.

Что такое кубиты и как они помогают обойти санкции?

Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127). Кубит может хранить намного больше информации, чем классический бит.

Что такое квантовые вычисления?

В некотором смысле это так, но трудность в том, что невозможно узнать это значение для конкретного момента времени, как это делается для обычных переменных. Если выразиться максимально простым языком, кубит похож на магический шар. Если этому шару задать вопрос, то ответом может быть единица или ноль. Но выпадут они с разной вероятностью. Именно вероятности выпадения значений «хранятся» в суперпозиции. Рука об руку с принципом суперпозиции работает эффект квантовой зацепленности. Две взаимосвязанные квантовые частицы синхронно изменяют свое состояние, даже если между ними миллионы световых лет.

Зацепленность дает возможность собирать кубиты в «наборы». Если в наборе из двух бит можно хранить одну определенную последовательность из двух значений нулей или единиц , то набор из двух кубитов содержит суперпозицию всех возможных вариантов последовательностей из двух этих значений. А это намного больший объем информации. Как устроен квантовый компьютер: принцип работы После появления понятия квантового компьютера десятки ученых всего мира пытались создать его физическое воплощение. Главный вопрос: что может использоваться в качестве кубита? В 1994 году европейские физики Петер Цоллер и Хуан Игнасио Сирак описали схему использования специальной ионной ловушки как основы для квантового компьютера.

Именно в этот момент стало ясно, что научная теория и практика встретились лицом к лицу. Физические «воплощения» кубитов — это не только ионы. В этих целях ученые пытались и пытаются использовать электроны, ядра атомов, фотоны, сверхпроводящие материалы и даже искусственные наноалмазы. Совсем недавно был разработан оптический квантовый микрочип, на основе которого теоретически может быть создан оптический компьютер, использующий манипуляцию с квантовыми состояниями света. Две основные проблемы, которые пытаются решить конкурирующие исследовательские группы: срок жизни кубитов и их количество в системе. Вывести квантовую систему из состояния суперпозиции очень легко.

Это под силу даже единственному фотону, столкнувшемуся с кубитом. Именно поэтому вопрос, можно ли назвать мозг квантовым компьютером, редко поднимался учеными — сложно вообразить себе квантовые вычисления в биологической среде. Кубиты, даже находящиеся в специально созданных условиях вакуум, охлаждение до сверхнизких температур , разрушаются за доли секунды. Присутствие рядом других кубитов дополнительно сокращает этот срок. А теперь представьте, что вам необходима работающая структура из десятков, а то и сотен таких капризных частиц. Нетривиальная задача, не правда ли?

Отдельная тема — программирование на квантовом компьютере. Программист в данном случае имеет дело с гибридным устройством.

Представьте себе катящиеся волны: иногда они подгоняют друг друга действуют конструктивно , иногда гасят деструктивно. Использование интерференции позволяет ученым контролировать состояния, усиливая тип сигналов, приводящих к правильному ответу, и отменяя те, которые выдают неверные ответы. Как программируются квантовые компьютеры? Основная цель состоит в том, чтобы закодировать части задачи в сложное квантовое состояние, используя кубиты, и затем манипулировать этим состоянием, чтобы привести его к некоему решению, которое можно будет измерить после коллапса суперпозиций в детерминированные последовательности нулей 0 и единиц 1. Перечитайте еще раз. Звучит сложно, но поскольку все термины мы уже разобрали, понять можно.

Как и в случае с классическим программированием, ученые разрабатывают языки ассемблера низкого уровня, которые машина понимает лучше, чтобы перейти от них к языкам высокого уровня и графическим интерфейсам, более подходящим для человеческого разума. IBM Qiskit, например, позволяет экспериментаторам создавать задачи и перетаскивать логические элементы. Декогеренция Почему же квантовые компьютеры еще не продаются на каждом углу? В некотором смысле, ученые пытаются построить совершенные машины из несовершенных частей. Квантовые компьютеры чрезвычайно чувствительны к возмущениям, шуму и другим воздействиям окружающей среды , которые заставляют их квантовое состояние колебаться и исчезать. Этот эффект называется декогеренцией. Физика вообще интересная штука. Она способна открыть нам потрясающие горизонты Для некоторых экспертов декогеренция — это проблема, сдерживающая квантовые вычисления.

Кубит — квантовомеханический аналог обычного бита — это основной и наименьший элемент квантового компьютера. Собственно он и хранит информацию. Физически кубит делают на основе сверхпроводников, в которых за счет электрического тока удается реализовать необходимые для вычисления состояния — или О, или 1.

Как и в традиционных компьютерах. Принципиальное отличие в том, что кубит может находиться еще и в так называемой суперпозиции — то есть, принимать промежуточные состояния. Понять это простым смертным не стоит и пытаться — квантовый мир полон причудами.

Но именно они и позволят в будущем фантастически увеличить скорость и мощность вычислений. Однако есть препятствия. Кубиты — «создания» очень нежные, если можно так выразиться.

Чувствительны к внешним возмущениям — чуть что «погибают».

В то время никто еще не задумывался всерьез о реализации этой идеи на практике. Даже в теории она казалась весьма непростой. Квантовая механика, в отличие от классической, которую все мы изучали в школе, описывает явления не на уровне тел, а на уровне атомов, электронов, фотонов и прочих элементарных частиц. И квантовые эффекты, которые предполагалось использовать, создавая первый квантовый компьютер, проявляются в микроскопических масштабах. Переместиться на микроуровень в поисках новых возможностей ученых заставили физические основы, на которых базируется традиционная вычислительная техника. Схема ее работы основана на транзисторах, в каждом современном компьютере их миллионы или даже миллиарды.

Каждый из них может в определенный момент времени находиться в «открытом» или «закрытом» состоянии — как электрический переключатель. Эти два состояния и представляют собой те самые нули и единицы, с помощью которых человек общается с компьютером и наоборот. По мере развития технологий производители размещают на процессорах компьютеров все большее и большее количество транзисторов. Это увеличивает скорость работы и вычислительные возможности техники. Но всему есть физический предел, и мы вплотную к нему приблизились. Если раньше вычислительная мощность производимых процессоров удваивалась примерно каждые два года, то сегодня этот темп падает на глазах. В то же время потребности человечества в вычислениях постоянно растут, опережая развитие электроники.

Но вернемся к Ричарду Фейнману и его теории. Основное отличие квантового компьютера от обычного заключается в представлении информации в его процессоре. Единица информации в обычном компьютере — бит, представляющий собой ноль или единицу. Третьего не дано. Единица хранения информации для квантового компьютера — квантовый бит, или, сокращенно, кубит. Это квантовый объект — вещь, которую гораздо проще описать, чем представить. Что такое кубиты для квантовых компьютеров Итак, если бит — это одна из двух условных точек 1 или 0 , то кубит можно представить себе в виде сферы с полюсами в этих же точках — 1 и 0.

Кубит также может принимать значение 1 или 0. Но кроме них он может находиться в состоянии суперпозиции, то есть иметь любое из возможных значений, лежащих на поверхности сферы. И все это — одновременно. Но что именно расположено на поверхности сферы? Может быть, кубит имеет переменное плавающее значение? В некотором смысле это так, но трудность в том, что невозможно узнать это значение для конкретного момента времени, как это делается для обычных переменных. Если выразиться максимально простым языком, кубит похож на магический шар.

Новый прорыв в области кубитов может изменить квантовые вычисления

Каждый лишний кубит играет большую роль – ведь он сразу повышает мощность вычислений в два раза. Еще одна хорошая новость — логические операции с большим массивом кубитов всегда можно представить в виде последовательности двухкубитных операций. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. Квантовый бит (кубит) может находиться в любом из бесконечного множества промежуточных состояний и плавно переключаться между ними. Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов.

Похожие новости:

Оцените статью
Добавить комментарий