нелегкая задача, тем более что во время повседневной работы необходимо зарядить телефон, планшет, подключить настольную лампу, ноутбук, принтер. Трансформаторы и электроника низковольтных галогенных ламп.
Расчет мощности понижающего трансформатора для светодиодных ламп 12В
Продолжая экспериментировать с блоками электронных трансформаторов для питания галогенных ламп, можно доработать сам импульсный трансформатор, например для получения повышенного двухполярного напряжения для питания автомобильного усилителя. Электронные трансформаторы для галогенных ламп на 12 В. сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)». Схема электронного трансформатора для галогенных ламп Kanlux SET210, Eaglerise EET210LK. электронные трансформаторы тороидальные 220/12В, бескорпусные понижающие тороидальные трансформаторы 220/12В могут быть встроены в светильники или помещены в нужный заказчику корпус, бескорпусные трансформаторы.
Как работает трансформатор для галогенных ламп и какой выбрать
Расширение ассортимента и поступление на склад электронных трансформаторов для галогенных ламп Народных торговой марки TDM ELECTRIC. Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2. Расширение ассортимента и поступление на склад электронных трансформаторов для галогенных ламп Народных торговой марки TDM ELECTRIC. Именно таким устройством выступает трансформатор для галогенных ламп, у которого имеется особое назначение в схеме питания.
Электронные трансформаторы. Устройство и работа. Особенности
С его выхода напряжение см. Как видно из рисунка, пульсации на выходе фильтра почти отсутствуют и форма напряжения близка к прямой линии. Это напряжение подаётся на силовые транзисторные ключи, к выходу которых, как и в случае с электронным трансформатором, подключен понижающий трансформатор. Отличие заключается в том, что работой ключей управляет специализированная микросхема, в состав которой входит задающий генератор, ШИМ контроллер и различные цепи управления. Механизм использования ШИМ широтно-импульсной модуляции в блоке питания заключается в том, что меняя ширину коммутирующих импульсов, подаваемых на силовые ключи, можно менять напряжение на выходе блока питания. Благодаря этому, подавая сигнал управления с выхода блока питания на вход контроллера ШИМ, появляется возможность стабилизировать выходное напряжение. Стабилизация выходного напряжения осуществляется следующим образом. Когда выходное напряжение, под влиянием внешних факторов, повышается, сигнал ошибки передаётся с выхода блока питания на контроллер ШИМ, ширина импульсов уменьшается, и выходное напряжение снижается, приходя в норму. При понижении выходного напряжения аналогичным образом происходит увеличение ширины коммутирующих импульсов. Благодаря такой работе, выходное напряжение всегда поддерживается в заданном диапазоне.
Поскольку режим работы задающего генератора в данной схеме не зависит от внешних воздействий, а также благодаря цепям стабилизации, выходное напряжение остаётся постоянным во всём диапазоне допустимой мощности нагрузки, например, от 0 до 100 Вт. Кроме того, наличие обратной связи позволило защитить блок питания от выхода из строя. При превышении потребляемой мощности, при повышении выходного напряжения выше критического, а также при коротком замыкании в нагрузке происходит автоматическое выключение блока питания. После устранения причины, вызвавшей срабатывание защиты, блок питания запускается вновь. После понижающего трансформатора высокочастотные разнополярные импульсы поступают на выпрямитель, где преобразуются в импульсы одной полярности. Выходной фильтр сглаживает импульсы после выпрямления и превращает их в постоянное напряжение с низким уровнем пульсаций. Также немаловажное положительное влияние выходного фильтра - значительное снижение уровня электромагнитных помех, излучаемых блоком питания и в особенности помех, излучаемых проводами, подключенными к его выходу.
Это необходимо для корректной работы приборов. При наличии разной по длине проводки лампы будут гореть неодинаково. Та, у которой провод короче, будет светить ярче. Прибор с длинным кабелем будет гореть тускло. Кроме того, в последнем случае в процессе работы возможен еще и нагрев провода, что крайне нежелательно. Специалисты рекомендуют строить схему так, чтобы длина каждого из отходящих к лампам проводов не превышала 200 мм. При этом сечение кабеля должно быть не меньше 1,5 кв. Таким способом подключают небольшое количество ламп. Оптимально соединять не более пяти, иначе придется устанавливать трансформатор большой мощности На корпусе трансформаторе находятся клеммы выхода и входа. Первичные маркируются как N и L или Input. Это вход, расположенный на стороне 220 В. Нужно помнить, что здесь подключение проводится через одноклавишный выключатель. Далее отходящие от распредкоробки нулевой и фазный провода синего и оранжевого либо коричневого цвета соединяются с соответствующими клеммами трансформатора. К вторичным клеммам Output или выход понижающего устройства подключаются галогенные лампы. Для этого используются только медные провода с одинаковым сечением. Важное замечание. Если по каким-либо причинам клемм трансформатора не хватает, следует установить дополнительные клеммные зажимы. Их можно приобрести в любом специализированном магазине. Две группы ламп с двумя трансформаторами Такое подключение оптимально, если светильников больше пяти. Группы могут состоять из одинакового количества ламп или разного. Это не важно. Главное, чтобы для каждой был правильно подобран трансформатор. Как и в описанном выше варианте начать стоит с выполнения схемы. При выборе места расположения ламп «работают» аналогичные правила. То есть длина всех отходящих к ним от трансформатора проводов должна быть примерно одинакова. Так подключаются две группы галогенных светильников. Для каждой из них используется свой трансформатор, но выключатель общий для обеих Это может быть сделать достаточно сложно. Тогда потребуется провести некоторые корректировки. Нужно знать, что для проводов из меди сечением 1,5 кв. На такое расстояние энергия будет передаваться с минимальными потерями и без образования помех. Иногда такой длины явно недостаточно. В этом случае потребуется выбрать провод большего сечения. Для расстояния от 300 до 400 см выбирается кабель сечением до 2,5 кв. Если предполагается еще большая длина, что нежелательно, следует провести специальный расчет и определить подходящее сечение по специальной таблице. Подключение каждого из трансформаторов и групп ламп к нему производится аналогично выше описанному способу. То есть нулевая жила из распределительной коробки подключается к нулевым клеммам трансформаторов. Фазная жила с выключателя соединяется с фазными же кабелями понижающих устройств. Теоретически таким способом можно подключить и более двух групп светильников, но для каждой из них устанавливается свой трансформатор. Читайте также: Что лучше индукционная или электрическая варочная панель: особенности и достоинства устройств Важное замечание. Для каждого из понижающих устройств прокладывается отдельный кабель, причем соединяются они исключительно внутри распределительной коробки. Некоторые «умельцы» предпочитают соединить провода где-нибудь под потолком, но не задействовать распредкоробку. Это серьезная ошибка, противоречащая ПУЭ, где написано о том, что к каждому из выполненных участков соединения кабелей обязательно должен быть обеспечен свободный доступ для осмотра, обслуживания и возможного ремонта. Поэтому единственный правильный вариант — соединение в распределительной коробке. В процессе создания галогенной подсветки с большим количеством ламп важно грамотно рассчитать количество осветительных групп и место расположения трансформаторов для каждой из них Специалисты подчеркивают, что если предполагается подключение группы, состоящей из большого количества ламп, возможен вариант с размещением распределительной коробки между светильниками и выходом трансформатора. Это особенно актуально при недостатке клемм на понижающем устройстве или при ограничениях его размещения. Выбирая такой вариант нужно знать, что при одинаковой мощности низковольтная цепь пропускает больший ток, чем высоковольтная. Исходя из этого требуется точный расчет для определения сечения провода. Производится оно путем вычисления общей силы тока. Проиллюстрируем примером. Семь 12 В источников света мощностью в 35 Вт должны быть подключены через трансформатор. Лампы монтируются через распредкоробку параллельно. Нужно узнать сечение провода, который будет проложен между распределителем и выходом блока. Для этого сначала умножаем число лампочек на их мощность. Затем полученную величину делим на рабочее напряжение. Получаем приближенно 29 А. Это сила тока, который будет проходить через низковольтную проводку. Используя представленную в ПУЭ таблицу зависимости сечения проводки от рабочего напряжения, определяем подходящий размер провода. В нашем случае это будет как минимум 4 кв. Как видно, нагрузка достаточно велика. Возможно, есть смысл разделить эту группу ламп еще на две. Если при подключении двух групп галогенных ламп поставить двухклавишный выключатель, можно получить возможность управлять каждой из них по отдельности При монтаже двух групп галогеновых лампочек через трансформатор можно использовать два типа выключателей. Если же требуется отдельное управление группами световых приборов, можно поставить двухклавишный выключатель. Модели с диодным мостом Трансформатор 12 Вольт данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк. Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками. Технические характеристики Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной — 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, — так называемые трансформаторы или специальные блоки питания. Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 — 3 лампы одновременно. На современном рынке встречаются как дорогие, так и дешевые блоки питания. Хотя, в принципе, дороговизна — это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает. Схема подключения Трансформатор Тесла собирается и подключается в соответствии с электрической схемой. Монтаж маломощного устройства следует проводить в несколько этапов: Установить источник питания с чётким соблюдением соответствия контактов. Прикрепить радиатор к транзистору. Собрать электрическую схему, используя фанеру, деревянную коробку или кусок пластика в качестве диэлектрической подложки. Изолировать катушку от схемы пластиной диэлектрика, имеющей отверстия для подключения проводов. Установить первичную обмотку, исключив её падение и соприкосновение с другой обмоткой. В центре предусмотреть отверстие для вторичной катушки, обеспечив расстояние между ними не менее 1 см. Закрепить вторичную обмотку, осуществить необходимые соединения, руководствуясь схемой. Сборка более мощного трансформатора происходит по аналогичной схеме. Добавить терминал в виде тороида. Обеспечить хорошее заземление. Максимальная мощность, которую может достигать правильно собранный трансформатор Тесла, доходит до 4,5 кВт. Такой показатель может быть достигнут с помощью уравнивания частот обоих контуров. Собранную своими руками катушку Тесла обязательно необходимо проверить. Во время проверочного подключения следует: Установить переменный резистор в среднюю позицию. Отследить наличие разряда. При его отсутствии нужно поднести к катушке люминесцентную лампу или лампу накаливания. Её свечение будет свидетельствовать о наличии электромагнитного поля и о работоспособности трансформатора. Также исправность прибора можно определить по самостоятельно зажигающимся радиолампам и вспышкам на конце излучателя. Трансформаторы для галогеновых ламп Разбор будет проведен на примере блока питания. На выходе этот трансформатор имеет ни много ни мало — 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры. Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим: мост из диодов; RC цепь с динистором, чтобы запустился генератор; генератор, собранный на полумостовой схеме; трансформатор, понижающий входное напряжение; низкоомный резистор, который служит в качестве предохранителя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть. Читайте также: Какой кабель телевизионный лучше: тонкости выбора и современные телевизионные стандарты Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока ее просто нет! Сомнение вызывает электрическая цепь на схеме она красным цветом. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки. При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие Электронный трансформатор для галогенных ламп 12в схема, get 0902 Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая: Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц. В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке. Особенности электронного трансформатора на IR2161:Интеллектуальный драйвер полумоста; Защита от короткого замыкания нагрузки с автоматическим перезапуском ;Защита от токовой перегрузки с автоматическим перезапуском ;Качание рабочей частоты для снижения электромагнитных помех ;Микромощный запуск 150 мкА;Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам ;Компенсация сдвига выходного напряжения увеличивает долговечность ламп;Мягкий запуск, исключающий токовые перегрузки ламп. Входной резистор R1 0,25ватт — своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо.
Симметричный динистор он же диак необходим для запуска схемы. На транзисторе V3 2N5551 и элементах VD6, C9, R9 - R11 реализована схема защиты от короткого замыкания на выходе short circuit protection. Если в выходной цепи произойдёт короткое замыкание, то возросший ток, протекающий через резистор R8, приведёт к срабатыванию транзистора V3. Транзистор откроется и заблокирует работу динистора DB3, который запускает схему. Резистор R11 и электролитический конденсатор С9 предотвращают ложное срабатывание защиты при включении ламп. В момент включения ламп нити холодные, поэтому преобразователь выдаёт в начале пуска значительный ток. Для выпрямления сетевого напряжения 220V используется классическая мостовая схема из 1,5-амперных диодов 1N5399. В качестве понижающего трансформатора используется катушка индуктивности L2. Она занимает почти половину пространства на печатной плате преобразователя.
Но вне зависимости от типа осветительного оборудования все галогеновые лампы используются в сети с напряжением в 6,12 и 24В. Специально для того чтобы извлекать максимальную пользу от использования галогеновых лампочек в схему требуется включить трансформатор. Стоит отметить, что данный тип контролирующего оборудования используется всегда. Иначе период эксплуатации снизится в несколько раз. Чтобы выполнить подключение трансформатора потребуется предварительно изучить принципиальную схему. В качестве примера будет рассмотрена схема врезания трансформатора электрического типа к галогеновым лампам в 12 В. Для этого от источника тока на трансформатор подается напряжение, там оно преобразуется из переменного 220В в постоянное 12 В. Непосредственно на лампочку подается уже пониженное напряжение. Весь процесс приводится в действие при замыкании ключа выключателя.
Электронный трансформатор
понизить питающее напряжение с 220V до 11-12V. Cхемы электронных трансформаторов — обзор наиболее популярных устройств. Cхемы электронных трансформаторов для галогенных ламп (ЭТ) – не теряющая актуальности тема как среди бывалых, так и очень посредственных радиолюбителей. Электронный трансформатор "Меркурий-ТЭ105" предназначен для питания низковольтных галогенных ламп накаливания мощностью от 35 до 105 Вт с номинальным рабочим напряжением 12 В. полумостовой автогенераторный импульсный источник питания. Имеем 2 трансформатора: силовой и трансформатор обратной связи.
Как работает трансформатор для галогенных ламп и какой выбрать
Выбор и монтаж трансформатора для галогенных ламп. Существуют разные виды галогенных ламп: рассчитанные на напряжение 220В и низковольтные исполнения (6В, 12В, 24В). Именно таким устройством выступает трансформатор для галогенных ламп, у которого имеется особое назначение в схеме питания. Электромонтаж. Ассортимент подраздела Трансформаторы электронные регулируемые для галогенных ламп раздела Дроссели. Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Производятся некоторые электронные трансформаторы для галогенных ламп с защитой от перепадов напряжения. Именно таким устройством выступает трансформатор для галогенных ламп, у которого имеется особое назначение в схеме питания.
Как подключить трансформаторы для галогенных ламп
Это исключает резкий бросок тока через холодную нить лампы, что значительно, иногда в несколько раз, повышает срок её службы. Второй вариант электронного понижающего трансформатора В первый момент, а также с приходом каждого последующего полупериода выпрямленного напряжения питание микросхемы осуществляется через диод VD3 от параметрического стабилизатора на стабилитроне VD2. Если питание осуществляется напрямую от сети 230 В без использования фазового регулятора мощности диммера , то цепь R1-R3C5 не нужна. После входа в рабочий режим микросхема дополнительно питается с выхода полумоста через цепь d2VD4VD5. Сразу же после запуска частота внутреннего тактового генератора микросхемы - около 125 кГц, что значительно выше частоты выходного контура С13С14Т1, в результате напряжение на вторичной обмотке трансформатора Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С8. Сразу же после включения этот конденсатор начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нём будет уменьшаться частота генератора микросхемы.
Когда напряжение на конденсаторе достигнет 5 В приблизительно через 1 с после включения , частота уменьшится до рабочего значения около 35 кГц, а напряжение на выходе трансформатора достигнет номинального значения 11,8 В. Так реализован мягкий старт, после его завершения микросхема DA1 переходит в рабочий режим, в котором вывод 3 DA1 можно использовать для управления выходной мощностью. Если параллельно конденсатору С8 подключить переменный резистор сопротивлением 100 кОм, можно, изменяя напряжение на выводе 3 DA1, управлять выходным напряжением и регулировать яркость свечения лампы. При изменении напряжения на выводе 3 микросхемы DA1 от 0 до 5 В частота генерации будет меняться от 60 до 30 кГц 60 кГц при 0 В - минимальное напряжение на выходе и 30 кГц при 5 В - максимальное. Вход CS вывод 4 микросхемы DA1 является входом внутреннего усилителя сигнала ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на датчике тока - резисторах R12 и R13, а следовательно, и на выводе 4 DA1 превысит 0,56 В, внутренний компаратор переключится и остановит тактовый генератор. В случае же обрыва нагрузки напряжение на выходе полумоста может превысить предельно допустимое напряжение транзисторов VT1 и VT2.
При превышении порогового значения напряжения на резисторе R9 генерация также прекращается. Более подробно режимы работы микросхемы IR2161S рассмотрены в [1]. Рассчитать число витков обмоток выходного трансформатора для обоих вариантов можно, например, с помощью простой методики расчёта [2], выбрать подходящий магнитопровод по габаритной мощности можно с помощью каталога [3]. Чертёж печатной платы первого варианта электронного трансформатора см. Внешний вид собранной платы показан на рис. Электронный трансформатор собран на плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. Все элементы для поверхностного монтажа установлены со стороны печатных проводников, выводные - на противоположной стороне платы.
Конденсаторы С9 и С10 - металлоплёночные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Диод VD4 - любой быстродействующий с допустимым обратным на рис 11 пряжением не менее 150 В. Чертёж печатной платы первого варианта электронного трансформатора Рис. Расположение элементов на плате Рис.
Для начала стоило проверить трансформатор, я так понимаю, это обычный понижающий трансформатор. На вход подаётся 220В из сети, на выходе должно быть 12... Обычно его прячут внутри самого трансформатора, так, что с наружи его и не видно.
Лампа в случае нештатной ситуации например, короткого замыкания ограничит ток через конструкцию до безопасного значения и, в худшем случае, создаст дополнительное освещение рабочей зоны. В лучшем случае при некотором наблюдении лампу можно использовать как индикатор, например, пропускаемого тока. Таким образом, слабое или несколько более интенсивное свечение нити лампы при разряженном или слабо заряженном преобразователе будет указывать на наличие сквозного тока. Подтверждением может служить температура ключевых элементов — нагрев в режиме постоянного тока будет достаточно быстрым. При работающем преобразователе свечение нити 200-ваттной лампы, видимое на фоне дневного света, появится только на пороге 20-35 Вт. Понадобится Радиатор охлаждения с кулером любой. Блюдо для хлеба. Контактные блоки. Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что пришло в голову первым, но выбрал более-менее подходящие. Мосты диодные VD1 — на 4 — 6А — 600 В. По телевизору вроде. Или собранный из четырех отдельных диодов. Поставил транзистор импортного телевизора на 500В и мощность рассеивания 55Вт. Можно попробовать любой другой аналогичный высоковольтный, мощный. VD3 — диод 1N4007 на 1А 1000 В. С1 — 470мФ х 25В, лучше еще мощность увеличить. С2 — 100н. R1 — потенциометр от 1 кОм любой намотанный провод, от 500 Ом. Выбор тока базы транзистора. R5 — это понижающий резистор 5 кОм. NTC1 — это термистор 10 кОм. VT1 — любой полевой транзистор. Я установил RFP50N06. М — кулер на 12 В. HL1 и HL2 — любые сигнальные светодиоды, их нельзя устанавливать вместе с демпфирующими резисторами. Первым делом нужно подготовить плату для размещения деталей схемы и закрепить ее на месте в корпусе. Накладываем детали на плату и припаиваем. Когда схема собрана, самое время провести ее предварительную проверку. Но делать это нужно очень осторожно. Все части находятся под напряжением сети. Для тестирования устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не перегорели при подаче на них 280 вольт. Не было обнаружено одинаковой мощности лампочек и поэтому свечение спиралей сильно различается. При этом следует учитывать, что регулятор без нагрузки не работает должным образом. Нагрузка в этом устройстве является частью цепи. При первом включении лучше всего позаботиться о глазах вдруг они что-то напутали. Включаем напряжение и с помощью потенциометра проверяем плавность регулировки напряжения, но ненадолго, во избежание перегрева транзистора. После теста приступаем к сборке схемы автоматической работы кулера в зависимости от температуры. Термистора на 10 кОм у меня не было, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм. Закрепляем термистор рядом с транзистором с помощью теплопроводящей пасты, как и для транзистора. Установите остальные детали и припаяйте. Не забудьте удалить медные контактные площадки макета между проводниками, как на фото, иначе при включении высокого напряжения в этих точках может произойти короткое замыкание. Осталось отрегулировать начало операции охлаждения подстроечным резистором при повышении температуры радиатора. Укладываем все в корпус на нормальные места и фиксируем. Напоследок проверяем и закрываем крышку. Пожалуйста, посмотрите видео бесшумного регулятора напряжения. Удачи тебе. Подключение устройства в схему электроснабжения галогенных светильников При подключении трансформаторов рекомендуется придерживаться схематичного расположения отдельных источников света, когда их больше двух. Кроме того, необходимо выбрать подходящее место для установки преобразователя. Основные требования к подключению В инструкции любых трансформаторов непременно есть основные правила, ими нельзя пренебрегать при проведении монтажных работ: Спускное устройство и светильник необходимо соединить кабелем длиной не более 1,5 м и сечением 1 мм2. В противном случае яркость лампы будет недостаточной, свет будет неравномерным, есть риск нагрева провода. При подключении двух и более светильников необходимо применять схему «звезда»: к каждой лампе подключается отдельный кабель. Последний должен быть таким же. Если предполагается, что длина кабеля будет больше 1,5 м, то его сечение пропорционально увеличивают. Расстояние до светильника не менее 0,2 м. Правильно рассчитайте мощность ламп, их соответствие электрическому спусковому устройству. Категорически запрещается включать трансформаторы без нагрузки. Требования по установке допускается использование разных схем подключения галогенных ламп через трансформатор: Один из самых простых — используются выключатель с первым ключом и трансформатор. Провода подключаются к «входным» клеммам L и N. Для подключения ламп к «выходу» предпочтительны медные провода минимальное сечение 1,2 мм2. Подключение галогенной лампы 12В — параллельно. Вам будет интересно Датчики света для освещения Простая схема подключения понижающего устройства Разделите общее количество светильников на равные половины, подключив к разным трансформаторам. В приведенном выше примере есть 4 лампы по 40 Вт каждая, мощность 2 — 80 Вт. Следовательно, следует использовать трансформатор мощностью 105 Вт. Рекомендуется предусмотреть отдельное понижающее устройство с собственными кабелями. Когда они подключены к распределительной коробке, это значительно облегчит любой ремонт в будущем. При подключении допускается использование переключателя с 1 или 2 клавишами. После выполнения всех работ лампочки можно запитать отдельно.
Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком. Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа. В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой. Недостатки электронных трансформаторов Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере. На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка. Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора. Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется. Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи силовые транзисторы просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого. Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар.