Учёные проследили за электронами в молекулах воды, чтобы уточнить последствия действия радиации на людей. H2o или молекула воды внутри клетки фуллерен c60. Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей.
Физики доказали способность света испарять молекулы воды
Благодаря этим двум свойствам ученые и используют их для наблюдения и даже объяснения физических явлений, оные также по аналогии происходят в существенно меньших атомных и молекулярных масштабах. Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». Например, узел-трилистник, а также связь Хопфа отдаленно напоминает звенья цепочки. А так называемая «легкая» вода, напротив, образует в основном простейшие кольца, а это значит, что молекулы жидкости с пониженной плотностью не запутаны.
Компьютерная модель состояния воды с высокой плотностью.
Ученые проанализировали поверхность четырех богатых силикатами космических тел с помощью прибора FORCAST и выделили на двух из них — Ирис и Массалия — спектральные сигнатуры в среднем инфракрасном диапазоне, указывающие на наличие молекулярной воды. Особый интерес представляет распределение воды на астероидах, поскольку это может пролить свет на то, как вода была доставлена на Землю, — говорит ведущий автор исследования Анисия Арредондо.
Самойлов в 1946 году: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам. В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов.
Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами. В 1990 г. Селивановский Ин-т прикладной физики РАН сформулировали гипотезу о существовании механохимических реакций радикальной диссоциации воды [Домрачев, 1995]. Они исходили из того, что жидкая вода представляет собой динамически нестабильную полимерную систему и что по аналогии с механохимическими реакциями в полимерах при механических воздействиях на воду поглощенная водой энергия, необходимая для разрыва Н-ОН, локализуется в микромасштабной области структуры жидкой воды. Поскольку диссоциация молекул воды и реакции с участием радикалов H и OH происходит в ассоциированном состоянии жидкой воды, радикалы могут иметь громадные десятки секунд и более продолжительности жизни до гибели в результате реакций рекомбинации [Blough et al.
Таким образом, существуют достаточно убедительные свидетельства в пользу того, что в жидкой воде присутствуют весьма устойчивые полимерные структуры. Интересной особенностью этой модели является то, что из нее автоматически следует, что свободно растущие кристаллы воды, хорошо известные нам снежинки, должны обладать 6-лучевой симметрией. В 2002 году группе д-ра Хэд-Гордона методом рентгеноструктурного анализа с помощью сверхмощного рентгеновского источника Advanced Light Source ALS удалось показать, что молекулы воды способны за счет водородных связей образовывать структуры - "истинные кирпичики" воды, представляющие собой топологические цепочки и кольца из множества молекул. Другая исследовательская группа Нильссона из синхротронной лаборатории всё того же Стенфордского университета, интерпретируя полученные экспериментальные данные как наличие структурных цепочек и колец, считает их довольно долгоживущими элементами структуры. Несмотря на то, что разные модели предлагают отличающиеся по своей геометрии кластеры, все они постулируют, что молекулы воды способны объединяться с образованием полимеров. Но классический полимер — это молекула, все атомы которой объединены ковалентными связями, а не водородными, которые до недавнего времени считались чисто электростатическими.
Однако в 1999 г. А если в воде есть полимеры воды, то даже слабые воздействия на абсолютно чистую воду, а тем более ее растворы, могут иметь важные последствия. Такие процессы служат, в частности, причиной старения полимеров. Редко уточняют, что фрагментация полимеров при подобных воздействиях — явление нетривиальное. Так, например, интактные молекулы ДНК, составленных из сотен тысяч и миллионов мономеров-нуклеотидов, легко распадаются на более мелкие фрагменты от простого перемешивания препарата палочкой. При этом, чем меньше фрагменты, тем более высокой плотности требуется энергия для дальнейшего дробления.
Во всех случаях — и в длинных и в коротких полимерах разрываются химически идентичные ковалентные связи. Следовательно, если для разрыва ковалентной связи между двумя атомами в малой молекуле необходимо приложить энергию, эквивалентную энергии кванта УФили по меньшей мере видимого света, то такая же связь в полимере может разорваться при воздействии на него механических колебаний. В первом случае частота колебаний соответствует величинам порядка 1015 Гц, во втором — герцам — килогерцам.
Многие учёные считают, что вода — постоянно изменяющаяся смесь кластеров лёгкого и тяжёлого типов.
В первом молекулы связаны друг с другом как во льду , а во втором связи нарушены, благодаря чему такие системы более плотные. Наличие этих фаз можно обнаружить при помощи резонансного неупругого рассеяния рентгеновских фотонов водой. При этом виден переход, в котором электрон с занятой молекулярной орбитали заполняет дырку, на месте которой был выбитый ранее фотоном электрон. Эксперимент с жидкой водой показывает расщепление резонанса на два пика.
В научной литературе получившийся дублет приписывается кластерам лёгкого и тяжёлого типов. Чтобы пролить свет на эту фундаментальную проблему, авторы работы провели эксперимент с парами воды, где нет водородных связей. В ходе исследования они измерили спектр резонансного неупругого рассеяния изолированной молекулы. Эксперименты привели к неожиданному результату и показали, что точно такое же расщепление резонанса на два пика присутствует в рентгеновских спектрах рассеяний молекул воды в газовой фазе.
Таким образом, исследование свидетельствует о динамической природе расщепления резонанса и опровергает структурный механизм, тем самым демонстрируя, что структура воды однородна.
Описание 3D-модели
- Ученые США и Швеции наблюдали взаимодействие между молекулами воды на атомном уровне
- Модели молекул исследуемых жидкостей
- Фото и Изображения - Молекула воды
- Исследование подтверждает, что вода может принимать две различные жидкие формы |
- Открыто новое состояние молекулы воды
Физики доказали способность света испарять молекулы воды
Учебные модели придется перерисовать после того, как группа исследователей обнаружила, что молекулы воды на поверхности соленой воды организованы иначе, чем считалось ранее. Исследователи из Массачусетского технологического института сделали новое открытие: свет может испарять воду без тепла. Учёные проследили за электронами в молекулах воды, чтобы уточнить последствия действия радиации на людей. Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». В эксперименте Национальной ускорительной лаборатории SLAC в США ученые впервые напрямую наблюдали, как возбужденные атомы водорода в молекуле воды.
Вода на астероидах: как ученые впервые нашли молекулы воды на древних космических телах
Единица измерения энергии. За единицу измерения массы выбираем массу молекулы воды г. Также определим безразмерные единицы измерения заряда, в которых. Поскольку единица измерения энергии соответствует К, то типичная температура 298К равна 3. Использовавшийся временной шаг имел значение , в размерных единицах это составляет с. Приведем безразмерные и размерные значения сил, использовавшихся в моделированиях. Значение силы на каждый атом изменялось от 2 в системе СИ это 6. Учитывая, что порог пластичности алмаза порядка 100 ГПа [1], для рассматриваемых значений давления можно считать приемлемым принятое в модели приближение абсолютной жесткости стенок. Горизонтальная сдвигающая сила на каждый атом верхней пластины изменялась от 0.
Для взаимодействия вода - алмаз учитывались взаимодействия атомов поверхностей только с сайтом О молекулы воды.
Тем не менее, испарение при освещении воды светом начиналось и продолжалось, пока был свет. В темноте явление отсутствовало. Собственно говоря, климатологи давно ломали копья в спорах о степени поглощения света облачной массой Земли и о влиянии всего этого на климат планеты. Данные были противоречивы и демонстрировали заметные расхождения между наблюдениями и моделями. С открытием фотомолекулярного эффекта всё может встать на свои места.
Пустоты в воде по результатам моделирования имеют тенденцию объединяться друг с другом, образуя еще более крупные пустоты, как показано на рисунке 7. Рисунок 7 - Размещение пустот в пространстве 3456 молекул при температуре 300К. По результатам компьютерного моделирования структуры воды можно сделать однозначные выводы, что в ней существует трехмерная сетка из молекул, соединенных водородными связями. Сетка структурно и динамически неоднородна, не похожа на структуру кристаллов. Время жизни водородной связи в сетке составляет несколько пикосекунд 10-12 с. На рисунке 8 представлена принципиальная схема эволюции кластера. Рисунок 8 - Эволюция кластеров из молекул воды в рамках модели числового моделирования. Рассмотрим кластерную и клатратную модели строения жидкой воды подробнее. Согласно квантово-химическим расчетам большей устойчивостью обладают линейного "открытого" димера воды, по сравнению с циклическими формами. В случае цикла выгодными являются трех-четырех- и пятичленные образования, в которых водородные связи имеют одинаковое направление. Для шестичленного цикла выгодным становится структура типа "кресло". Одно из первых изображений формирования циклических кластеров воды приведено на рисунке 9. Рисунок 9 - Формирование циклического кластера воды. Большой вклад в возможность формирования и устойчивость кластеров воды во времени внесли работы Г. Домрачева и Д. Они доказывали существование механохимических реакций радикальной диссоциации воды. Доказательство основывалось на том, что вода, по их мнению, представляет собой динамически нестабильную полимероподобную систему и по аналогии с механохимическими реакциями в полимерах при механическом воздействии на воду поглощенная водой энергия используется для разрыва химических связей H-OH. Реакция разрыва связи может выглядеть так: H2O n H2O... Рассчитав эффективность механодиссоциации воды, авторы пришли к выводу, что кислород на Земле появился при диссоциации воды. Итак, вода, по мнению Г. Селивановского - это громадный полимер из молекул воды, связанных водородными связями. Интересно, что в молекуле классического полимера атомы объединены ковалентными связями. В 1993 г. Джордан предложил свои варианты устойчивых "ассоциатов воды", которые состоят из 6 молекул рисунок 10. Рисунок 10 - Образование ассоциатов воды по К. По Джордану кластеры могут объединяться и друг с другом, и со свободными молекулами воды за счет водородных связей, формируя более крупные ассоциаты. Такие кластеры могут объединяться как друг с другом, так и со свободными молекулами воды. На рисунке ниже показаны возможные структуры конформации кластеров воды. Считается, что тетрагональная структура льда разрушается при плавлении с образованием смеси, состоящей из три-, тетра-, пента-, гексамеров воды и свободных молекул. В 1999 г. Секайли удалось расшифровать строение тримера воды, а в 2001 г. Оригинальной кластерной моделью является теория С. Согласно модели С. Зенина вода представляет собой иерархию геометрически правильных объемных структур "ассоциато". Согласно его теории элементарной структурной ячейкой воды являются тетраэдры, в которых может содержаться 4 простой тетраэдр или 5 объемно-центрированный тетраэдр молекул воды. При этом у каждой молекулы воды в простых тетраэдрах сохраняется способность образовывать водородные связи, благодаря чему создаются более сложные структуры, как показано на рисунке 13. Рисунок 13 - Формирование сложных ассоциатов из молекул воды по С. Кластеры, содержащие 20 молекул воды додэкаэдры более стабильны. Схема их образования показана на рисунке 14. Рисунок 14 - Формирование кластеров воды из 20 молекул. Из четырех таких образований возникают энергетически выгодные "кванты" - тетраэдрические додекаэдры рисунок 15. Рисунок 15 - Модель ассоциата воды из 57 молекул - "квант" тетраэдр из четырех додекаэдров. Из 57 молекул такого образования 17 составляют гидрофобный каркас с полностью насыщенными связями, а по 10 молекул на поверхности каждого додекаэдра формируют центры образования водородных связей. Методами жидкостной хроматографии было подтверждено существование пяти- и шестиквантовых структур типа "четырехконечной звезды" и "шестилучевой снежинки". Рисунок 16 - Принципиальная модель кластера воды из 912 молекул 16 "квантов" воды. На каждой грани такого куба существует уже по 24 центра образования водородных связей. Данные цифры были подтверждены экспериментально. На уровне 24 центров связывание по водородным связям практически прекращается ввиду того, что поверхность образований становится насыщенной нейтральной. Кластеры почти не взаимодействуют между собой, а скользят друг по другу, поэтому вода не отличается высокой вязкостью. В таком "режиме" из кластеров формируются метастабильные структуры, пример которых показан на рисунке 17 микроизображение в режиме фазового контраста. Рисунок 17 - Микроизображение объемной структуры воды. Теория Зенина хорошо объясняет электропроводные свойства воды, уменьшение плотности при плавлении, но плохо согласуется с большими значениями коэффициента самодиффузии и малым временем диэлектрической релаксации. Интересно, что по мнению Зенина, если степень возмущения структурных элементов воды недостаточна для перестройки всей структуры, то после снятия возмущения система релаксирует 30-40 минут до возвращения в исходное состояние. Если же переход к другому взаимному расположению структурных элементов воды оказывается энергетически выгодным, то оказанное воздействие отразится на новом состоянии.
В основе же всего лежит тетраэдр. Именно такую форму имеет молекула воды. Группируясь, тетраэдры молекул воды образуют разнообразные пространственные и плоскостные структуры. И из всего многообразия структур в природе базовой является гексагональная шестигранная структура, когда шесть молекул воды тетраэдров объединяются в кольцо. Такой тип структуры характерен для льда, снега и талой воды. Кристаллическая структура льда Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь кластеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс можно представить себе так. Заказать работу Рис. Структура жидкой воды. В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд. Изучить строение этих образующихся ассоциатов оказалось довольно сложно, поскольку вода — смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются. Разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета г. Беркли, США под руководством доктора Р. Сайкалли расшифровала строение триммера воды, в 1996 г. К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов кластеров , содержащих от трех до шести молекул воды. Более сложным оказалось строение гексамера. Самая простая структура — шесть молекул воды в вершинах шестиугольника, — как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми. Это значит, что четыре молекулы воды связаны перекрёстными водородными связями. Структуры кластеров воды были найдены и теоретически, сегодняшняя вычислительная техника позволяет это сделать. В 1999 г. Станислав Зенин провёл совместно с Б. Применив современные методы анализа - рефрактометрию, протонный резонанс и жидкостную хроматографию им удалось обнаружить ассоциаты молекул воды - кластеры. Возможные кластеры воды Объединяясь друг с другом, кластеры могут образовывать более сложные структуры: Рис. Более сложные ассоциаты кластеров воды Кластеры, содержащие в своём составе 20 молекулу оказались более стабильными. Формирование кластера из 20 молекулы воды.
Ученые испарили воду светом без использования тепла
Ученые создали струи воды толщиной в 100 нанометров (примерно в 1000 раз тоньше, чем человеческий волос) и заставили молекулы вибрировать с помощью лазерного луча. Ученые из Кембриджского университета и Института исследования полимеров Общества имени Макса Планка в Германии провели исследование, которое опровергло распространенную модель поведения молекул воды. Объемная модель молекулы воды. Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». Учебные модели придется перерисовать после того, как группа исследователей обнаружила, что молекулы воды на поверхности соленой воды организованы иначе, чем считалось ранее.
Тех. поддержка
- Ученые наблюдают за перемещением молекул воды вокруг Луны - RW Space
- ПАМЯТЬ ВОДЫ
- Ученые впервые увидели процесс, который обеспечивает «странные» свойства воды
- Ученые из Великобритании получили необычные молекулы воды
Модель молекулы воды
До сих пор эксперименты с использованием реальных молекул воды для проверки второй критической точки «суперохлаждения» воды не могли дать однозначных доказательств его существования. Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». Модель молекулы воды имеет форму треугольника. Они создали слои воды толщиной 100 нм и заставили молекулы вибрировать с помощью инфракрасного лазера, а затем разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED. Молекула метана CH4 3d модель для печати.
Молекула воды: удивительное строение простого вещества
Модель водного раствора сахарозы с массовой долей 30%, включающей 12 молекул сахарозы и 532 молекулы воды, использованная для расчётов на суперкомпьютере. Молекула метана CH4 3d модель для печати. В рамках изучения специалисты создали слои воды толщиной 100 нм и заставили молекулы вибрировать благодаря инфракрасному лазеру, а потом разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED. Стоковая иллюстрация: модель молекулы воды, научная или медицинская справка, 3d иллюстрация. Они поместили отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. В статье подробно разбирается уникальное строение молекулы воды, образованной двумя атомами водорода и одним атомом кислорода.
Домашний очаг
- Water Molecule Model - Сток картинки
- Описание 3D-модели
- Компьютерная модель взаимодействия молекул воды
- Молекула воды: удивительное строение простого вещества
- Water molecule (молекула воды) - Download Free 3D model by decay_dance [27d7dd1] - Sketchfab
- Исследование подтверждает, что вода может принимать две различные жидкие формы |
Модель воды
Результаты численного эксперимента с ионами описываются более простой моделью молекулы воды, представляющей собой электрический диполь, сдвинутый от центра молекулы. water molecule model stock illustrations. Используя инструмент на борту Лунного орбитального аппарата НАСА (LRO), ученые наблюдали, как молекулы воды движутся вокруг светлой стороны Луны.