Распад ложного вакуума — это физическое явление, способное уничтожить каждый атом во Вселенной. Гибель Вселенной может наступить из-за распада ложного вакуума, об этом гласит одна из научных теорий.
Nature Physics: ученые получили доказательства распада ложного вакуума
Распад нестабильного вакуума • Игорь Иванов • Научно-популярные задачи на «Элементах» • Физика | Возможно, мы застанем распад ложного вакуума. |
Физики не увидели распад ложного вакуума — вопреки тому, что написали СМИ - WebUnions | Международная группа ученых продемонстрировала первые экспериментальные доказательства распада ложного вакуума, используя квантовомеханическую систему, состоящую из сверхохлажденного газа изотопов натрия-23. |
Открытие распада ложного вакуума: ученые получили доказательства | 24.01.2024 | Capital Sport | **Ученые из Великобритании впервые применили квантовый симулятор для просчета. |
Видео: смерть Вселенной из-за распада вакуума - RW Space | С такого пузыря начинается квантовый распад ложного вакуума в теориях с неравноправными вакуумами. |
Опубликовано видео, показывающее уничтожение Вселенной из-за распада вакуума
Возможно, мы застанем распад ложного вакуума. На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает Если наша Вселенная находится в состоянии ложного вакуума, а не в состоянии истинного вакуума, то распад менее стабильного ложного вакуума на более стабильный истинный вакуум (так называемый распад ложного вакуума) может иметь драматические последствия. Пузырение: в лаборатории квантовых газов в Тренто команда создала сверхтекучую спиновую смесь атомов натрия в состоянии ложного вакуума (синий) и наблюдала и изучала ее распад до состояния истинного вакуума (красный) посредством образования спиновых пузырей. На примере ферромагнитной жидкости жидкости итальянские физики смогли впервые экспериментально засвидетельствовать распад ложного вакуума в квантовом макроскопическом поле.
Главные новости
- Впервые получены доказательства распада ложного вакуума - Hi-Tech
- Распад ложного вакуума
- Что еще почитать
- VISTA рекомендует
- Ученые рассказали о смерти Вселенной из-за распада вакуума
Ученые получают доказательства распада ложного вакуума
Открытие распада ложного вакуума: ученые получили доказательства | 24.01.2024 | Capital Sport | На канале Kurzgesagt видеосервиса Youtube появилась запись, на которой продемонстрировано разрушение Вселенной в результате распада ложного вакуума внутри неё. |
Конец Вселенной: ученые показали, к чему приведет распад вакуума | Результаты эксперимента соответствовали численным моделям и подтверждали квантово-механическую природу распада ложного вакуума. |
Пузыри смерти или Когда распад ложного вакуума уничтожит Вселенную
Открытие распада ложного вакуума: ученые получили доказательства 13:24 24. Международная группа ученых смогла получить первые экспериментальные подтверждения распада ложного вакуума. Их исследования были опубликованы в престижном журнале Nature Physics. Ложный вакуум - это состояние с низкой энергией, которое считается относительно стабильным, но может перейти в состояние с минимальной энергией, известное как истинный вакуум.
Судя по всему, Луна прекрасно себя чувствует, поэтому авторы работы, посвященной RHIC, были уверены, что ускоритель не представляет для нас опасности. Правда, странная материя и черные дыры были не единственными сценариями апокалипсиса. Еще одно опасение, которое также удалось развеять путем наблюдения за высокоэнергетическими космическими лучами, заключалось в том, что столкновения частиц высоких энергий могут вызвать разрушительное для Вселенной квантовое событие под названием «распад вакуума». Эта идея основывается на гипотезе о том, что нашей Вселенной присуща некая фатальная нестабильность. Несмотря на то что такой сценарий может показаться пугающим, каким бы маловероятным он ни был, на момент ввода RHIC в эксплуатацию реальные доказательства существования такой нестабильности отсутствовали, поэтому данная возможность не рассматривалась всерьез.
Однако все изменилось в 2012 году, когда с помощью ускорителя БАК был обнаружен бозон Хиггса. Состояние Вселенной Вернейший способ заставить специалиста по физике элементарных частиц поморщиться — это назвать бозон Хиггса «частицей бога», как он известен широкой публике. Недовольство ученых по поводу этого высокопарного прозвища вызвано не только смешением науки и религии хотя некоторых именно это раздражает больше всего. Дело в том, что название «частица бога» ужасно неточное и, надо сказать, довольно дерзкое. Это не отменяет огромной важности бозона Хиггса для Стандартной модели физики элементарных частиц. Можно даже утверждать, что именно он является ключом к объединению всего остального. Однако центральную роль в работе физики элементарных частиц и в природе космоса играет поле Хиггса, а не частица. Если коротко, поле Хиггса представляет собой пронизывающее все пространство энергетическое поле, при взаимодействии с которым другие частицы обретают массу.
Бозон Хиггса имеет такое же отношение к полю Хиггса, как фотон, переносчик электромагнитного взаимодействия и света , к электромагнитному полю, — это локализованное «возбуждение» чего-то, что пронизывает обширное пространство. Более длинная версия этой истории имеет отношение к электрослабой теории, которая объединяет слабое взаимодействие с электричеством и магнетизмом, а также к разделению этих сил вследствие так называемого спонтанного нарушения симметрии. Здесь я вынуждена совершить над собой героическое усилие и вместо подробного описания квантовой теории поля ограничиться обсуждением нескольких ключевых вопросов. Однако имейте в виду, что если вы решите изучить математику, стоящую за всем этим, вы увидите, что все намного круче. Физика работает по-разному в зависимости от уровня энергии. Например, электромагнетизм и слабое взаимодействие проявляются как совершенно независимые феномены на тех уровнях энергии, с которыми мы имеем дело в повседневной жизни, однако в ранней Вселенной, для которой были характерны очень высокие уровни энергии, эти силы представляли собой аспекты одного и того же явления. Поле Хиггса играло важную роль во время этого переходного периода. Когда условия изменились, то же произошло и с законами физики.
Во многом именно для этого мы и создаем ускорители частиц: чтобы воссоздать в небольшом пространстве внутри детекторов экстремальные условия, характерные для начальных стадий развития Вселенной, с помощью которых мы могли бы лучше понять основополагающие физические принципы, сводящие всё воедино. Основная идея заключается в существовании некой всеобъемлющей математической теории, описывающей взаимодействия частиц при всех возможных условиях, и последовательное проведение их столкновений позволяет нам получить более полное представление об этой всеобъемлющей структуре. В качестве аналогии можно привести воду. На самом фундаментальном уровне она представляет собой набор молекул, состоящих из определенным образом связанных атомов водорода и кислорода. Но в повседневной жизни мы воспринимаем воду в качестве однородной бесцветной жидкости, кристаллического твердого вещества, а в особенно тяжелые времена — в качестве удушающего влажного тумана, который заставляет вас мечтать об одежде, сшитой из полотенец. Изучая поведение воды в этих различных состояниях, мы можем сделать выводы о том, что она на самом деле собой представляет, даже если у нас под рукой нет мощных микроскопов, позволяющих рассмотреть отдельные атомы. Например, форма снежинки может многое рассказать нам о форме молекул, если мы посмотрим, как они организуются в кристаллы. То, как вода испаряется, кое-что говорит нам о связях, которые удерживают молекулы вместе.
Если бы мы имели дело с водой лишь в одном из ее агрегатных состояний, мы не смогли бы составить о ней полного впечатления. Точно так же наше представление о взаимодействиях субатомных частиц меняется в зависимости от уровня энергии или температуры во время эксперимента, варьирование которых позволяет нам лучше понять, что с ними на самом деле происходит. В физике элементарных частиц нас интересует, как частицы взаимодействуют друг с другом и чем обусловлены их фундаментальные свойства, такие как масса. Характерная особенность любой частицы, обладающей массой, состоит в том, что она не может ускориться без применения силы и не способна достичь скорости света. На самых ранних этапах существования Вселенной поле Хиггса подверглось изменению, в результате которого электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие, и некоторые частицы правда, не фотон и не глюон получили возможность взаимодействовать с самим полем Хиггса. Интенсивность этого взаимодействия определяет массу частицы. Фотон продолжает путешествовать в пространстве со скоростью света, а частицы, обладающие массой, движутся тем медленнее, чем более сильное воздействие они испытывают со стороны поля Хиггса. Сравнивать поведение частиц в условиях ранней Вселенной с их текущим поведением все равно что сравнивать собственное взаимодействие с паром и жидкой водой.
Представьте, что пар — это поле Хиггса, то есть энергетическое поле, присутствующее в каждой точке пространства. А теперь представьте, что в какой-то момент поле Хиггса претерпело изменение, подобное конденсации пара в жидкую воду. Если вы привыкли иметь дело лишь с влажным воздухом, то пребывание в бассейне с водой станет для вас совершенно новым опытом. В результате внезапного изменения поля Хиггса сами законы физики как бы приобрели совершенно иную форму. Внезапно частицы, которые до этого могли беспрепятственно перемещаться в пространстве со скоростью света, замедлились под действием поля Хиггса, то есть обрели массу. Этот процесс получил название «нарушение электрослабой симметрии». Пугливая симметрия Симметрия — это тонкое, абстрактное понятие, чрезвычайно трудно объяснимое без уравнений, но настолько важное для физики, что я не могу просто отмахнуться от него. Симметрия имеет ключевое значение как для описания существующих, так и для разработки новых теорий природы.
Если в ходе размышлений о мире вы привыкли использовать управляющие им математические уравнения, вас, вероятно, не удивит идея описания теорий в терминах симметрий, которым они подчиняются. В противном случае все это может показаться вам сущей тарабарщиной. Итак, давайте сделаем небольшой экскурс в эту тему, поскольку симметрия представляет собой нечто невероятно красивое, и как только вы узнаете о ней подробнее, вы начнете замечать ее повсюду. Симметрия не сводится к зеркальному отражению чего бы то ни было. В физике огромную роль играют закономерности и то, как они позволяют нам получить более глубокое понимание некоторой основополагающей структуры. Возьмем, к примеру, периодическую таблицу элементов. Почему элементы организованы в строки и столбцы? Если вы изучали химию, вы знаете, что в столбцах сгруппированы элементы, имеющие общие свойства.
Например, благородные газы, перечисленные в крайнем правом столбце, не склонны к участию в химических реакциях, тогда как находящиеся рядом с ними галогены отличаются высокой химической активностью. Эти закономерности обнаружились еще до того, как таблица была заполнена. На самом деле ее создатель Дмитрий Менделеев даже оставил пробелы для еще не открытых элементов, которые, как он знал, должны существовать, исходя из выявленных им закономерностей. Закономерности в периодической таблице позволили теоретически обосновать заполнение электронных орбиталей, что привело к открытиям, имеющим отношение к фундаментальной природе субатомных частиц. Разработка теорий всегда начиналась с выявления закономерностей в результатах наблюдений, после чего ученые приступали к поиску скрытых свойств, способных объяснить наблюдаемое явление. Все мы постоянно это делаем, даже если не отдаем себе отчета. Понаблюдав за дорожным движением в течение дня, вы можете сделать выводы о стандартном рабочем графике. По выцветшим местам ковра вы можете судить о том, какие части комнаты получают больше всего солнечного света а также о том, как Земля ориентирована относительно Солнца.
В случае с физикой элементарных частиц использование симметрии во многом напоминает создание периодических таблиц, но для более мелких компонентов природы. Сходство между частицами, например, в плане заряда, массы или спина, может многое рассказать нам об особенностях их формирования и связях с фундаментальными взаимодействиями. Организация частиц с учетом их сходства позволяет физикам выявлять симметрии, которые могут оказаться основополагающими для целых теорий. Иногда эти закономерности легче всего представить математически. Если вы обнаружите, что в уравнении, описывающем некий физический процесс, можно поменять местами несколько переменных, не повлияв на описываемое явление, значит, вы обнаружили математическую симметрию. И это, вероятно, может кое-что рассказать вам о лежащих в основе данного явления частицах или полях. Основанный на симметрии способ рассмотрения частиц и их взаимодействий получил такое распространение в физике, что мы часто используем обозначения математических симметрий в качестве названий самих теорий. Например, электромагнетизм часто называют и 1 — теорией, поскольку некоторые из его математических аспектов имеют тот же тип симметрии, что и окружность сокращением «U 1 » обозначается математическая группа поворотов окружности.
Нарушение симметрии — это событие, в результате которого условия внезапно изменяются таким образом, что теория, описывающая взаимодействия частиц, приобретает другую, менее симметричную структуру. После этого уже нельзя будет делать перестановки в уравнениях, а нарушение симметрии отразится и в физическом мире в виде изменения поведения частиц. Некоторые используемые физиками симметрии являются абстрактными и могут быть выражены лишь математически, однако среди них есть и вполне привычные. О вращательной симметрии речь идет тогда, когда нечто выглядит одинаково при повороте на некоторый угол например, окружность или пятиконечная звезда. Трансляционная симметрия означает, что нечто выглядит одинаково при сдвиге в сторону например, длинный забор, сдвинутый на расстояние одной планки, или длинная прямая линия, смещенная на несколько сантиметров. Нарушение симметрии предполагает такое изменение ситуации, в результате которого симметрия перестает работать. Бокал обладает идеальной симметрией вращения до тех пор, пока где-то на его кромке не появится след от губной помады. Забор обладает трансляционной симметрией до тех пор, пока не сломается одна из его планок.
Даже на званом обеде может произойти нарушение симметрии, особенно после подачи спиртных напитков. В начале банкета, пока вы терпеливо ждете в окружении множества столовых приборов и небольших тарелок с хлебом, вы находитесь в ситуации, которой свойственна вращательная симметрия. Как только кто-то из ваших соседей потянется за куском хлеба, симметрия нарушится, и все остальные смогут последовать его примеру. Если бы два человека одновременно потянулись к тарелкам с хлебом, находящимся на противоположной от них стороне стола, физики назвали бы такую ситуацию топологическим дефектом. В данном конкретном случае речь идет о доменной стенке, которая, если начнет доминировать во Вселенной, может привести к Большому сжатию. Вот почему я всегда жду, пока другие возьмут хлеб, прежде чем потянуться к тарелке. С какой бы симметрией мы как физики ни работали, она будет отражена в описывающих взаимодействия уравнениях. Существуют способы кодирования вращательной, зеркальной и трансляционной симметрии, гарантирующие, что физика останется неизменной, как бы вы ни вращали, ни отражали и ни перемещали изучаемую систему.
Для обычных частиц или полей вакуумное состояние — это просто отсутствие каких-либо частиц. Хиггсовское поле особенное, у него энергетически наивыгодное состояние может быть вовсе не пустое. Вселенная в результате этого оказывается заполнена однородным хиггсовским полем. Подробнее см. Простейший вариант такой ситуации — это «хиггсовское» поле h r с такой плотностью потенциальной энергии его еще называют «потенциал» : Здесь r — это трехмерная пространственная координата, v — некоторая величина размерности энергии для настоящего хиггсовского поля она примерно равна 246 ГэВ. Минимальной энергия будет тогда, когда во всём пространстве поле h r будет равно константе: v или —v. Любое изменяющееся в пространстве поле обязательно приведет в целом к большей энергии. Высота потенциального барьера, разделяющего два минимума, равна Рис. В некоторых хиггсовских механизмах может возникнуть ситуация с двумя неравноправными вакуумами.
Но оказывается, в неминимальных вариантах хиггсовского механизма возможна ситуация, напоминающая рис. В них потенциал чуть-чуть перекошен «в пользу» одного из минимумов рис. Теперь самый важный момент. Два «вакуума» теперь разные. Тот, который поглубже, — истинный вакуум — отвечает минимальной плотности энергии, и он вечен. Тот, который повыше, — ложный вакуум — не совсем стабилен. До поры до времени он может выглядеть как нормальный вакуум, и в нём тоже могут летать частицы, происходить взаимодействия и образовываться звезды и планеты. Но всегда существует вероятность, что этот вакуум «сломается», что он протуннелирует в более стабильный истинный вакуум. Этот квантовый распад вакуума выглядит так.
В какой-то момент во Вселенной, находящейся в состоянии «ложного вакуума», появляется пузырь истинного вакуума рис. Переход между областью истинного и ложного вакуума не может быть разрывным, теория такой возможности не допускает. Поэтому имеется тонкая промежуточная зона стенка пузыря , в которой хиггсовское поле плавно переходит от одного вакуума в другой, преодолевая по пути потенциальный барьер.
Полученные результаты подтверждаются как теоретическим моделированием, так и численными моделями, подтверждающими квантово-полевое происхождение распада и его термическую активацию, открывая путь к эмуляции неравновесных явлений квантового поля в атомных системах. В эксперименте используется переохлажденный газ при температуре менее микрокельвина одной миллионной доли градуса от абсолютного нуля.
При такой температуре видно, что пузырьки появляются по мере распада вакуума, и профессор Ньюкаслского университета Ян Мосс и доктор Том Биллам смогли убедительно показать, что эти пузырьки являются результатом термически активированного распада вакуума. Ян Мосс, профессор теоретической космологии в Школе математики, статистики и физики Университета Ньюкасла, сказал: "Считается, что распад вакуума играет центральную роль в создании пространства, времени и материи в результате Большого взрыва, но до сих пор не было проведено экспериментальной проверки. Это исследование открывает новые возможности в понимании ранней Вселенной, а также ферромагнитных квантовых фазовых переходов.
Как Вселенная разрушится от распада вакуума?
Когда распад ложного вакуума уничтожит Вселенную | Точнее, есть бесконечный ложный вакуум, который расширяется с бесконечно огромной скоростью, и в нем возникают зоны распада, где формируются вселенные, как пузырьки углекислоты в открытой бутылке газировки. |
Смерть Вселенной из-за распада вакуума показали на видео - Янтарный край | Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную. |
Nature Physics: ученые получили доказательства распада ложного вакуума
Распад существовавшего тогда ложного вакуума привел к быстро расширяющемуся пространству, заполненному раскаленной материей. Некоторые теоретики предсказывают, что в определенных ситуациях распад ложного вакуума может ускоряться. На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает Lenta. Naked Science разъяснил новости о конце света из-за распада ложного вакуума.
Физики увидели распад ложного вакуума
С такого пузыря начинается квантовый распад ложного вакуума в теориях с неравноправными вакуумами. Однако существует и некоторый скептицизм относительно того, что такие процессы действительно могут инициировать распад вакуума. В этом видео поговорим о космической пустоте, о распаде ложного вакуума, о том насколько такое событие вероятно, и как это может произойти. Аннотация: На примере распада метастабильного состояния скалярного поля (конформный вакуум скалярных частиц над ложным классическим вакуумом).
Ученые рассказали о смерти Вселенной из-за распада вакуума
Ученые предрекли гибель Вселенной и в доказательство представили видеоролик В далеком космосе процесс может быть уже запущен Поделиться Группа ученых и популяризаторов науки, работающих с каналом Kurzgesagt на YouTube, представили видео, в общедоступной форме демонстрирующее один из гипотетических сценариев гибели Вселенной. Речь идет о потенциальном процессе, известном как распад ложного вакуума. Учёные напоминают, что для всех объектов во Вселенной характерно стремление к стабильному состоянию, при котором энергия этого объекта будет минимальной. Распространяется это даже на квантовые поля, определяющие «правила», по которым взаимодействуют различные частицы.
RU, до или после цитируемого блока. О проекте VSE42.
RU VSE42. Новости сайта дублируются в социальных сетях. К каждой новости можно добавить комментарий. В разделе «Фоторепортажи», мы размещаем интересные фотографии, а также видеоролики со всего света.
Представленное Kurzgesagt видео посвящено второй ситуации. В этом случае материя Вселенной будет разрушена, однако, по оценкам ученых, это займет слишком много времени, чтобы угрожать существованию человеческой цивилизации.
В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума.
Материалы по теме: Игрушка дьяволаНовая частица из коллайдера грозит уничтожить всю физику2 ноября 2018 На Большом адронном коллайдере открыли новую форму материи. Почему ученые не понимают, с чем они столкнулись? Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна.
Позитроны укажут на распад вакуума при столкновении тяжёлых ионов
А вот если обозримая Вселенная на самом деле находится в ложном вакууме, то пора бы нам подыскать себе другую, потому что эта в любую секунду может перейти на более глубокий уровень, то есть, в тот самый истинный вакуум. Предварительно, конечно же, сколлапсировав. То есть, уничтожив, в частности, все свое содержимое. Нашу маленькую планетку в том числе. Но не волнуйтесь.
Пробный потенциал, сконструированный Брауном, и зависимость поля от расстояния до центра пузырька в таком потенциале. D Кроме того, теоретик обобщил эти результаты, включив в рассмотрение гравитацию, то есть предполагая, что энергия поля искривляет пространство-время. В этом случае скорость распада зависит не от разности уровней ложного и истинного вакуума, но от каждого из значений по отдельности. Доказательство в данном случае также разбивается на рассмотрение двух частных случаев, в одном из которых изменение энергии при образовании пузырька неограниченно растет при увеличении радиуса пузырька, а в другом — неограниченно снижается. Изменение действия при создании пузырька в зависимости от его радиуса: два принципиально различных случая. Зависимость для изменения энергии выглядит аналогично. D Все рассуждения в данной работе выполнялись в предположении пустого пространства, однако присутствие сингулярностей в виде черных дыр, особенно черных дыр малой массы, могло бы изменить скорость распада ложного вакуума. Тем не менее, в ноябре прошлого года японские физики-теоретики показали , что существенного увеличения скорости перехода и метастабильного состояния в стабильное рядом с черными дырами наблюдаться не должно — черные дыры обязательно окружены температурным фоном частиц из-за излучения Хокинга, который необходимо учитывать при расчете вероятности образования пузырька истинного вакуума. Из-за этого фона скорость образования пузырьков почти не меняется даже около небольших черных дыр. Подробнее узнать, что такое распад ложного вакуума и чем он грозит нашей, можно в нашем материале «Из пустого в порожнее» , подготовленном вместе с физиком-теоретиком Филиппом Бурдой.
То есть наше сознание «проваливается» в ту ветку, где выстрела не произошло. Квантовое самоубийство часто критикуют вот по какой причине — а что, если смерть от выстрела не мгновенна? А что, если мы не умрем, а останемся парализованными? Ниже мы вернемся к этому вопросу. Vacuum Catastrophe распад ложного вакуума Вполне возможно, что наш вакуум — ложный , то есть наша пустота не является низшим состоянием вакуума в энергетическом смысле. Тогда возможно спонтанный переход в каком-то месте вакуума в более выгодное энергетическое состояние. Разница энергии вакуумов превращается в кашу из разнообразных частиц причем возможно не существующих в нашем вакууме , причем число их огромно. Собственно, той материей, которая существовала до подобного события, можно пренебречь. Далее, когда очаг разрушения возник, остановить процесс невозможно, как домино, процесс распространяется во все стороны, причем со скоростью света! То есть у него нет никаких предвестников — даже тревожной музыки, как в фильмах. Вы сидите, пьете вино ночью и смотрите на звезды, а потом раз — и ничего нет, кроме плазмы из новых частиц. Нам хотелось бы верить, что такое событие очень очень очень маловероятно, вот например Nick Bostrom ответил мне ссылкой на его с Тегмарком статью, где они оценивали вероятность такого события «сверху»: arxiv. А вы заметили, что vacuum catastrophe куда лучше подходит для квантового самоубийства, чем ружье?
Подразумеваемое Экзистенциальная угроза Если наша Вселенная находится в состоянии ложного вакуума, а не в состоянии истинного вакуума, то распад менее стабильного ложного вакуума на более стабильный истинный вакуум так называемый распад ложного вакуума может иметь драматические последствия. Эффекты могут варьироваться от полного прекращения существующих фундаментальных сил , элементарных частиц и структур, составляющих их, до тонких изменений некоторых космологических параметров, в основном зависящих от разности потенциалов между истинным и ложным вакуумом. Некоторые сценарии ложного распада вакуума совместимы с выживанием таких структур, как галактики и звезды, или даже с биологической жизнью, в то время как другие предполагают полное разрушение барионной материи или даже немедленный гравитационный коллапс Вселенной, хотя в этом более крайнем случае вероятность образования «пузыря» образование может быть очень низким то есть распад ложного вакуума может быть невозможен. В статье Коулмана и де Луччиа, в которой предпринята попытка включить в эти теории простые гравитационные предположения, отмечалось, что если бы это было точным представлением природы, то результирующая Вселенная «внутри пузыря» в таком случае казалась бы чрезвычайно нестабильной и почти сразу свернуть: В общем, гравитация снижает вероятность распада вакуума; в крайнем случае очень небольшой разницы в плотности энергии он может даже стабилизировать ложный вакуум, полностью предотвращая распад вакуума. Мы считаем, что понимаем это. Чтобы вакуум распался, необходимо создать пузырь с нулевой полной энергией. В отсутствие гравитации это не проблема, независимо от того, насколько мала разница в плотности энергии; Все, что нужно сделать, - это сделать пузырек достаточно большим, и соотношение объема и поверхности сделает свою работу. Однако в присутствии гравитации отрицательная плотность энергии истинного вакуума искажает геометрию внутри пузыря, в результате чего при достаточно малой плотности энергии пузыря с достаточно большим отношением объема к поверхности не существует. Внутри пузыря влияние гравитации более драматично. Геометрия пространства-времени внутри пузыря - это геометрия пространства анти-де Ситтера, пространства , очень похожего на обычное пространство де Ситтера, за исключением того, что его группа симметрий O 3, 2 , а не O 4, 1. Хотя это пространство-время свободно от сингулярностей, оно нестабильно при малых возмущениях и неизбежно подвергается гравитационному коллапсу того же типа, что и конечное состояние сжимающейся вселенной Фридмана.
Виртуальный хостинг
- Публикации
- Пузыри смерти или Когда распад ложного вакуума уничтожит Вселенную — Аркадий Хромов — NewsLand
- Пузыри смерти или Когда распад ложного вакуума уничтожит Вселенную
- Ученые проливают свет на «ложный вакуумный распад» • AB-NEWS
- Ученые рассказали о смерти Вселенной из-за распада вакуума
Все зависит от того, в каком вакууме мы живем
- Ученые показали на видео, как распад вакуума уничтожает Вселенную — 25.10.2016 — В мире на РЕН ТВ
- Впервые получены доказательства распада ложного вакуума | Новости дня России и мира
- Открытие распада ложного вакуума: ученые получили доказательства | 24.01.2024 | Capital Sport
- Telegram: Contact @darksciences
Распад нестабильного вакуума
Однако переход в состояние минимальной энергии, или истинного вакуума, затруднен из-за высокой энергетической плотности. Проведя серию экспериментов, исследователи наблюдали образование небольших пузырьков истинного вакуума в квантовой системе, состоящей из переохлажденного газа из натрия-23. Эта среда обладает свойствами сверхтекучей жидкости и была охлаждена до температуры менее одного микрокельвина. Результаты эксперимента соответствовали математическим моделям и подтвердили квантово-механическую природу распада ложного вакуума.
Zenesini et al. Физики измеряли профили намагниченности системы в зависимости от времени и наблюдали ее пузырьковообразный переход в глобальный минимум по энергии. Времена распадов ложного вакуума в сравнении с теорией инстантонов.
Первый случай отвечает минимальному энергетическому состоянию хиггсовского поля, тогда как для второго существует отличная от нуля вероятность перехода в более глубокий, в частности, истинный вакуум. Представленное Kurzgesagt видео посвящено второй ситуации.
В общем, суть в том, что весь наблюдаемый мир пребывает в состоянии истинного или ложного вакуума.
Если мы живет в истинном вакууме, то опасаться совершенно нечего — он отвечает минимальному энергетическому потенциалу хиггсовского поля и поэтому стабилен. А вот если обозримая Вселенная на самом деле находится в ложном вакууме, то пора бы нам подыскать себе другую, потому что эта в любую секунду может перейти на более глубокий уровень, то есть, в тот самый истинный вакуум. Предварительно, конечно же, сколлапсировав. То есть, уничтожив, в частности, все свое содержимое.