Новости искусственный интеллект в медицине и здравоохранении

Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.

Роман Душкин: «Медицина — это область доверия»

Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки. AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом. Они помогли предотвратить эпизоды гипогликемии.

Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений. Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Существует риск выявления конфиденциальных данных пациента из истории болезни. Более того, есть риск преднамеренного взлома алгоритма для нанесения вреда людям в больших масштабах, например передозировки инсулина у диабетиков.

Вторая проблема — неточная работа алгоритмов.

Что он должен успеть? Собрать клинический анамнез, выявить риски заболеваний, назначить правильное лечение, успеть принять всех пациентов, уделив внимание каждому, подписать документы электронной подписью, следовать клиническим рекомендациям, учитывать стандарты и порядок оказания медицинской помощи. Ему надо быть подобным шестирукому божеству, и все это — в условиях крайне сжатого времени, отведенного на прием. А перегруженность, как известно, ведет к профессиональному выгоранию. Естественный, то есть человеческий интеллект способен на многое: синтезировать новые знания, принимать решения, основанные на ценностях и смыслах, неся социальную и профессиональную ответственность, постоянно расширять профессиональный кругозор. Человек может мыслить креативно, создавая качественно новые решения. Не только на базе предыдущего опыта, но и на основе абстракций строить модели будущего, создавать концепции, рассматривать теории и предположения. Он видит профессиональную проблему с разных сторон и применяет кросс-дисциплинарный подход. Например, врач при постановке диагноза учитывает не только данные по своему профилю, но и по смежным дисциплинам.

А еще берет во внимание эмоциональное состояние пациента, его образ жизни, помнит, что пациент может симулировать или что симптоматику могут искажать сопутствующие заболевания. С учетом всего этого диагностика будет намного качественнее. Наверное, у многих так бывало, что все данные и цифры говорят об одном, но есть четкое внутреннее ощущение, что сейчас нужно сделать другой выбор. И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык. Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача.

В России такая тенденция начала стремительно набирать обороты в 2022 и продолжилась в 2023. Но в наступившем 2024 предполагается настоящая революция ИИ в сфере здравоохранения. Эксперты «Дентекс Медицина» выделили 8 основных изменений в технологиях искусственного интеллекта, которые следует ожидать российским медикам в ближайший год. Изображнение с freepik. Системы мониторинга за здоровьем Ожидается рост популярности портативных «умных» гаджетов, работающих на алгоритмах ИИ, которые непрерывно отслеживают и анализируют показатели здоровья человека. Такие устройства призваны предсказывать потенциальные угрозы уже при минимально недопустимых отклонениях, что позволит предупреждать серьезные нарушения для профилактики разнообразных заболеваний. Индивидуальные схемы лечения Ученые планируют активнее применять способности ИИ быстро выполнять анализ огромных массивов информации, в т. Благодаря этим возможностям облегчается задача составления индивидуальных планов лечения для врачей. Учет персональных особенностей здоровья пациентов существенно повышает эффективность лечебных курсов, снижает риск побочных эффектов.

Однако не только ИИ проверяет результаты работы врачей, но и наоборот. Все российское медицинское программное обеспечение, созданное с применением технологий ИИ, автоматически относится к наивысшему третьему классу потенциального риска. Это означает, что все заключения, выданные искусственным интеллектом, проходят строгий контроль медицинских специалистов. В России любое программное обеспечение, созданное для применения в медицинских целях, считается медицинским изделием. Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации. С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ.

Искусственный интеллект и машинное обучение в медицине

Искусственный интеллект или ИИ относится к моделированию человеческого интеллекта в машинах, предназначенных для того, чтобы мыслить и учиться подобно людям. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Можно ли назвать научным направление Искусственный интеллект (ИИ) и сhatGPT4 вобравшим в себя достижения вычислительной математики, философии, нейрофизиологии для создания систем, которые бы обладали.

Эксперимент

Технологии работы с большими данными обеспечат возможность использования предиктивного моделирования при разработке лекарственных препаратов и совершенствовании методов лечения пациентов. Анализ больших данных также позволит повысить точность планирования клинических исследований». Сразу вопрос — а можно ли слепо доверять «предиктивному моделированию» при назначении лекарства или того или иного метода лечения с «помощью» нейросети? Нужна ли нам такая помощь? Как можно принимать управленческие решения в здравоохранении, базируясь на ИИ. Ведь в медицине на первом месте должен быть человеческий фактор.

И почему такой упор именно на беспроводную связь? Проводной интернет в тех же поликлиниках и больницах медленнее, не стабильнее? Нет, очевидно, что беспроводная связь будет поддерживаться между людьми, носимыми устройствами и базовыми устройствами мониторинга показателей людей. Вот и дождались упоминания о телемедицине — чем больше удаленных консультаций врачей, тем лучше, значит, идет цифровая трансформация сектора. Главное, чтобы на портале Госуслуг побольше использовали сервис «Мое здоровье».

А вот как Правительство воспринимает главный вызов при внедрении пилотного проекта по дистанционному наблюдению за состоянием здоровья с использованием информационной системы "Персональные медицинские помощники": «- высокие финансовые издержки при внедрении инструментов дистанционного мониторинга; высокие затраты на внедрение практики широкого использования носимых устройств, включая обучение их правильному применению; низкая скорость внедрения инструментов контроля за своим здоровьем; несовершенство аппаратного или программного обеспечения при обработке данных». Низкая скорость внедрения и большие затраты — вот какая у них главная проблема. Далее читаем интересное: «…внедрение технологии дистанционного мониторинга обеспечит контроль за состоянием здоровья как пациентов с хроническими заболеваниями, так и пациентов, не имеющих хронических заболеваний, при помощи прогностических инструментов, используемых в практике медицинских работников». То есть дистанционный мониторинг показан будет не только диабетикам, а вообще всем нам.

HUB Telemed Телемедицина Телемедицинская платформа для врачей с возможностью выбора метода описания лучевых исследований на основе ИИ Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. Использование этих систем может значительно улучшить диагностику, ускорить процесс лечения и сделать медицинские услуги более доступными и персонализированными для пациентов. Со ссылкой на последние исследования и данные становится очевидной тенденция усиления значимости искусственного интеллекта в обеспечении здоровья нации.

Также в сборник включены материалы о нормативно-правовом регулировании и проблемах этики в сфере искусственного интеллекта для здравоохранения. Альманах подготовлен на основе анализа открытых источников, в том числе баз патентов, СМИ, сайтов компаний, сайтов университетов, баз данных научных публикаций Google Scholar, OpenAlex, PubMed, Scopus и др.

Об этом сообщил заместитель министра здравоохранения РФ Павел Пугачев. В этом году уже необходимо было внедрить не менее одного решения с искусственным интеллектом, в следующем году - не менее трех централизованных систем, в которых должны использоваться медицинские изделия с искусственным интеллектом.

«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»

В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.

Врачам и пациентам: как искусственный интеллект помогает в медицине

Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении. Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ.

Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек

Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы. Приложения искусственного интеллекта Национальной службы здравоохранения. ИИ начинает использоваться во всех аспектах здравоохранения, при этом 34% случаев использования NHS являются диагностическими. Всемирная организация здравоохранения (ВОЗ) выпустила новую публикацию, в которой излагаются основные принципы регулирования технологий искусственного интеллекта (ИИ) в здравоохранении. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования.

Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме

Подтвердили в итоге всего пять. Могу сказать, что если в фармацевтике вполне можно незатратно моделировать химические соединения, экономя время и ресурсы, то в такой консервативной области, как медицина, сотканной из исключительных сценариев с высокими рисками, полностью положиться на ИИ мы сможем нескоро. В случае наступления осложнений вряд ли можно переложить ответственность на ИИ. Поэтому за каждым алгоритмом ML пока что всегда будет стоять врач. ИИ позволяет вместо проведения ресурсоёмких опытов по взаимодействию молекул для получения необходимых свойств соединения использовать генеративные и рекомендательные модели. За счёт этого сокращается время и затраты на подбор идеальной рецептуры лекарства. Например, компании применяют технологии ИИ на стадии поиска и разработки ключевой молекулы drug discovery.

На сегодняшний день технология применяется лишь в рентгенографии, анализе медицинских карт, распознавании врачебной речи и наблюдении за пациентами в стационарах. Это было единогласное решение руководства центра Оценка решений на основе ИИ и критерии их выбора Разработка медицинских решений на базе искусственного интеллекта — это коммерческая отрасль. Вендоры имеют свой взгляд на рынок, создают конкурентоспособные продукты, выполняющие разный спектр задач и различающиеся характеристиками.

Не последней в очереди идёт и стоимость решения, а также условия внедрения и поддержки. Гайд для предпринимателей по созданию медицинского приложения Опыт внедрения ИИ в «МеркуриМед» показал, что выбор должен строиться на двух основных критериях. Решения для отрасли здравоохранения должны проходить обязательную процедуру регистрации в Росздравнадзоре с получение удостоверения, а также находиться в реестре Минкомсвязи, то есть изделие должно относится к категории отечественного ПО. Фрагмент реестра медизделий с ИИ, имеющих регистрационное удостоверение Предварительная оценка решения. На него стоит обращать внимание при соблюдение первого критерия можно смотреть и на второй. Сюда может относиться как изучение реальных кейсов, советов коллег по цеху, репутации разработчика, так и непосредственная работа с продуктов в тестовом режиме. Специалисты «МеркуриМед» проводили полноценное тестирование технологии, прежде чем допустить ИИ к работе с реальными ситуациями. На первом этапе врачи проверяли выборочно «сложные случаи» в которых были сомнения.

Мы наладили процесс передачи обезличенных снимков в эту компанию, и в ответ нам приходили рекомендации о приёме специалистов для ранней диагностики тех или иных пациентов. Примерно из 3000 снимков в 120 были обнаружены подозрения на новообразования, которые потом перепроверял врач. Подтвердили в итоге всего пять. Могу сказать, что если в фармацевтике вполне можно незатратно моделировать химические соединения, экономя время и ресурсы, то в такой консервативной области, как медицина, сотканной из исключительных сценариев с высокими рисками, полностью положиться на ИИ мы сможем нескоро. В случае наступления осложнений вряд ли можно переложить ответственность на ИИ. Поэтому за каждым алгоритмом ML пока что всегда будет стоять врач. ИИ позволяет вместо проведения ресурсоёмких опытов по взаимодействию молекул для получения необходимых свойств соединения использовать генеративные и рекомендательные модели.

И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык. Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача. Медработнику нужно осознать, проанализировать, сопоставить, пропустить через себя и выйти на принятие решения, на которое есть только минуты, а то и секунды. А если специалист не в настроении или плохо себя чувствует, то эффективность его диагностики снижается в разы. Хочу отдельно коснуться потенциальной пользы применения ИИ в медицине. Почему потенциальной? Потому, что сейчас систем ИИ, которые быстро определяют риски и учитывают множество входных параметров, не очень много и порядок их применения пока полностью не урегулирован. ИИ и нейросети способны в будущем преобразить современное здравоохранение. Изменить к лучшему систему диагностики, повысить качество оказания медицинских услуг при одновременном снижении расходов. Искусственный интеллект учится на клинических данных и историях заболеваний пациентов. Учитывает множество входных параметров при вычислениях и потенциально способен быстро определить риски возникновения заболеваний, предсказать динамику их течения. О морали и экономической целесообразности Работник здравоохранения должен принимать решения на основе фактов, и эти решения должны быть рациональными и практичными. Но не менее важны ценности, на которых строится этот выбор: этика, мораль, представления о добре и зле, о благе для пациента. Порой рациональным решением кажется отказ от дальнейшей борьбы за жизнь и здоровье пациента.

Для чего в российских регионах используют ИИ в медицине

В ряде зарубежных исследований было показано, что прогностические модели искусственного интеллекта со временем могут оказаться ненадежными в клинических условиях. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. Искусственный интеллект или ИИ относится к моделированию человеческого интеллекта в машинах, предназначенных для того, чтобы мыслить и учиться подобно людям. Будет расширяться использование в здравоохранении искусственного интеллекта.

Похожие новости:

Оцените статью
Добавить комментарий