Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.
Водородная и атомная бомбы: сравнительные характеристики
Водородные бомбы, считающиеся ядерным оружием, работают с использованием комбинации ядерного деления и термоядерного синтеза. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития.
Уроки водородной бомбы для мирного термоядерного синтеза
оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами.
Водородная и атомная бомбы: сравнительные характеристики
Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы.
Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах. Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.
Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров.
Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев.
В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты.
Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека. Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч.
В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру.
Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости.
Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет.
Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90.
Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.
Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой.
Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия.
Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается.
Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Слайд 11 Описание слайда: Самая мощная водородная бомба В 1961 году был произведён самый мощный взрыв водородной бомбы. Утром 30 октября в 11ч. Над Новой Землёй в районе Губы Митюши на высоте 4000м над поверхностью суши была взорвана водородная бомба мощностью в 50 млн. Слайд 12 Описание слайда: Самая мощная водородная бомба Бомба была разработана В. Адамским, Ю. Смирновым, А. Сахаровым, Ю.
Бабаевым и Ю. Трутнёвым Сахаров был награждён третью медалью героя Социалистического труда. Масса «устройства» составила 26 тонн, для её транспортировки и сброса использовался специально модифицированный стратегический бомбардировщик ТУ — 95. Слайд 13.
В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы.
Их предположения подтвердил французский физик Фредерик Жолио-Кюри. Его заключение стало толчком для разработок по созданию ядерного оружия. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс. В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала — урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.
Как работает термоядерная бомба и кто ее изобрел? Термоядерная бомба основана на реакции ядерного синтеза. В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов отсюда и название. Термоядерные реакции бывают трех видов: самоподдерживающиеся проходят в недрах звезд , управляемые и неуправляемые или взрывные — они используются в водородных бомбах. Статья по теме Северная Корея опубликовала видео успешных испытаний баллистической ракеты Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта.
Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам, сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона.
Водородная термоядерная бомба: испытания оружия массового поражения На чтение 10 мин Просмотров 672 Опубликовано 14. Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода.
Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах в том числе и на Солнце. Первое испытание пригодной для транспортировки на большие расстояния ВБ проекта А. Сахарова было проведено в Советском Союзе на полигоне под Семипалатинском. Термоядерная реакция Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры порядка 15 млн градусов Кельвина. При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.
Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. Водородная бомба (термоядерное оружие) — вид ядерного оружия, основанного на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые. Это достигается помещением в бомбу специального твердого соединения — дейтерида лития, который состоит из лития-6 и водорода-2. СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов.
Как устроена водородная бомба
Значительное количество пострадавших с термическими ожогами разной степени тяжести — от сравнительно лёгких ожогов 1 и 2 степени, до тяжелейших ожогов 4 степени гибель подкожно-жировой клетчатки, обугливание мышц и костей. К отдельной категории можно отнести ожоги сетчатки глаза, приводящие временной или постоянной потере зрения. Причины — световое излучение взрыва и пожары на местности. Разрушение зданий и сооружений включая подземные , вызванные ударной волной термоядерного взрыва.
Большое количество пострадавших с травмами различного характера и степени тяжести переломы костей, множественные порезы, контузии и разрывы внутренних органов , полученными, как от непосредственного воздействия ударной волны, так и от вторичных факторов удары обломков зданий, битого стекла, металлической арматуры и т. Наличие пострадавших, которые подверглись воздействию проникающей радиации гамма-излучения и потока нейтронов. Люди, оказавшиеся на расстоянии 2-3 км от эпицентра взрыва, вне защитных сооружений, мгновенно получат значительные дозы облучения во многих случаях смертельные.
Радиоактивное заражение местности продуктами деления ядерного заряда, элементами ядерного заряда не вступившими в реакцию и радиоактивными изотопами, образовавшимися в различных материалах и окружающем или выброшенном грунте в результате воздействия нейтронного излучения наведенная радиация. Выход из строя большинства электронных приборов и значительной части электрических приборов вследствие воздействия электромагнитного импульса, возникающего при взрыве. Косвенные — они зависят от мощности взорвавшейся бомбы и высоты её подрыва: Практически полный выход из строя систем центрального водоснабжения, что приведет значительным людским потерям из-за невозможности вести борьбу с пожарами, а также употребления воды заражённой радионуклидами и не прошедшей необходимой дезинфекции от возбудителей различных болезней.
Потеря большей части продовольственного запаса под завалами, вследствие радиоактивного заражения, из-за нарушений правил хранения и воздействия факторов окружающей среды. Полный выход из строя почти всей сложной электроники без возможности восстановления и большей части электроприборов за исключением наиболее простых бытового назначения под воздействием электромагнитного импульса. Как следствие — невозможность вести эффективные спасательные работы, а также сколь-нибудь значимую хозяйственную деятельность.
Они начинают реагировать друг с другом — и удерживает их от разлетания сила инерции относительно тяжелого корпуса заряда из урана. Помимо этого, урановый корпус непрозрачен для рентгеновского излучения — соответственно потери тепла меньше. Вся реакция заканчивается за 1 микросекунду — и корпус только-только начинает разлетаться в разные стороны.
Это была так называемая «бустерная схема» ядерного заряда, где вклад термоядерной реакции невелик, и лишь позволяет немного поднять мощность «задешево» плутоний — страшно дорогой, а литий — в сравнении с ним дешев как грязь. Тритий напрямую не используют поскольку он радиоактивный и соответственно долго не хранится. А литий-6 стабилен, и ядерный заряд всегда готов к бою.
Можно использовать и литий-7 — он не только дает тритий, но и еще один лишний нейтрон. Об этой реакции не знали, когда американцы тестировали бомбу «Shrimp» «Креветка». Существует и схема радиационной имплозии — когда первичный ядерный взрыв рентгеновским излучением обжимает и нагревает отдельную сферу с термоядерным топливом.
Линейные ускорители: идея проста — берем мишень из любого удобного дейтерида металла, и в маленьком линейном ускорителе разгоняем до нужной скорости атомы трития. Получаем настоящую термоядерную реакцию, и выходом энергии и 14. Такой источник можно использовать для поиска нефти и воды например на марсианском ровере MSL стоит российский импульсный источник нейтронов DAN , и в качестве внешнего импульсного нейтронного инициатора в ядерных зарядах.
Почему-же так нельзя вырабатывать электричество? На разгон атомов тратится намного больше энергии, чем мы получаем в результате реакции далеко не все разгоняемые атомы реагируют. Токамак тороидальная камера с магнитными катушками — идея уже немного сложнее, в плазменном торе как в трансформаторе наводим ток.
Вокруг тора — сверхпроводящие магниты, которые «обжимают» плазму и не дают ей коснуться стенок. Плазма нагревается микроволновым излучением, и резистивным нагревом от протекающего тока. Когда начинали работать по этому направлению — казалось: вот-вот и все будет работать.
Во всем мире построено порядка 300 токамаков, и самый современный и крупный из них — строящийся международный проект ITER в том числе и при участии России. Водородную плазму то есть без термоядерной реакции собираются зажечь в 2020-м, а начать запуски с дейтерий-тритиевой плазмой — в 2027, если конечно все пойдет по плану и не случится какой-нибудь очередной кризис. Проблемы у токамаков следующие при их будущем промышленном использовании : Нестабильность плазмы.
Разряд норовит где-то становится тоньше, где-то — толще, вплоть до разрыва кольца с прекращением тока или касанием стенок. С проблемой боролись увеличением размеров камеры, добавлением полоидального магнитного поля вокруг вертикальной оси камеры. Тритий — дорог, и его нужно много для производства энергии.
Необходимо использовать размножение нейтронов — используя например литий-7 или свинец, которыми нужно обложить внутреннюю стенку реактора бланкет , и доставать оттуда как-то тритий. Это значит, что если конструкцию реактора сделать из тех же материалов, то срок службы у нее будет 5 лет, а не 50 как у обычных реакторов. Поскольку плазма с огромной температурой теряет много энергии на излучение, а камера должна быть большой для обеспечения стабильности — минимальная мощность реактора получается большой, сотни мегаватт.
В историю американцы вошли как первые создатели водородной бомбы чем они, несомненно, очень гордятся , но это была не победа, а проигрыш. Русские оказались умнее. Всё дело в том, Ivy Mike был бесполезен с практической точки зрения. Он весил слишком много по разным источникам, 82 или 62 тонны , а поэтому не годился для транспортировки. СССР произвёл первый термоядерный взрыв 12 августа 1953-го. Мощность была существенно ниже — всего 0,4 мегатонны.
Для инициирования реакции синтеза использовался атомный заряд. Мы пошли своим путем… Первая советская водородная 12 августа 1953 г. В РДС-6С была успешно реализована физическая идея, получившая название «слойка» одноступенчатая схема термоядерного заряда. Созданный научно-технический и производственный задел обеспечил прогресс в области конструирования термоядерного оружия. Основные результаты создания РДС-6С: - впервые в СССР было реализовано зажигание и горение термоядерного горючего, практически показана возможность создания одностадийного термоядерного заряда; - схема РДС-6С оказала прямое влияние на выбор схемы термоядерного узла в будущих термоядерных зарядах на принципах радиационной имплозии.
За разработку первого одноступенчатого водородного заряда большая группа сотрудников КБ-11 и смежных организаций была удостоена звания Героя Социалистического Труда в том числе, первая Звезда Героя у будущего академика А. По сути, эти параметры послужили отправной точкой, определившей полезную нагрузку и стартовую массу ракеты Р-7 созданной ОКБ-1, главный конструктор С. Королев — первой советской межконтинентальной баллистической ракеты. Но с учетом расчетной точности стрельбы ракеты Р-7, мощность заряда РДС-6С была недостаточной для требуемой боевой эффективности. Требовалось форсировать энерговыделение заряда.
Кроме того, РДС-6С имел невысокие эксплуатационные характеристики. Расчетно-теоретические оценки показали, что в заданных массогабаритных ограничениях РДС-6С при одноступенчатой схеме, на принципе химической имплозии кардинально повысить энерговыделение заряда практически невозможно. Это инициировало поиски новых идей. Решение было найдено при использовании принципа радиационной имплозии «третья идея», как назвал в своих воспоминаниях ее автор А. На этой основе была разработана двухступенчатая схема термоядерного заряда.
Правильность данного выбора подтвердило успешное испытание двухступенчатого термоядерного заряда РДС-37, проведенное 22 ноября 1953 г. Проведение испытаний Разработчики заряда РДС-37 были настолько уверены в правильности его физической схемы и конструкции, что заряд сразу испытывался в составе авиационной бомбы корпус с некоторыми техническими доработками был позаимствован от серийной бомбы РДС-6С , сбрасываемой в штатном режиме с реактивного бомбардировщика среднего радиуса действия ТУ-16. Для обеспечения безопасности самолета-носителя и его экипажа в составе авиабомбы предусматривался тормозной парашют площадью 6 м2 , обеспечивающий запас по времени для ухода самолета на безопасное расстояние от эпицентра взрыва. Летные экипажи самолета-носителя и сопровождающего самолета-лаборатории, обслуживающий технический персонал, операторы измерительных средств и руководство полетами были из состава 71 полигона ВВС станция Багерово, Крымской области. Начальник полигона — генерал-майор Чернорез В.
Данный полигон обеспечивал баллистические испытания спецавиабомб, их парашютных систем, отработку систем автоматики подрыва заряда, радиотелеметрии и т. Начальником полигона в то время был генерал-лейтенант И. Подготовку бомбы к испытаниям проверки всех приборов автоматики с полной имитацией их срабатывания на траектории полета - так называемый «контрольный цикл» - комплексную проверку, сборку и снаряжение заряда, подвеску бомбы под самолет-носитель, проверку взаимодействия самолетного пульта управления штурмана с системой автоматики бомбы, снятие первой ступени предохранения бомбы в бомбоотсеке, расчет полетного задания для ввода в автоматику бомбы обеспечивала испытательная бригада КБ-11, состоящая из гражданских лиц и офицеров военно-сборочной бригады, прикомандированной к КБ. Руководил этой бригадой наш корифей-испытатель Буянов В. Все работы контролировались квалифицированными военпредами из 12 ГУ Министерства среднего машиностроения МСМ во главе с генерал-лейтенантом В.
Административное руководство испытаниями осуществлял министр МСМ А. Научно-техническое руководство осуществляли академики И. Курчатов и Ю.
Последствия взрыва водородной бомбы
В результате воздействия ионизирующих излучений у человека может возникнуть лучевая болезнь. Электромагнитный импульс ЭМИ — это кратковременное электромагнитное поле, возникающее во время взрыва ядерного боеприпаса. Поражение людей ЭМИ возможно только в тех случаях, когда они в момент взрыва соприкасаются с протяжёнными проводными линиями. Продолжительность действия — несколько десятков миллисекунд. Ядерное оружие в России В России ядерное оружие официально подразделяют: на стратегическое; тактическое нестратегическое. Что такое стратегическое ядерное оружие Стратегическое ЯО предназначено для масштабного поражения территории противника, самых чувствительных и важных целей.
В России этот вид оружия представлен так называемой «ядерной триадой». Это значит, что ядерный запас разделён между тремя типами вооружений: наземного, воздушного, морского базирования. Обычно «триада» представлена межконтинентальными баллистическими ракетами, стратегическими бомбардировщиками-ракетоносцами и атомными подводными лодками. То есть, защищает государство на всех трёх уровнях: на земле, в воде и в воздухе. Что такое тактическое ядерное оружие Тактическое ЯО — боеприпасы с более ограниченным радиусом действия, нежели стратегические.
Оно нужно для точечного применения на поле боя, для какого-то ограниченного ядерного удара.
Мощнейший арсенал, с которым Советский Союз вступил в новое десятилетие, стал сдерживающим фактором для Запада. Прорыв в науке, совершенный советскими учеными, которые создали первую в мире водородную бомбу, позволил избежать новых военных конфликтов. На основе исследований ученых разработка бомбы началась по двум направлениям. Первый — «слойка», представляющая собой атомный заряд, который окружен несколькими слоями легких и тяжелых элементов. Второй — «труба», в которой плутониевая бомба погружалась в жидкий лейтерий. Впоследствии именно первую модель выбрали для дальнейших испытаний.
К моменту взрыва полигон быль тщательно подготовлен: 16 самолетов, 7 танков, орудий и минометов, 1300 измерительных, регистрирующих и киносъемочных приборов, 1700 различных индикаторов. Специально для аппаратуры, регистрирующей термоядерные процессы, в 5 м от места подрыва соорудили бункер. Сам заряд установили на стальной башне, на высоте 30 м закрепили бомбу.
Более того, еще 17 октября 1961 года, когда в Москве начал работу XXII съезд КПСС, а на Новой Земле готовились испытать самую мощную термоядерную бомбу, Никита Хрущев публично, прямо в докладе, предупредил об ожидаемом "подарке съезду". Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. А кроме того, испытывались оперативно-тактическая ракета Р-12, зенитные и самонаводящиеся крылатые ракеты. Но об этих идущих на вооружение боевых системах в открытой печати не сообщалось. В августе-декабре 1962 года, включая самые тревожные дни Карибского кризиса, "грибной сезон" продолжился.
Всего в СССР, включая Семипалатинский полигон, в период с 20 октября по 5 ноября 1962 года было проведено пятнадцать ядерных взрывов. А завершилась программа таких испытаний декабрьской серией из 11 термоядерных бомб и боеголовок мегатонного класса, взорванных над мысом Сухой Нос у западного побережья Новой Земли. Причем 18, 24 и 25 декабря проводили по два испытания в день, а 23-го было проведено три... В 1961-1963 годах США провели как минимум 125 ядерных испытаний Справедливости ради отметим, что Соединенные Штаты за период 1961-1963 годов провели на трех своих полигонах в Неваде, на острове Рождества и острове Джонстона как минимум 125 ядерных испытаний в атмосфере и под водой. Советский Союз в 1963 году ядерных испытаний не проводил. А серия мощных взрывов над Новой Землей в конце декабря 1962 года вообще стала последним для нашей страны эпизодом ядерных испытаний в открытых средах: с 1964 года в СССР проводились только подземные испытания. Так что Никита Хрущев ничуть не лукавил, когда заявил в Берлине, что в Советском Союзе в интересах всего социалистического содружества создано, испытано и поставлено на боевое дежурство, передано в войска оружие невиданной силы - "и пусть только господа-империалисты сунутся".
Имеющиеся источники говорят с его слов , что сделал это он полностью самостоятельно, без протекции каких-либо инстанций. В сентябре Лаврентьев встречается с И. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее. В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А. Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л. С ним наш студент познакомился через несколько дней. Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя. По воспоминаниям О. Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало. Разговор велся о самом госте, его достижениях, планах и родственниках. По-видимому, мнение оказалось благоприятным». Следствием «смотрин» стали необычные для советского первокурсника поблажки. Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната правда, маленькая — 14 кв. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы. Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б. Ванниковым , Н. Павловым и И. Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов. Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение. В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно. Вход в Курчатовский инстутут. Современная фотография. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР магнитным термоядерным реактором. Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» — так гласит докладная записка на имя Берии. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям. Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы. Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше. О том, что сами коллеги придерживаются иного мнения, он узнал существенно позднее. Ваш благодетель умер 26 июня 1953 года был арестован и вскоре расстрелян Берия. Сейчас можно только догадываться, имел ли он какие-то конкретные планы в отношении Олега Лаврентьева, но на его судьбе утрата столь влиятельного покровителя сказалась весьма ощутимо. Чего же вы хотите? Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил. Сейчас невозможно, да и бессмысленно, пытаться понять, виновата ли в этом репутация «человека Берии», какие-то личные сложности или что-то еще.
ВОДОРОДНАЯ БОМБА
Этот процесс освобождает огромное количество энергии по сравнению с ядерным расщеплением, которое используется в атомных бомбах. Детонатор: Для инициирования термоядерной реакции в водородной бомбе используется атомная бомба в качестве детонатора. Взрыв атомной бомбы создает необходимые условия высокую температуру и давление , чтобы запустить термоядерную реакцию во второй ступени водородной бомбы. Размер и мощность: Водородная бомба может быть значительно более мощной, чем атомная бомба.
Мощность водородной бомбы измеряется в мегатоннах TNT и может достигать нескольких сотен мегатонн. Это означает, что одна водородная бомба способна создать разрушения на огромной площади. Воздействие и радиационная опасность: Взрыв водородной бомбы вызывает огромный огненный шар, ударную волну и радиационное излучение.
Радиационное излучение включает гамма-излучение и нейтронное излучение, что делает водородные бомбы особенно опасными для здоровья людей и окружающей среды из-за возможного радиоактивного загрязнения.
Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми. Возможные последствия взрыва водородной бомбы В первую очередь водородная бомба — это оружие массового поражения. Оно способно уничтожать не только взрывной волной, как на это способны тротиловые снаряды, но и радиационными последствиями. Что происходит после взрыва термоядерного заряда: ударная волна, сметающая всё на своём пути, оставляя после себя масштабные разрушения; тепловой эффект — невероятная тепловая энергия, способна расплавить даже бетонные конструкции; радиоактивные осадки — облачная масса с каплями радиационной воды, элементами распада заряда и радионуклидами, движется по ветру и выпадает в виде осадков на любом удалении от эпицентра подрыва. Вблизи ядерных полигонов или техногенных катастроф на протяжении десятилетий наблюдается радиоактивный фон. Последствия применения водородной бомбы очень серьёзные, способные нанести вред будущим поколениям.
Всем спасибо! Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны. Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» — опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, — получается меньше, чем при делении ядер урана.
Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.
Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная. Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор. Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого».
Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения например, появился урановый экран между инициирующей бомбой и основным зарядом и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды. Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона.
В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже. Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. А ведь речь идет только о двух атомах.
Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово. Оба компонента термоядерной бомбы. Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. Г Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется… Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они — газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились. Проблема только в том, что ее невозможно доставить «адресату» — размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний. Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально. Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же — это дейтерид легкого изотопа лития. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было. Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы — это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог. Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов — милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности. Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора. Реактор Конструкция будущего реактора в 1950 году виделась его автору довольно простой.
Во-первых, она была слишком большая, поэтому её было легко обнаружить средствами ПВО и сбить. Во-вторых, так разбрасываться ценными территориями никто не хотел. До недавнего времени более новая В-83 считалась наиболее оптимальным решением, поскольку была действительно небольшой и при весе в 1. Это уже всего сотня Херосим, но ещё слишком много. Средства ПВО постоянно совершенствуются, а значит даже такая сравнительно небольшая боеголовка с высокой вероятностью не достигнет своей цели. И вот здесь и наступает самое интересное, ведь американцы интенсивно вывозят из Европы В-83, а на место считающегося малоэффективным против РФ боеприпаса идёт В61-12. Известно, что боеголовка крайне мала и имеет мощность не выше 50 килотонн, что измеряется всего тремя Хиросимами. В-83 Эксперты называют В61-12 одной из наиболее точных термоядерных бомб, а сама она использует корректировку при помощи GPS, где для повышения точности задействуются хвостовые рули. В итоге отклонение от заданной цели не превышает 30 метров, а запускать её могут самолёты F-35A и F-15E.
Популярные
- Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
- Немного о терминологии и принципах работы в картинках
- Как это устроено: все секреты термоядерной бомбы
- Почему стала необходима супербомба
Поражающие факторы взрыва водородной бомбы. Водородная бомба
Офицеры расчета, тревожно переглянувшись, оставляют сомнения. Пуск 15Ж45 произведен. В те же минуты команду на пуск баллистической ракеты Р-29М получает экипаж атомной подводной лодки К-92. Ее дежурство в акватории Баренцева моря таким образом становится боевым не на словах, а на деле. В замкнутом пространстве субмарины тоже ощущается предчувствие апокалипсиса. Параллельно кипит работа и на главном советском космодроме.
В центре управления полетами Байконура мгновенно отреагировали на звонок из штаба. Времени на раздумья у расчета стратегических ракет уже не было. Крыши двух шахтных пусковых установок медленно раздвигаются, и пара 40-тонных УР-100 взмывает в воздух. Пролетев несколько тысяч километров, все выпущенные ракеты достигают своих целей. Но апокалипсиса не случилось: в Москве и Нью-Йорке , Токио и Лондоне миллионы людей спали спокойно, а утром начали свой день так, как будто ничего не произошло.
Потрясены событиями 18 июня 1982 года были только в генеральных штабах стран НАТО. Шок от успеха испытаний советского атомного оружия был колоссальным. В мировую историю этот день вошел под названием «семичасовая ядерная война» В общей сложности в тот судьбоносный день советскими войсками было выпущено девять баллистических ракет, противоракет и ракет-носителей, которые перед этим вывели в космос спутники-разведчики. Формально цель мероприятия была простой: отработать действия разных элементов советской ядерной триады на случай удара врага. Уже спустя несколько месяцев после учений США начали работать над новой системой противоракетной обороны.
План американских военных получил название «Стратегическая оборонная инициатива» СОИ. Куда больше, впрочем, она известна под своим народным названием «Звездные войны». Как раз в то время в кинотеатрах всего мира шла заключительная часть классической трилогии Джорджа Лукаса «Звездные войны. Эпизод 6: Возвращение Джедая». Конечно, строить «Звезды смерти» в Америке не собирались, но в центре стратегии тем не менее лежала идея разместить в космосе системы противоракетной обороны.
Угроза применения баллистических ракет с ядерными боеголовками должна быть полностью ликвидирована. Новая система противоракетной обороны будет надежно защищать американских граждан от советского ядерного удара», — заявил президент США Рональд Рейган в марте 1983 года. В том же 1983 году Америка решила ответить на «семичасовую ядерную войну» демонстрацией своей военной силы. Испытания, проходившие под названием «Гордый пророк», развернулись сразу на нескольких континентах. Эксперты Пентагона и аналитических центров прорабатывали сразу несколько сценариев развития событий.
Один предполагал ядерный удар по Москве. По другому плану большая группировка американских наземных войск вторгалась в Восточную Европу. Впрочем, все варианты при ближайшем рассмотрении оказались провальными. Бомбардировка Москвы была обречена на отражение мощнейшим кольцом ПВО, окружавшим столицу. Американские военные прорабатывали самые разные варианты, но итог при каждом из них оказывался одним и тем же: Москва оставалась в безопасности и наносила ответный ядерный удар Был отметен и сценарий с наземным вторжением: даже самая большая группировка из тех, что могли собрать в НАТО, по численности уступала Советской армии.
Наступление против превосходящих по силам войск было признано бесперспективным. Вся американская стратегия, построенная на концепции превентивного удара по противнику, оказалась несостоятельной. По всем заключениям экспертов, варианта, при котором НАТО удалось бы избежать ответного пуска советских ракет, не существовало. Это была бы катастрофа. Полмиллиарда человек оказались бы убиты из-за первоначальных обменов ударами.
Еще больше людей умерли бы впоследствии от радиации и голода. НАТО больше не было бы. Почти все Северное полушарие стало бы непригодными для проживания на десятилетия Пол Брэкенпрофессор Йельского университета Смертельная гонка События 1982 и 1983 годов стали кульминацией процесса, который начался еще до окончания Второй мировой войны. Так в потсдамском дворце Цецилиенхоф в 07:30 вечера 24 июля 1945 года началась настоящая гонка ядерных вооружений XX века. На тот момент проект «Манхэттен» уже был на финальной стадии.
Все шло к бомбардировке Японии. Он не стал просить о частной встрече и просто, как бы между делом, сообщил, что США обладают новым оружием необычайной разрушительной силы. Сказав это, Трумэн внутренне напрягся. Он не знал, как отреагирует Сталин. Но тот ответил лишь, что рад слышать такую новость, и выразил надежду, что Соединенные Штаты "удачно используют это против японцев".
И все. Никаких вопросов о принципе действия оружия. Ни слова о том, что хорошо бы поделиться им с русскими. Американцы и британцы были шокированы», — пишет в своей книге «Обратный отсчет: 116 дней до атомной бомбардировки Хиросимы» Крис Уоллес. В реакции Сталина, однако, не было ничего удивительного.
К тому моменту работы над ядерным оружием велись в СССР уже три года. Более того, знали в Москве и обо всех достижениях США. Информатором служил Клаус Фукс — один из ученых, непосредственно занятых в проекте «Манхэттен».
Была ли такая передача на самом деле или всё это домыслы, искусственно возбуждаемые и направляемые на поддержание нашей бдительности, мне не известно. Тогда же появился эскиз, по поводу которого было сказано, что его просил рассмотреть А. Завенягин, работавший в то время заместителем министра среднего машиностроения. Хотя затем этот вариант из-за тяжеловесности был отвергнут, некоторые принципиальные черты, зародившиеся на ранней стадии, сохранились до конца. Я не помню другого времени, до такой степени насыщенного творчеством, поиском, что разом пропали внутренние перегородки, делившие людей по узким темам, а вместе с ними исчезла и мелочная секретность. Возник могучий коллектив единомышленников. Молва приписывала эти основополагающие, в духе радиационных идей Теллера, мысли то Я. Зельдовичу, то А. Сахарову, то обоим, то ещё кому-то, но всегда в какой-то неопределённой форме: вроде бы, кажется… К тому времени я хорошо был знаком с Я. Зельдовичем, но ни разу не слышал от него прямого подтверждения на сей счёт. Как, впрочем, и непосредственно от А. То, что мы сотворили тогда, по своей сути вошло во все последующие устройства. Тамма и Н. А между тем как раз в это время активизировалась деятельность основных исполнителей — теоретиков, математиков, физиков-экспериментаторов, конструкторов, инженеров. Вера в плодотворность идеи, в её универсальность была настолько велика, что тогда же было принято решение о создании нового научно-ядерного центра — на Урале. Переезды, затрагивающие судьбы людей, совсем не способствовали тому, чтобы сосредоточиться на доведении новой конструкции до испытания. По сути дела, над её созданием мы работали только в 1954 году и в начале 1955-го. А в ноябре 55-го было проведено испытание водородной бомбы нового образца — результат оказался ошеломляющим. Все прочие варианты были отставлены. Появились первые в стране лауреаты Ленинской премии во главе с И. Курчатовым, многим руководителям было присвоено звание Героя кому впервые, кому во второй и даже в третий раз , чинам поменьше раздали ордена разного достоинства. Но и мы были не такими, как во время Фукса и первой атомной бомбы, а значительно более понимающими, подготовленными к восприятию намёков и полунамёков. Меня не покидает ощущение, что в ту пору мы не были вполне самостоятельными. В статье Хирта и Мэтьюза многое сказано про американскую водородную бомбу. Особенно много — для тех, кто понимает, кто варился в этом котле. Подобной откровенности мы не допускали. А они решились. И стало ясно, что мы, в общем-то, их повторяли. Не так давно мне пришлось побывать в известном ядерном центре США Ливерморе. Там рассказали одну историю, которая горячо обсуждалась в Америке и почти не известна в России. Wheeler перевозил сверхсекретный документ, касающийся новейшего ядерного устройства. По неизвестным или случайным причинам документ исчез — он всего на несколько минут был оставлен без присмотра в туалете. Несмотря на предпринятые меры — остановлен поезд, осмотрены все пассажиры, обочины железнодорожного пути на всём протяжении, — документа не обнаружили. На мой прямой вопрос к учёным Ливермора, можно ли по тому документу получить информацию о технических деталях и устройстве в целом, я получил утвердительный ответ. Нам показывали фотографии каких-то документов, большинство из них были перекошены, видимо, фотографу было некогда установить свой микроаппарат. Среди фотографий был один подлинник, ужасно измятый. Нейтрон первоначально от деления урана с хорошим сечением взаимодействует с литием-6 , образующийся тритий тут же вступает в реакцию с дейтерием. Характерно, что если на входе имеется нейтрон произвольной энергии, то на выходе появляется высокоэнергетичный нейтрон, способный делить любой уран, включая уран-238. По совокупности причин в последовательности деление-синтез-деление возникает разветвлённая цепь, очень эффективная по темпу энерговыделения и технически привлекательная. Была построена целая индустрия изотопного разделения лития, которая предусматривала использование ртути. Помню время, когда в аптеках исчезли градусники. Гинзбург и была очень плодотворной. Рассуждения, приведшие к реальной конструкции, кратко сводятся к следующему.
Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров. Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты.
Исследования в сфере ядерного оружия велись в СССР с конца 1930-х, а уже вскоре после начала Великой Отечественной войны руководство страны окончательно сориентировало учёных на изготовление атомного оружия и настоятельно попросило ускорить этот процесс. Параллельно с физиками не покладая рук трудились и советские разведчики. Они искали симпатизирующих СССР западных учёных, которые уже привлекались к работе над ядерной бомбой. Кроме того, советские агенты внедрялись в те военные и научные центры, где «друзей» было недостаточно. По мнению российского историка спецслужб и писателя Александра Колпакиди, было бы ошибочно полагать, что весь советский ядерный проект основывался исключительно на данных разведки, но и недооценивать их роль нельзя. И они принялись меня убеждать, что, даже если бы не было информации от разведки, то через определённый срок ядерная бомба в СССР всё равно была бы создана. Однако кто может гарантировать, что срок был бы именно таким, как рассчитывали! В 1945 году американцы выпустили уже три готовые к использованию ядерные бомбы. При этом всего через несколько дней после того, как была завершена сборка первой бомбы, советская разведка уже доставила её схему в Москву. Японский город Хиросима, август 1945 года AFP На фоне успехов ядерной программы, в которой помимо США активное участие принимали Великобритания и Канада, западные лидеры стали делать недвусмысленные намёки на переговорах с Иосифом Сталиным. При этом они даже не могли себе представить, насколько хорошо советское руководство осведомлено об их реальных достижениях. В 1945 году военно-политическое руководство стран Запада начало разработку планов атомной бомбардировки СССР. К концу года было определено 20 крупнейших городов Советского Союза, которые должны были повторить судьбу Хиросимы и Нагасаки. В 1947—1948 годах был разработан целый ряд новых военных планов. Согласно документу под названием «Чариотир», принятому летом 1948-го, 133 ядерные бомбы должны были упасть сразу на 70 городов Советского Союза. За атомным ударом могли последовать массированные бомбардировки обычными боеприпасами. План «Дропшот», разработанный в 1949 году, был ещё более масштабным: предполагалось уничтожить сразу 100 млн советских граждан 300 атомными бомбами. Советский ответ Внести кардинальные коррективы в своё военное планирование властям США и Великобритании пришлось осенью 1949 года.