Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against.
Коэффициент Джини (индекс концентрации доходов)
World Bank Indicatorss | Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2021 about gini, indexes, and USA. |
Уровень жизни. Динамические ряды | Коэффициент Джини стран мира ежегодно с 1967 по 2020 годы в виде рейтинга и визуализации. |
Динамика неравенства: как меняется соотношение доходов богатых и бедных
- Help/Feedback
- Что такое коэффициент / индекс Джини?
- Индекс Джини и неравенство доходов
- Что такое индекс Джини?
- Беларусь вошла в Топ-10 стран с самым низким имущественным неравенством |
- Что дает индекс?
Как оценивается социальное неравенство
Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.
Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.
Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику?
Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.
Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и.
Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.
И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области.
Он используется для анализа неравенства доходов или богатства. Однако на расчеты оказывает влияние большое количество переменных, например, демографическая структура населения. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий.
В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей.
В Китае существует минимальная зарплата. В Пекине она составляет примерно 20 000 рублей, а почасовая ставка — 220 рублей, в Шанхае — 23 000 рублей в месяц и 200 рублей в час, в Лхасе Тибет — 14 000 рублей в месяц и 130 рублей в час. Регионы по закону обязаны увеличивать минимальную зарплату хотя бы раз в два года. При этом 500 млн китайцев получают базовую пенсию в 125 юаней 1250 рублей. Есть какие-нибудь пособия? С 1997 года в Китае действует система дибао — аналог нашего пособия по бедности. Главный недостаток системы в том, что сложно получить выплаты: документы подаются в центр и проходят долгий бюрократический отбор. Система очень слабо распространена вне городских районов. Лишь в 2016 году были слиты воедино городская и сельская системы медицинского страхования. Рассказать друзьям в соцсетях Спасибо! Мы обещаем присылать только полезную информацию Подписаться Нажимая на кнопку, вы даёте согласие на обработку своих персональных данных При полном или частичном использовании материалов обязательна гиперссылка на сайт.
Список стран по показателям неравенства доходов
Обновите эту статью, чтобы отразить недавние события или новую доступную информацию. Июнь 2020 г. Мировая карта коэффициентов Джини по странам.
Впрочем, наиболее развитые страны в Топ-10 государств с низким имущественным неравенством не входят. Зато Беларусь из первой десятки давно уже не выпадает. Если по итогам 2021 года страна занимала в данном рейтинге 4-е место, то по итогам 2020 года находилась на 3-й строчке.
Неравенство в Европе, как правило, ниже, чем где-либо в мире, и индекс Джини подтверждает этот факт. В США коэффициент Джини равен 41,1. В США бедность является растущей проблемой.
Иногда и бедные, и богатые страны могут иметь одинаковый показатель. В каждой стране, которая попала под исследование, индекс выведен в разные годы: к примеру, в Китае расчет проводился в 2016 году, а в России — в 2012. Удобство расчетов Если применять коэффициент, соблюдая все правила, можно определить реальный уровень неравенства в доходах и других экономических показателях разных государств мира. Правильно выведенный индекс Джини позволит изучить средние доходы гражданина выбранной страны, узнать подробную информацию об уровне ВВП, посмотреть динамику изменения уровня неравенства за каждый год. В каких странах самый большой уровень неравенства 90 В десятку стран с самым большим неравенством дохода среди населения регулярно входят государства, расположенные на территории Африки, однако есть и страны из Латинской Америки. Тройку «лидеров» замыкает Суринам — небольшое государство в Южной Америке. Пятое место в рейтинге досталось маленькому островному государству с названием Сан-Томе и Принсипи.
Здесь индекс Джини достиг 56?
Как оценивается социальное неравенство
It was developed by statistician and sociologist Corrado Gini. The Gini coefficient measures the inequality among values of a frequency distribution, such as levels of income. A Gini coefficient of 0 reflects perfect equality, where all income or wealth values are the same, while a Gini coefficient of 1. В Германии «индекс Джини» растёт с 1998 года, хотя в 2000-х годах он немного снизился, однако с 2013 года вернулся к устойчивому росту, в то же время не превысив 32% по итогам 2016 года, что в 1,29 раз меньше, чем в США. Индекс Джини 0% выражает полное равенство, а индекс 100% выражает максимальное неравенство. Это ведущая страна по неравному распределению доходов с индексом Джини 63, 4.
Список стран по показателям неравенства доходов | Latest numbers for economic inequality, which is the difference in how assets, wealth, or income are distributed among individuals and/or populations. It is also described as the gap between rich and poor, income inequality, wealth disparity, wealth and income differences, or the wealth gap. |
Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных | Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. |
Gini Ranking 2023 - Eamond | Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты. |
Gini Ranking 2023
В рейтинге стран по индексу Джини на 2023 год, шестое место занимает страна с самым высоким уровнем неравенства. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against. The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita.
Quality of Life Index by Country 2024
Среднее значение индекса Джини в ЕС–287 в 2018 году составило 29,9%, что на 0,1 п.п. ниже уровня 2008 года. Тем не менее, в рассматриваемый период социальное неравенство в странах группы ЕС–13 снизилось, а в странах ЕС–15, наоборот, выросло. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. Индекс Джини, равный 0%, выражает полное равенство, а индекс 100% выражает максимальное неравенство. Не удивлюсь, если в следующем годовом докладе я обнаружу, что по индексу Джини Россия обойдет и Южную Африку, и станет мировым эталоном антисоциального государства. Definition: Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received.
Коэффициент джини в России
Коэффициент Джини. Большая российская энциклопедия | Индекс качества жизни по странам 2023, Рейтинг стран мира по уровню жизни в 2023 году. |
Gini Ranking 2023 - Eamond | Индекс Джини высчитывается от 0 до 1. Чем выше. |
По индексу Джини Россия на 54-м месте в мире: fish12a — LiveJournal | Следите за страной с самым высоким показателем: Уровень инфляции. |
Рейтинг стран по индексу джини 2023 | Для составления рейтинга исползовался Индекс Джини. |
Quality of Life Index by Country 2024
Коэффициент Джини (индекс концентрации доходов, индекс неравенства). Ниже этого уровня индекс Джини в России был только в 2005 году (0,409). Explore data and insight from the new Global Green Economy Index™ (GGEI), measuring country progress against global sustainability targets across 18 key indicators. News. About. HDRO Team.