Правильный додекаэдр — статья из Интернет-энциклопедии для Пра́вильный додека́эдр — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. Что такое додекаэдр? Додекаэдр – это многогранник, состоящий из двенадцати граней.
Значение слова додекаэдр: что это такое?
это (греч. двадцатигранник), согласно Платону, геометрическая фигура, на основе которой построена Вселенная. Правильный додекаэдр (от двенадцать и грань) один из пяти возможных правильных многогранников. небольшой полый бронзовый или каменный предмет геометрической формы с двенадцатью плоскими гранями они украшены маленькими шарами в каждом углу пятиугольника. небольшой полый бронзовый или каменный предмет геометрической формы с двенадцатью плоскими гранями они украшены маленькими шарами в каждом углу пятиугольника. ДОДЕКАЭДР — один из пяти правильных многогранников, так называемое Платоновское тело. Додекаэдра является tetartoid более необходимой симметрии.
Что такое Додекаэдр простыми словами
Следовательно, K может быть только вершиной, а симметричной вершине A относительно O является вершина K. Додекаэдр допускает пять троек ортогональных плоскостей, проходящих через центр, каждая из которых является плоскостью симметрии додекаэдра. Симметрия относительно плоскости, перпендикулярной OM, проходящей через O, является произведением поворота на пол-оборота оси OM на симметрию центра O. Симметрия относительно плоскости, проходящей через O и перпендикулярной AB, является произведением S на симметрию с центром O. Симметрия относительно плоскости, проходящей через AOB, является произведением T на симметрию центра O Три ортогональные плоскости, проходящие через O, соответственно перпендикулярные OM, AB и двум предыдущим, являются, таким образом, тремя из пятнадцати плоскостей симметрии додекаэдра. Строительство 1. Построение первых трех граней.
С какой целью?
Пока это неразрешимая загадка. Обломок артефакта, найденный в Бельгии. Последнее - весьма туманное - предположение высказал куратор бельгийского музея Гвидо Криммерс Guido Creemers , получив обломок: мол, додекаэдры использовали в каких-то магических обрядах. Как-то с их помощью предсказывали будущее, что было весьма популярно у древних римлян, но попало под запрет с приходом христианства. По мнению куратора, неспроста чаще всего попадаются кусочки артефактов — завершив обряд и сделав предсказание, додекаэдр разбивали. Натянуто, честно признаться. Следуя подобной логике, придется допустить, что и керамические черепки образовались не случайно — мол, посуду били сознательно в ходе домашних скандалов.
Ранние гипотезы: додекаэдры служили игральными костями, но не привычными с 6 гранями, а с 12. Были какими-то измерительными инструментами. Или частями оружия.
Одно из наиболее вероятных предположений состоит в том, что римляне использовали их в качестве измерительных приборов на поле битвы, чтобы определить траекторию и дальность действия любого оружия, которым они владели.
Это могло объяснить разные размеры отверстий в пятиугольниках. Похожая интерпретация состоит в том, что додекаэдры действовали как уровень, чтобы определить, насколько плоской или наклонной была какая-либо область. Однако точного доказательства, чтобы ученые могли определенно принять решение об их использовании, до сих пор нет. Астрономические инструменты?
Другая возможная версия, что додекаэдры - это астрономические инструменты, которые определяли лучшее время для выращивания злаков. По версии голландского философа Вагемансу, это был астрономический измерительный прибор, с помощью которого можно было измерить угол солнечного света и, следовательно, точно рассчитать весенний и осенний сезоны. Но даже эта теория не подтверждается, потому что у додекаэдров не было одного конкретного размера. Религиозные символы?
Кое-кто предполагает, что эти бронзовые предметы были элементом какого-либо религиозного ритуала. Причем, учитывая, что большинство артефактов найдены в Западной Европы, "грешат" на легендарных лесных жрецов - друидов. Версия, конечно, красивая, но опять же - не имеющая своего подтверждения. Возможно, исследователи понапрасну ломают голову и функции бронзовых многогранников были гораздо более простыми. Может, это были обычные детские игрушки или необходимый элемент какой-нибудь неизвестной сегодня азартной игры забава для отдыхающих между походами легионеров. Не исключено, что додекаэдр - навершие военного штандарта, посоха или скипетра.
Вариант подсвечника также не стоило бы отметать, тем более, что в одном из найденных додекаэдров найдены следы воска. Словом, версий много, все они разные, как говорится, на любой вкус. А вот подлинной информации о загадочных предметах сущие крохи. Известно, что они были распространены в западной части Римской империи со II по V век нашей эры, изготавливались из бронзы, имели размер от 4 до 11 сантиметров. Вот, пожалуй, и все точные данные.
Введите определение
- Додекаэдр использовали, ставя его на горящую свечу - сверху
- Рекомендуемые статьи
- Значение слова ДОДЕКАЭДР. Что такое ДОДЕКАЭДР?
- Тайна римского додекаэдра
бетельгейзе.
- Последнее обновление
- Значение слова «додекаэдр»
- Зачем в древности был нужен и как использовался «Римский додекаэдр». подробнее на сайте
- Додекаэдр – знак космической мощи. Исаева О.В. | Дельфис
- Лексическое значение
- idb, kniganews.org
Что такое фигура Додекаэдр, как получила свое название и почему является символом Вселенной
«Римский додекаэдр» - древний мистический артефакт и его назначение | У додекаэдра центр симметрии состоит из 15 осей симметрии. |
Додекаэдр. Развертка для склеивания, распечатки а4, шаблон с размерами | Многогранник с 12 гранями, он же додекаэдр В геометрии додекаэдр (греч. |
Ответ на вопрос — зачем в древности был нужен и как использовался «Римский додекаэдр».
Вогнутая: Если хотя бы две точки додекаэдра можно соединить прямой линией, которая в какой-то момент выходит из фигуры. Аналогичным образом, в зависимости от их регулярности, они могут быть: Обычный: Все их грани равны друг другу и представляют собой правильные пятиугольники. То есть, у которых пять сторон имеют одинаковые размеры, а также их внутренние углы также равны см. Изображение выше. Нерегулярный: Все они имеют разные грани, каждый из которых представляет собой многоугольник, который может быть правильным, а может и не быть. На изображении, где мы объясняем элементы додекаэдра, мы показываем случай правильного додекаэдра.
Симметрия относительно плоскости, проходящей через O и перпендикулярной AB, является произведением S на симметрию с центром O. Симметрия относительно плоскости, проходящей через AOB, является произведением T на симметрию центра O Три ортогональные плоскости, проходящие через O, соответственно перпендикулярные OM, AB и двум предыдущим, являются, таким образом, тремя из пятнадцати плоскостей симметрии додекаэдра. Строительство 1. Построение первых трех граней. Следовательно, существует поворот с осью AB, преобразующий E в G.
Пусть F3 будет преобразованием F1 этим поворотом: это правильный пятиугольник, имеющий общее ребро AB с F1. Построение следующих трех граней.
С какой целью? Пока это неразрешимая загадка. Обломок артефакта, найденный в Бельгии.
Последнее - весьма туманное - предположение высказал куратор бельгийского музея Гвидо Криммерс Guido Creemers , получив обломок: мол, додекаэдры использовали в каких-то магических обрядах. Как-то с их помощью предсказывали будущее, что было весьма популярно у древних римлян, но попало под запрет с приходом христианства. По мнению куратора, неспроста чаще всего попадаются кусочки артефактов — завершив обряд и сделав предсказание, додекаэдр разбивали. Натянуто, честно признаться. Следуя подобной логике, придется допустить, что и керамические черепки образовались не случайно — мол, посуду били сознательно в ходе домашних скандалов.
Ранние гипотезы: додекаэдры служили игральными костями, но не привычными с 6 гранями, а с 12. Были какими-то измерительными инструментами. Или частями оружия.
Гипотезы и предположения выдвигаются самые разные — то ли это подсвечники, то ли необычные игральные кости, а может, детские игрушки или какие-то замысловатые инструменты для наблюдений. Все эти догадки, впрочем, абсолютно нечем подкрепить, поскольку загадочные додекаэдры ни словом не упомянуты в письменных источниках и не встречаются ни на одном из изображений того времени. Есть, правда, одна весьма правдоподобная гипотеза, согласно которой предметы эти относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших перечисленные территории. Вполне возможно, что имеется какая-то прямая связь между додекаэдрами римского периода и множеством куда более древних каменных шаров с вырезанными по их поверхности правильными многогранниками. Такие шары-многогранники, датируемые периодом между 2500 и 1500 годами до н. Никто до сих пор не знает наверняка, каково было предназначение этого впечатляющего сооружения. Однако явно неслучайное расположение гигантских камней, привязанное к циклам движения солнца по небу, дает основания полагать, что Стоунхендж служил не только для религиозно-ритуальных обрядов наиболее вероятное назначение , но и для астрономических наблюдений.
И — кто знает — быть может, и маленькие каменные шары-многогранники играли для древних жителей Британии роль «домашних Стоунхенджей», олицетворяя какие-то важные для них духовные идеи и тайны мироустройства. Чуть позже эти идеи были тщательно развиты в текстах Платона 427-347 д. Так, в позднем платоновском диалоге «Тимей» четыре главных элемента материи — огонь, воздух, вода и земля — представлены в виде скоплений крошечных частиц в форме правильных многогранников: тетраэдра, октаэдра, икосаэдра и куба. Интересно отметить, насколько эта схема созвучна современной физической концепции о 4 агрегатных состояниях вещества — плазма, газ, жидкость и твердое тело.
Геометрия. 10 класс
Додекаэдр. Додекаэдр (греч. δωδεκάεδρον, от δώδεκα – двенадцать и ἕδρα – грань), один из пяти типов правильных многогранников. В словаре Ожегова и Шведовой додекаэдр определяется как многогранник, у которого каждая грань является правильным пятиугольником. Что такое римский додекаэдр, и как этот необычный куб использовался в античные времена? Ученые выдвинули множество гипотез: мистические, геодезические, военные, астрономические, математические. Ниже приведем основные формулы додекаэдра, который состоит из правильных пятиугольников. "что такое додекаэдр?", можно дать следующее определение: "Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых - правильный пятиугольник".
Гипотеза ИДСЗ (Икосаэдро-додекаэдрическая структура Земли). Многогранники.
Звёздчатые формы кубооктаэдра- полуправильный многогранник, состоящий из 14 граней 8 правильных треугольников и 6 квадратов. В кубооктаэдре 12 одинаковых вершин, в которых сходятся два треугольника и два квадрата, а также 24 одинаковых ребра, каждое из которых разделяет треугольник и квадрат. Икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильными треугольниками. Икосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра. Звёздчатые формы икосододекаэдра- икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильными треугольниками. Кеплер открыл малый додекаэдр, названный им колючим или ежом, и большой додекаэдр. Пуансо открыл два других правильных звездчатых многогранника, двойственных соответственно первым двум: большой звездчатый додекаэдр и большой икосаэдр. Звездчатый октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт Иоганном Кеплером, и назван им Stella octangula звезда восьмиугольная.
Отсюда октаэдр имеет и второе название «stella octangula Кеплера». Практическая часть Додекаэдр Развёртка додекаэдра Додекаэдр - одно из пяти Платоновых тел. Двенадцать пятиугольных граней придают особое своеобразие этому многограннику. Я изготовила календарь в форме додекаэдра. Приложение Звёздчатый додекаэдр малый Чтобы изготовить модель звёздчатого додекаэдра, надо привести его к этой форме. Под приведением к звёздчатой форме понимается процесс построения многогранника из другого многогранника путём расширения его граней. Для этого через грани исходного многогранника проводятся плоскости и рассматриваются всевозможные рёбра, полученные в результате пересечения этих плоскостей и выбираются подходящие.
Развёртка пирамиды, таких нужно сделать 12 штук. Двенадцать пирамид, надстроенных над каждой из граней исходного додекаэдра, создают пространственную 3D-звезду - первую звездчатую форму додекаэдра. Другое название - малый звездчатый додекаэдр. Приложение Звёздчатый додекаэдр большой Гранью многогранника является правильный звёздчатый многоугольник, который состоит из правильных треугольников. Форма грани имеет следующий вид: Многогранник состоит из 60-ти треугольных граней. Развёртка икосаэдра Звёздчатый додекаэдр большой Заключение В ходе работы я изучила информацию, представленную в интернете. Я узнала, что существует большое множество различных звёздчатых многогранников.
Поскольку рассматриваемая фигура является объемной, выпуклой и состоит из многоугольников пентагонов , то для нее справедливо правило Эйлера, которое устанавливает однозначную зависимость между числом граней, ребер и вершин. Углы между соседними гранями этой платоновской фигуры являются одинаковыми, они равны 116,57o. Математические формулы для правильного додекаэдра Ниже приведем основные формулы додекаэдра, который состоит из правильных пятиугольников. Объем правильного додекаэдра, как и его суммарная площадь граней, однозначно определяется из знания стороны пятиугольника. Описанную окружность проводят через 20 вершин правильного додекаэдра. Симметрия правильного додекаэдра Как видно из рисунка выше, додекаэдр — это достаточно симметричная фигура. Для описания этих свойств в кристаллографии вводят понятия об элементах симметрии, главными из которых являются поворотные оси и плоскости отражения.
Идея использования этих элементов проста: если установить ось внутри рассматриваемого кристалла, а затем повернуть его вокруг этой оси на некоторый угол, то кристалл полностью совпадет сам с собой. То же самое относится к плоскости, только операцией симметрии здесь является не поворот фигуры, а ее отражение. Современное использование додекаэдра В настоящее время геометрические объекты в форме додекаэдра находят применение в некоторых сферах деятельности человека: Игральные кости для настольных игр. Так как додекаэдр — это платоновская фигура, обладающая высокой симметрией, то объекты этой формы можно использовать в играх, где продолжение событий имеет вероятностный характер. Игральные кости в своем большинстве изготавливают кубической формы, поскольку их сделать проще всего, однако современные игры становятся все сложнее и разнообразнее, а значит, требуют костей с большим количеством возможностей.
В пользу этой версии можно отнести суровую зиму на северо-западе Европы, которая могла оставить народ без урожая и спровоцировать голод. По этой же причине странные изделия находят здесь, а не на юге. Но обе гипотезы вызывают сомнения из-за того, что додекаэдры не унифицированы.
Они имеют разные геометрические размеры, что для метрологии неприемлемо. Хотя не исключено, что тогда просто не было цели обеспечивать единство измерений. Могли артефакты быть и частью религиозных обрядов, но опять-таки доказательств этому нет. Но одно известно совершенно точно: загадочные штуковины представляли ценность. Многие их них были обнаружены среди драгоценностей и золотых монет, в местах упокоения богатых господ, среди святилищ и в местах дислокации военных. Такой разброс и вызывает путаницу в гипотезах.
Нет никаких упоминаний о них в исторических текстах или изображениях того времени. Существуют различные версии их использования: подсвечники, игральные кости, инструмент для гадания, детские игрушки, элементы армейского штандарта, какие-то замысловатые приспособления для наблюдений или, к примеру, болванка для вязки перчаток под разные размеры пальцев. Среди этих предположений, некоторые действительно заслуживают внимания. Согласно одной из гипотез, римский додекаэдр использовался на поле боя в качестве дальномера для расчета траекторий метательных снарядов. Это могло бы объяснить наличие разного диаметра отверстий на пятиугольных гранях. Римский додекаэдр, найденный в Бонне, Германия. Тем не менее, ни одно из этих предположений не было подкреплено какими-либо доказательствами и исчерпывающими объяснениями того, каким образом додекаэдры могли использоваться для этих целей. Известен как минимум один каменный или лепной додекаэдр с отверстиями, но без шариков. Большинство же каменных предметов не имеют полостей. Их грани или не имеют изображений, или снабжены только выгравированными кругами. Количество граней у них различно. Часто они имеют две широкие грани на противоположных сторонах, а между ними оформлено произвольное количество более мелких граней. Каменные икосаэдры оформляли как гадальные или игральные кости. Додекаэдр некогда считался пифагорейцами священной фигурой, игравшей важную роль в картинах мироздания и олицетворявшей Вселенную или эфир пятый элемент мироздания, помимо традиционных огня, воздуха, воды и земли. Ямвлих в книге «О пифагорейской жизни» утверждает, что Гиппас из Метапонта, разгласивший простым людям тайну додекаэдра, был не только изгнан из пифагорейской общины, но ему еще при жизни соорудили гробницу «в знак того, что они считают своего бывшего товарища ушедшим из жизни».
Кругосветка по додекаэдру
По их предположению, он мог использоваться для неких магических ритуалов. Обнаружил предмет на вспаханном поле недалеко от небольшого городка Кортессем археолог-любитель Патрик Шуэрманс. Римский додекаэдр - это давняя загадка для ученых. Внешне они напоминают деталь какого-то механизма и представляют собой полые 12-гранные геометрические фигуры, изготовленные из литого металла. Размером они с бейсбольный мяч. Все подобные предметы снабжены большими отверстиями на каждой грани и шипами по углам.
Теперь, когда у додекаэдра есть грани с правильными пятиугольниками, додекаэдр называется правильным. Примером могут служить кости, которые они используют для ролевых игр, они представляют собой правильный додекаэдр. Каждое лицо обозначено номером: Число 1 представляет собой наименьшую фигуру, которая противоположна лицу, представленному цифрой 12, которая является самой большой фигурой. В самом деле, если добавить обе противоположные цифры, результат будет 13.
Вместо замкнутого многогранника появится открытая геометрическая система 5-ти ортогональностей. Или симметричное пересечение 5-ти 3-х мерных пространств. Дополнительные материалы по теме: Додекаэдр.
Додекаэдр перестанет существовать. Вместо замкнутого многогранника появится открытая геометрическая система 5-ти ортогональностей. Или симметричное пересечение 5-ти 3-х мерных пространств.
Додекаэдр. Развертка для склеивания, распечатки а4, шаблоны
Для изготовления свечей и их практичного использования люди прикладывали ум — как сделать, чтобы управлять горением свечи, чтобы она лучше и дольше светила? Малого диаметра свечи быстро сгорают, поэтому они для долгого освещения не годились. Поэтому делали толстые. Толстая свеча горит дольше, но у неё есть один недостаток — по мере горения фитиль с огнём опускается внутрь свечи, стенки её не успевают плавиться и она не дает света.
Чтобы фитиль на большом пламени дольше не сгорал, его надо постоянно смачивать жиром воском. Чтобы толстая свеча долго горела и при этом пламя фитиля не опускалось быстро во внутрь, нужно было равномерно плавить свечу по краям, чтобы расплавленный жир воск от краев свечи постоянно стекал к её центру. Судя по размерам найденных додекаэдров, древние свечи были также от 4- 11 см.
И возможно, что свечи были не всегда в сечении круглые, как сейчас хотя круг для плавления свечи идеальная расходная форма. Свечи могли быть в горизонтальном разрезе и пятиугольником фигура близкая к кругу. Но для додекаэдра это несуть важно, так как он мог быть использован одинаково полезно на круглой и пятиугольной свече.
Додекаэдр использовали, ставя его на горящую свечу — сверху. Додекаэдры были разных размеров и применяли их в зависимости от толщины используемых свеч. Чем толще была свеча, тем крупнее использовался додекаэдр.
Свечи были разного размера в поперечнике и фитили от толщины тоже были разного диаметра. Поэтому и в гранях додекаэдра отверстия были разного диаметра, чтобы сделать его максимально универсальным для свечей многих размеров. По мере горения свечи, для удлинения её срока пользования, додекаэдр много раз за вечер переворачивали, ставя попеременно на свечу гранями с отверстиями разного диаметра, для равномерности плавления воска, Ближе к фитилю металл додекаэдра был горячее и воск под ним плавился быстрее, стекая в «кратер» к центру, а дальше от фитиля металл был холоднее и воск под ним плавился медленнее.
Это позволяло увеличить время горения свечи, способствовало её полному равномерному плавлению и не позволяло воску стекать наружу по краям как происходит с тонкими свечами. Кроме того, додекаэдр защищал пламя свечи от ветра, так как каждый раз разжигать потухший огонь, в те времена было не просто. Помимо всего, свет через круглые отверстия в гранях служил «декоративному» освещению помещения.
Свечи и додекаэдр был всегда на видном месте, поэтому богатые люди, чтобы показать своё состоятельное положение иногда его украшали серебром. Например, в окрестностях Женевы в Швейцарии был найден маленький литой свинцовый додекаэдр с гранями 15 миллиметров, покрытый снаружи пластинками из серебра с латинскими зодиакальными знаками. То, что он был маленький по размеру, серебряный и украшенный знаками, говорит, что его владелец был богатый человек и позволял себе пользоваться тонкими быстро сгорающими, дорогими свечами.
Люди не меняются со временем и в наше время стараются приукрасить свой быт, используя дорогие бытовые вещи — тоже делали и раньше.
F1 имеет ребро, общее с F6, F8 имеет ребро, общее с F3. F4 имеет ребро, общее с F5, F11 имеет ребро, общее с F4. Ребро F4, которое не является общим с любой из десяти других граней, определенных ранее, преобразуется S, S 2 , S 3 и S 4 в ребро соответственно F5, F9, F10 и F11, которые находятся в одном плоскости и образуют правильный пятиугольник, двенадцатую грань додекаэдра. Использует Megaminx это головоломка , полученная из куба Рубика в форме додекаэдра. Некоторые настольные ролевые игры используют в своей игровой системе 12-гранные кости для разрешения действий. Эти 12-гранные игральные кости представляют собой додекаэдры. Статьи по Теме.
Юла имеет прозрачные: дно, крышку и заполнена жидкостью, в которой находится большое количество частиц типа чаинок. Юлу закручивают, а затем тормозят… Об этом эффекте ученые предпочитают умалчивать… Но если присмотреться к снимку галактики М 51 NGG 5194 из ежегодника «Наука и человечество» за 1980 г. Изломов на виток спирали приходится пять если первый и последний считать за один. Характерные изломы рукавов видны также на снимках других спиральных галактик: Например, галактики NGG 1232, снимок которой украшает обложку книги А. Гуревича и А. Чернина «Происхождение галактик и звезд». Но, если проявление «эффекта юлы» на поверхности Земли с трудом поддается приборному и визуальному наблюдению, то в случае с галактикой, благодаря тому, что мы можем видеть ее всю сразу, во всей ее красе, этот эффект проявляется весьма наглядно. Это утверждение относится и к пирамиде Кукулькана. Каждый год на протяжении всего ее тысячелетнего существования в одно и то же время — в 13:31 по международному гринвичскому времени GMT — солнечные лучи попадают точно на балюстраду на вершине пирамиды. В этот момент каменная фигурка с изображением священной змеи таким образом отбрасывает тень, что кажется — по каменному полу ползет настоящая змея. Постепенно в течение дня эта тень перемещается к колодцу и к вечеру исчезает в нем.
Можно вспомнить задачу о «запутывании ветра в деревьях» и подход к ней через коцикл Концевича—Зорича, можно вспомнить «теорему о волшебной палочке» Эскина—Мирзахани. В общем, получающаяся область вовсе не так проста, как может показаться на первый взгляд. Но вернемся к исходной задаче. Для описания пути по додекаэдру авторы взяли трансляционную поверхность, которая получается, если на плоскости разместить каждую грань в каждом из возможных положений, в котором она может оказаться при «перекатывании» фигуры. Эти грани объединяются в 10 поворотов одной развертки додекаэдра — с отождествленными соответствующим образом оставшимися сторонами. Получающаяся поверхность огромна: топологически это сфера с 81 ручкой. На ней 20 вершин, которые соответствуют 20 вершинам додекаэдра. Однако — и в этом сила этого подхода — геодезические линии на ней становятся просто прямыми — продолжающимися сквозь «склеенные» пары сторон. Правда, по пути на двойном пятиугольнике да и на додекаэдре не очень просто сказать, соответствует ли он пути на S, идущем из вершины в ту же самую вершину. Они переводят прямые в прямые, поэтому прямому пути на исходной трансляционной поверхности соответствует прямой путь на поверхности-образе. Иногда исходная поверхность переходит в себя, как тор, полученный из квадрата, на рисунке ниже. Более того, некоторые трансляционные поверхности «достаточно симметричны», чтобы преобразований, переводящих их в себя, было бы «много». И — что самое важное для этой задачи — чтобы применение таких преобразований позволяло «упрощать» геодезические линии на них.
«Римский додекаэдр» - древний мистический артефакт и его назначение
это многогранник, состоящий из 12 граней, каждая из которых является правильным пятиугольником. Пятый же многогранник, додекаэдр, воплощал в себе «всё сущее», символизировал всё мироздание, почитался главнейшим. Тайна римского додекаэдра Римский додекаэдр, найденный в Бонне, Германия. Правильный додекаэдр (от двенадцать и грань) один из пяти возможных правильных многогранников.