Главная» Новости» Холодный ядерный синтез новости последние. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Тандберг начал изучать холодный термоядерный синтез в 1927 году, когда 33-летний главный научный сотрудник компании Electrolux Co. заинтересовался экспериментами по термоядерному синтезу, проводимыми в Германии, сказал Вильнер. Helion Energy планирует подключить реактор мощностью минимум 50 МВт — это немного, но речь здесь идет, скорее, о самом факте первого в истории коммерческого контракта на получение энергии посредством термоядерного синтеза.
Что еще почитать
- Содержание
- Содержание
- Комментарии:
- Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
Холодный ядерный синтез
Однако я бы поостереглась назвать тему холодного ядерного синтеза и даже генератора Росси чистой воды блефом. Холодным он называется потому, что предусматривает выделение огромной энергии при низких температурах. Однако, как показывает история науки, сами по себе теории — лишь человеческие суждения, которые делаются исходя из ограниченного набора различного рода экспериментов и сведений об окружающем мире. Объем сведений увеличивается. Проводятся новые эксперименты. И очень часто оказывается, что уже открытые физические законы являются не всеобщими, а относятся к какой-то ограниченной сфере. Так, например, получилось с Ньютоном и его механикой. Квантовая механика, которую открыли в ХХ веке, не отменила законов Ньютона, но ограничила их действия. Так что не надо быть великим физиком, чтобы обладать здравым смыслом. А здравый смысл подсказывает, что наше сегодняшнее физическое, химическое и любое другое знание ограничено. То, что не соответствует современным канонам, не означает, что этого не может быть в принципе.
История науки и технологий полна примеров, когда что-то изобреталось и действовало, а уж потом под некую экспериментальную установку подводилась теория. Постепенно она встраивалась в здание науки и становилась истиной. В случае генератора Росси есть много аргументов «против». И связаны они отнюдь не с физикой, а с весьма своеобразной репутацией самого автора открытия. Росси не раз уже был уличен в недобросовестности и деловом мошенничестве. Однако жизнь - сложная штука. Не все гении праведники, а таланты - образцы добродетели. Есть несколько обстоятельств, не вписывающихся в концепцию чистого блефа, применительно к генератору Росси, реализующему принципы холодного ядерного синтеза. В октябре опубликовано заключение ученых о работе генератора Росси: необъяснимые эффекты, связанные с получением дешевой энергии, реально присутствуют. Важно, что документ подписали люди, безупречные с точки зрения научной и человеческой репутации.
В их числе председатель комитета по энергетике Шведской королевской академии наук Свен Кулландер и президент шведского Общества ученых-скептиков Ханно Эссен. Это Общество — аналог знаменитой Комиссии по борьбе с лженаукой Российской Академии наук. Так что эта подпись дорогого стоит. Но и это еще не все. Нобелевский лауреат по физике Брайан Джозефсон, профессор Кембриджа, написал: «Что бы ни было в чёрном ящике, но если он эффективно работает - этого достаточно, понимание и теоретическая база могут появиться позже». Так что даже в случае, если генератор Росси и другие подобные приборы, о которых время от времени объявляется в печати, действительно работают, до использования холодного термоядерного синтеза в повседневной жизни и бизнесе предстоит сделать еще чрезвычайно много. В любых смыслах - начиная от времени, заканчивая ресурсами.
Внутренние свойства нейтрона, которые обеспечивают эти внешние свойства — это шесть замкнутых, взаимно противоположных ядерных полярных вихронов и сильно взаимодействующих с определенной частотой, полярностью и поляризацией. По трём внутренним и внешним оболочкам нейтрона пульсируют замкнутые магнитные монополи ГЭММ, которые обновляют замкнутые контуры, формируя из них внешние поля.
Между первой внутренней оболочкой и средней происходит сильное взаимодействие с аннигиляцией противоположных по знаку зерен-электропотенциалов, что приводит к почти полному уничтожению пространства между ними с помощью зоны холодной плазмы фото 4 третья справа. Равновесное состояние положения источников-сфер волноводов в указанной схеме обеспечивается равенством сил притяжения разных по знаку и величине зарядов энергии, но более близко размещённых, по сравнению с одинаковыми по величине зарядами энергии, но диаметрально противоположными сферами ГЭММ и более удалёнными друг от друга на полволны. Отсюда следует ещё одна форма жизни и существования зарядов электрическим потенциалом в состоянии динамического равновесия полного взаимного уничтожения пространства контурами-оболочками рождения слоистой холодной безмассовой плазмы и пространства нейтрона. Фото 4. Схемы оболочек нейтрона, слева — направо, внутренняя оболочка, составленная из двух сфер-источников ГЭММ с двумя четверть волноводами типа нейтрального К-мезона с полуцелым спином типа мюона; эта же оболочка в реальном виде из зёрен-потенциалов гравитационных внутри и электрических снаружи; две, вложенные друг в друга оболочки первая и средняя; три, вложенные друг в друга оболочки, образующие нейтрон. Гравитационные зёрна-потенциалы этих оболочек имеют одинаковый знак и высокую проницательность, поэтому при обновлении излучаются и выходят за пределы этих контуров, а взаимодействуя с центральным полем Земли проявляют массу нейтрона. Третья, внешняя оболочка нейтрона пульсирует в обе стороны с рождением как положительных зёрен-электропотенциалов, так и отрицательных, проявляя электронейтральность нейтрона в целом и полуцелый спин, как у электрона. В слабом гравитационном поле на поверхности Земли эта свободная внешняя оболочка распадается с рождением стабильных частиц — протона, электрона и с выбросом промежуточного остатка нейтрино половины внешней оболочки из зёрен-электропотенциалов без магнитного монополя. Отсюда согласно приведенной структуре нейтрона и его электронейтральности, последний является и античастицей по отношению к себе.
Итак нейтрон — это три вложенных друг в друга оболочки со структурой нейтральных мезонов — три ядерные оболочки Фото 4 , составленные из противоположных по знаку электрического заряда частиц со структурой типа мюонов — сложная центральная интеграция материи-контуров в состоянии покоя. Это основное свойство гравиэлектромагнитных диполей высоких резонансных частот. Нейтрон не имеет электрического заряда, хотя обладает магнитным и электрическим дипольным моментами, имеет полуцелый спин и массу, которая примерно в 2000 раз больше, чем у электрона. Энергию для обеспечения этих состояний, нейтрон черпает от пульсирующих магнитных монополей в этих шести оболочках. Магнитный момент протона положителен и в полтора раза больше, чем у нейтрона, у которого он отрицателен. Разница в массах-энергиии нейтрона и протона составляет 1,293323 Мэв, которая при распаде нейтрона распределяется между его продуктами. Комптоновская длина волны нуклонов составляет величину 1,3 х 10—13 см, а с учётом разрыхленности внешней оболочки, задающей запирающий слой и полуцелый спин, размер её достигает значения 9,1 х 10 —13 см. Нейтрон легко проникает в ядра химических элементов при любой энергии, вызывает ядерные реакции и способен вызывать деление тяжёлых ядер. Медленные нейтроны, имеющие дебройлевскую длину волны соизмеримую с межатомными расстояниями, служат для использования их в исследовании свойств твёрдых тел.
Большое внимание привлекают на себя осцилляции друг в друга нейтрон-антинейтрон. Осцилляции элементарных частиц — это периодический процесс превращения частиц определённой совокупности друг в друга. Ведутся экспериментальные работы во многих странах по обнаружению увеличения числа антинейтронов в пучке нейтронов из реактора с ростом длины пролёта, а также в потоках космических лучей и в специальных ловушках ультрахолодных нейтронов — это так называемые нейтрон-антинейтронные осцилляции 30. Они вложены друг в друга таким образом, что половины замкнутых контуров из положительных зёрен-потенциалов внутренней закрываются отрицательными зёрнами-потенциалами следующей половины внешней. Центральная сфера показывает свободное пространство, которое будет заполняться центральными оболочками при образовании ядер химических элементов вплоть до ядер кальция. Такая структура нейтрона свойственна ему вначале его появления и долгой жизни в определённых условиях, до начала разрыхления его внешней зарядо-образующей оболочки. Взаимодействие между оболочками — электромагнитное с очень малым радиусом действия 10—16 см. Нейтрон, как электрически нейтральная частица является одновременно и античастицей по отношению к себе, как и фотон. Мгновенная структура нейтрона с уже разрыхлённой третьей внешней оболочкой, образующей его спин, приведена на фото 5, Фото 5.
Схема нейтрона и антинейтрона где внешняя оболочка находится в состоянии разрыхления и готовится к распаду. Аналогичны структуры внешних оболочек перед распадом всех атомных нейтральных ядер, появившихся при рождении на поверхности ЧСТ звёзд и планет или в результате мощного электроразряда, или мощного удара при специальной сварке взрывом, или при воздействии магнитных монополей в кавитационном пузырьке и т. Распад нейтрона зависит от внешних условий и возможен с учётом нейтрон-антинейтронных осцилляций не только с образованием протона, но и антипротона. Распад нейтрона можно рассматривать и как акт ионизации половины внешней оболочки ядра-нейтрона частицы типа мюона с испусканием электрона и антинейтрино за счёт внутренних процессов и рождением протона. Половина средней положительной отрицательной оболочки нейтрона после распада оголилась и уже не компенсируется полем вылетевшей отрицательной положительной оболочки, которая превратилась в электрон позитрон распада. Оставшаяся после распада половина внешней оболочки нейтрона вместе со средней положительной превращает его в протон антипротон с геометрической формой внешней части представленной на фото 6, слева справа. Протон в состоянии покоя. Фото 6. Схемы ядерных электрических оболочек протона слева и антипротона справа без указания гравитационых.
В полусферических слоях рождается зона холодной безмассовой плазмы, удерживая и центрируя положения магнитных монополей ГЭММ. Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона. Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной энергией пяти магнитных монополей ГЭММ, пульсирующих с разной частотой. Даже две внешние положительные оболочки порождают такой недостаточный положительный отрицательный электрический заряд из зёрен-потенциалов на поверхности протона антипротона , который один электрон позитрон в атоме водорода антиводорода перекрывает полностью и даже остаётся излишек — образуется атом водорода с достаточно большой энергией сродства к электрону, который способен присоединить ещё один протон с образованием молекулярного иона. Поэтому более стабильна молекула водорода. Превращения структуры протона в движении при увеличении энергии на ускорителях и коллайдерах. Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, то есть с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы — ни массы покоя, ни релятивисткой массы в СТО.
А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения он пропорционален массе и синхронизм нарушается. Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, то есть путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон фото 6 поэтапно превращается в дейтрон фото 7 , тритон фото 16 и т. Превращения протона в плазмоиде Вачаева 31 Высокоинтенсивные электроимпульсные короткие 5—50 микросекунд разряды-процессы в плазмоиде Вачаева реализуют переходы протон-дейтрон-тритон-гелий путём концепции возбуждение-распад-синтез. Этот же метод позволяет получить из протонов воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне, частот на которых работает реактор Вачаева реализован на 30—60 МГц производство электроэнергии и 30—60 ГГц холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии.
Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Таким образом, наличие дейтронов и тритонов 32 в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту — переход с увеличением энергии в новый более тяжёлый элемент. Внешний слой оболочки нейтрона антинейтрона имеет характерную структуру волноводов и размер 9,1 х 10—13 см, а также определяет спин частицы и его знак электрического заряда — у протона он положительный, у антипротона отрицательный. Один из вихронов половины внешней оболочки в нейтроне при распаде улетает и строит электрон или позитрон, а оставшийся формирует внешнюю оболочку протона 33 или антипротона со структурой мюона. Подобным же образом, как и на внешней оболочке протона, формируется заряд электрическим положительным потенциалом атомных ядер всех последующих химических элементов. Аннигиляция протона и его античастицы происходит аналогично, как и в случаях нейтрона и антинейтрона, электрона и позитрона. Таким же образом вскрывается внешняя оболочка запорный слой со структурой мюона протона. Самыми последними вылетают вихроны, образующие центральную и более высокоэнергетическую высокочастотную К-оболочку.
Этот процесс — процесс электромагнитной вихревой эксплозии с превращением зарядов покоя двух противоположных частиц в заряды движения, как и в случае аннигиляции электрона и позитрона, то есть в безмассовую форму энергии движения фотонов — играет самую главную роль в производстве энергии звёзд и планет. У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней фото 6 порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада — это наиболее стабильная частица из числа всех известных. Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона фото 7 , посредством слияния-объединения связано-замкнутых дебройлевских квантов-вихронов. После пересечения и преобразования вихронами их фазовых объёмов происходит процесс энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв. В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер — уменьшается, частота и число оболочек — изменяются. Фото 7. Схема рождения дейтрона. Слева протон, затем нейтрон, справа дейтрон. Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр — 4,1 х 10—13 см, а масса в СИ — 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта.
Эта ядерная реакция является знаковой по формуле — охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения и характеризует последовательное взаимодействие быстрых ядерных вихронов — сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв. Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения. При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди.
Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной. Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона. Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона. Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма.
Мир, на который возлагаются большие надежды после пандемии COVID-19, является полной противоположностью. Дик Уиллис из Бристольского университета говорит: "У нас есть всего несколько лет, чтобы внести изменения, необходимые для того, чтобы избежать социальной катастрофы того, что происходит с биосферой, если, конечно, еще не слишком поздно. Даже оптимисты понимают, что пройдут десятилетия, прежде чем термоядерная энергия сможет внести свой вклад в энергосистему, каким бы ни было это достижение". Он с горечью добавляет: "Между тем, заголовки, которые последовали за этим результатом, просто успокаивают и отвлекают от срочности того, что необходимо сделать сейчас". Технологический прорыв, о котором было объявлено в начале этого месяца, был достигнут Национальным центром зажигания США в Ливерморской национальной лаборатории имени Лоуренса. В данном случае, по мнению Марка Дизендорфа, опасность, связанная с этими "чистыми и безопасными" энергетическими исследованиями, недвусмысленна. Проще говоря, будущие термоядерные реакторы могут предоставить военным державам новые способы получения сырья для ядерных бомб. Действительно, как он объясняет в своем письме, ядерный синтез может производить нейтроны, которые могут быть использованы для изготовления ядерных взрывчатых веществ плутония-239, урана-235 и урана-233.
У Филимоненко есть собственный огород, который приносит урожай четыре раза в год, так как физик использует пленку, которую сам создал.
Однако ее никто не вводит в производство. Гипотеза Авраменко Этот ученый-уфолог посвятил свою жизнь изучению плазмы. Авраменко Римлий Федорович хотел создать плазменный генератор в качестве альтернативы современным источникам энергии. В 1991 году в лаборатории он проводил опыты по образованию шаровой молнии. А плазма, которая из нее выстреливалась, расходовала энергии намного больше. Ученый предлагал этот плазмоид использовать для обороны против ракет. Испытания были проведены на военном полигоне. Действие такого плазмоида могло бы помочь при борьбе с астероидами, которые грозят катастрофой. Разработка Авраменко также не получила продолжения, а почему — никто не знает.
Схватка жизни с радиацией Более сорока лет назад существовала секретная организация «Красная звезда», руководил которой И. Он со своей группой проводил разработки комплекса жизненного обеспечения для полетов на Марс. Он разработал термоядерный синтез холодный для своей установки. Последняя, в свою очередь, должна была стать двигателем для космических кораблей. Но когда был верифицирован реактор холодного термоядерного синтеза, стало понятно, что он может помочь и на Земле. С помощью этого открытия можно обезвреживать изотопы и избежать ядерного взрыва. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Но их сдерживало то, что отсутствовала подобная установка, которая бы смогла защитить от воздействия радиации. На то время прочно был связан с фамилией Филимоненко холодный термоядерный синтез.
Реактор вырабатывал чистую энергию, что позволило бы защитить партийную верхушку от радиационного заражения. Отказавшись предоставить в руки власти свои разработки, ученый не дал руководству страны «козыря», в случае если бы началась ядерная война. Без его установки подземные бункеры защитили бы высших партийных деятелей от ядерного удара, но рано или поздно их бы достала радиация. Таким образом, Иван Степанович защитил мир от глобальной ядерной войны. Забвение ученого После отказа ученого ему пришлось выдержать не одни переговоры по поводу своих разработок. В результате Филимоненко уволили с работы и лишили всех званий и регалий. И вот уже тридцать лет физик, который мог бы вывести холодный термоядерный синтез в обыкновенной кружке, с семьей живет на даче. Все открытия Филимоненко могли внести большой вклад в развитие науки. Но, как бывает в нашей стране, его холодный термоядерный синтез, реактор которого был создан и проверен на практике, был забыт.
Экология и ее проблемы Сегодня Иван Степанович занимается проблемами экологии, он обеспокоен тем, что на Землю надвигается катастрофа. Он считает, что главная причина ухудшения экологической обстановки — это задымление крупными городами воздушного пространства. Кроме выхлопных газов, многие предметы выделяют вредные вещества для человека: радон и криптон. А утилизировать последний еще не научились. И холодный термоядерный синтез, принцип которого в том, чтобы поглощать радиацию, помог бы в охране окружающей среды.
Подписка на дайджест
- Холодный ядерный синтез — научная сенсация или фарс?
- Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
- Главные новости
- Главные новости
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). Тандберг начал изучать холодный термоядерный синтез в 1927 году, когда 33-летний главный научный сотрудник компании Electrolux Co. заинтересовался экспериментами по термоядерному синтезу, проводимыми в Германии, сказал Вильнер. Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ. Холодный термоядерный синтез признали официально. В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак.
Проект Google не смог обнаружить холодный ядерный синтез
Компактные термоядерные реакторы: прорыв или просчёт?: ru_universe — LiveJournal | Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER | AngryDude666, Термоядерный синтез, это реакция синтеза, а не расщепления. |
Прорыв в термоядерном синтезе | Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД. |
Холодный синтез: желаемое или действительное? | Холодный термоядерный синтез новости. |
Холодный ядерный синтез перестал быть лженаукой в ЕС
Холодный термоядерный синтез новости. 8 декабря 2014 Новости. 8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции устройства E-Cat для выработки электроэнергии на основе реактора холодного термоядерного синтеза. У России появился шанс вновь стать лидером в освоении термоядерного синтеза. Общепринятый основан на медленном термоядерном синтезе, в рамках которого физики планируют удерживать горячую плазму с помощью магнитных полей и электрических токов. Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды.
В защиту холодного ядерного синтеза (ХЯС)
Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. 8 декабря 2014 Новости. 8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции устройства E-Cat для выработки электроэнергии на основе реактора холодного термоядерного синтеза. Генератор холодного термоядерного синтеза может обеспечить целый поселок энергией, а также очистить озеро, на берегу которого будет расположен.
Холодный ядерный синтез
Что не так с «японским ученым» и его холодным термоядом | Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. |
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип | Хорошие новости продолжают поступать в области исследований ядерного синтеза. |
Академик Александров о холодном термоядерном синтезе
Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР. Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено». Физпуск состоялся еще 18 мая 2021 года. А вот с энергопуском возникли организационные проблемы. Все это время мощности не использовались. Нам потребовалось почти два года, чтобы решить эту проблему.
В процессе схлопывания скорости могут быть сильно сверхзвуковыми. Жидкость начинает светиться. Или если крошить кристаллы, то возникают высокие напряжения, ускоряющие поглощенные в кристаллах дейтерий и тритий. Первые сообщения такого рода были связаны с именами маститых электрохимиков не физиков Флейшмана и Понса, которые много лет изучали особенности электролиза тяжёлой воды в установке с палладиевым катодом.
На протяжении последних десятка лет поиски условий протекания «холодного синтеза» сдвинулись от электрохимических опытов и электрического разогрева образцов к «сухим» экспериментам, в которых осуществляется проникновение ядер дейтерия в кристаллическую структуру металлов переходных элементов — палладия, никеля, платины. Эти опыты относительно просты и представляются более воспроизводимыми, чем ранее упомянутые. В отличие от столкновения «голых» ядер в горячей плазме, где энергия столкновения должна преодолеть кулоновский барьер, при проникновении ядра дейтерия в кристаллическую решётку металла кулоновский барьер между ядрами модифицируется экранирующим действием электронов атомных оболочек и электронами проводимости. Обращает внимание также «рыхлость» ядра дейтрона, объём которого в 125 раз превышает объём протона. Электрон атома в нижнем, невозбужденном S-состоянии имеет высокую вероятность оказаться внутри ядра, что приводит к эффективному исчезновению заряда ядра, которое в этом случае иногда называют «динейтроном». Можно говорить о том, что атом дейтерия вообще какую-то часть времени находится в таком «свёрнутом» нейтральном состоянии, в котором он способен проникать в другие ядра — в том числе в ядро другого дейтрона. Дополнительным фактором, влияющим на вероятность сближения ядер в кристаллической решетке, служат колебания и ударные, а также термические волны Введение. Исходная посылка: предполагаем, что из уже имеющихся законов природы и свойств материалов можно сложить новый пазл и получить ХЯС. Потому, что ничто другое проверить невозможно. Мы НЕ претендовали на открытие новых законов природы это дело фундаментальной физики , а также Святого Духа, Всемирного Разума и т.
Азы которой все присутствующие проходили в школе, а некоторые изучали более глубоко в вузе. Это т. Но при этом, если явление имеет место быть, мы должны обязательно его следы обнаружить, даже если ХЯС связан с какими-либо потусторонними силами. Мы были практически уверены в успехе, так как пришли к обоюдному согласию, что давно открытый ядерной физикой мюонный катализ уже и есть в чистом виде ХЯС. От этой «печки» и решили танцевать, так как при этой гипотезе аппаратура для эксперимента от исходной модели не зависит, просто мы несколько усложняем себе жизнь, делая аппаратуру портативной и спускаясь с ней под землю. Общие положения. Эксперименты на ускорителях по синтезу различных элементов показали, что эффективные поперечные сечения реакций ХЯС зависят от того, в каком материале размещены ядра частицы-мишени. В этих экспериментах наблюдалось существенное увеличение вероятности взаимодействия в тех случаях, когда ядра мишени внедрены или являются частью проводящего кристалла. Эти опыты позволяют совершенно по-новому взглянуть на проблему ХЯС. Это может означать, что в кристалле платины атомы дейтерия не испытывают кулоновского отталкивания до расстояний, в 25 раз меньших, чем размер самих атомов дейтерия.
В последнем случае мюон как удавка сразу для двух висельников стягивает дейтоны до критически малого расстояния. Процесс DD-синтеза в кристалле можно рассматривать на основе представления о квазимолекуле дейтерия, захваченной в одну кристаллическую ячейку. Скорость ядерного синтеза в такой системе равна проницаемости барьера, умноженной на частоту колебаний квазимолекулы: Корректный расчет частоты колебаний такой системы в реальном потенциале кристаллической ячейки — довольно сложная задача. В таблице приводятся экспериментальные оценки скорости реакции DD-синтеза на основе такого подхода для кристаллов палладия, кобальта и платины. Таблица 1 Скорости реакции DD-синтеза Выражение для сечения синтеза так называется в физике вероятность реакции при столкновении двух ядер можно записать в виде: Здесь энергия E приведена в единицах кэВ; S E — т. Таким образом, мы постараемся избежать неопределенностей и сложностей для понимания, связанных с теоретическими вычислениями. В 1 см3 палладия содержится 6. Пока пренебрежем тем обстоятельством, что механизм может оказаться зависимым от ориентации спиновых состояний электронов сближенных атомов дейтерия. Это вполне достаточно для объяснения результатов опытов на ускорителях. Остается вопрос, возможно ли получить ХЯС, согласно этим выкладкам без ускорителей, используя интенсивный и абсолютно бесплатный поток мюонов, пронизывающий все вокруг.
При этом прорыв уже широко обсуждается учеными, добавили источники. Национальный комплекс лазерных термоядерных реакций стоимостью 3,5 миллиарда долларов изначально строился для испытаний ядерного оружия через имитацию взрывов, но с тех пор использовался для исследований в области термоядерной энергии. Gizmodo США : сможет ли человечество использовать термоядерный синтез как источник энергии? Ученые давно ведут поиски альтернативных источников энергии для спасения планеты.
Один из них — управляемый термоядерный синтез. Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием.
При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются.
Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание».
Семихатов Алексей Михайлович доктор физико-математических наук, заведующий лабораторией, Физический институт им. Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи.
Что такое токамак?
- Читайте также:
- BERES • Отчет по "народной проверке" холодного ядерного синтеза (ХЯС)
- Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
- Холодный синтез. Миф или лженаука?
- Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
- Физики вносят ясность
Холодный синтез: самое известное физическое мошенничество
Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Тандберг начал изучать холодный термоядерный синтез в 1927 году, когда 33-летний главный научный сотрудник компании Electrolux Co. заинтересовался экспериментами по термоядерному синтезу, проводимыми в Германии, сказал Вильнер. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец.
Частный термоядерный синтез: фантазии или реальность?
У России появился шанс вновь стать лидером в освоении термоядерного синтеза. Холодный термоядерный синтез в обыкновенной кружке. Эта установка дает надежду на светлое будущее – термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). Холодный термоядерный синтез признали официально. Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».