Объясните с точки зрения эволюционного учения Дарвина, как смертельный рак может превратиться в несмертельный.
Вход и регистрация
Ответил 1 человек на вопрос: Какими организмами являются бактерии с точки зрения эволюции. Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Мы поговорим ниже о построение дерева эволюции согласно Дарвину, посмотрим на сколько это справедливо и таки я в итоге дам полное дерево (в рамках имеющейся информации) эволюции бактерий на основании самых консервативных генов тРНК. Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, которое может быть использовано другими организмами.
Основные аспекты теории эволюции микроорганизмов
Не окрашиваются по методу Грама Менингококки Neisseria meningitidis — возбудитель менингита. Палочки Escherichia coli кишечная палочка — кишечный симбионт человека, сальмонеллы — возбудители сальмонеллёза, Rhizobium клубеньковые бактерии — симбионты корней бобовых растений, способные усваивать атмосферный азот. Вибрионы Спириллы Спирилла — обитатель пресных и соленых водоемов. Помимо основной ДНК хромосомы бактерии обычно содержат большое количество очень маленьких кольцевых молекул ДНК длиной несколько тысяч пар, так называемых плазмид, участвующих в обмене генетическим материалом между бактериями.
Как правило, плазмиды имеют в составе гены устойчивости к антибиотикам и ионам тяжелых металлов. Поскольку плазмидная ДНК значительно меньше хромосомной, ее довольно легко выделить в чистом виде для дальнейшего использования в создании рекомбинантных ДНК. Одна их наиболее часто употребляемых плазмид для клонирования создана на основе плазмид, выделенных из E.
Она содержит гены устойчивости к двум антибиотикам: ампициллину и тетрациклину, благодаря которым успешное встраивание фрагмента чужеродной ДНК в один из этих генов легко отследить по исчезновению у бактерий устойчивости к одному из этих антибиотиков.
Всё это приводит к генетическому разнообразию. К сожалению у бактерий и архей есть есть ограничение на максимальный размер их...
Не самая плохая эрудиция. Образование среднее техническое... Нет, не в том виде, в котором её представлял Ч.
В конце 19 в. Кох и другие ученые значительно усовершенствовали методы идентификации этих патогенов и описали множество их видов. Строение: Это мельчайшие организмы, обладающие клеточным строением, не имеющие настоящего оформленного ядра. Бактерии освоили самые разнообразные среды обитания: почву, воду, воздух, внутреннюю среду организмов.
Снаружи бактерии покрыты капсулой или клеточной стенкой из муреина. Плазматическая мембрана бактерий по структуре и функциям не отличается от мембран эукариотических клеток.
К сожалению у бактерий и архей есть есть ограничение на максимальный размер их... Не самая плохая эрудиция. Образование среднее техническое... Нет, не в том виде, в котором её представлял Ч. Дарвин тогда ещё не знали о генах , и тем более не в том, как она описана в школьном учебнике биологии, полувековой давности в СССР генетику не жаловали на идеологическом уровне.
Общая биология, ответы на билеты
- Эволюция бактерий - Evolution of bacteria
- Какими организмами являются бактерии с точки зрения эволюции
- Прокариоты на сайте Игоря Гаршина. Доядерные одноклеточные микроорганизмы
- Определение Бактерии
Другие вопросы:
- Содержание
- Роль бактерий в эволюции жизни на Земле
- Происхождение и эволюция микроорганизмов - YouTube
- Эволюция микроорганизмов - молекулярная филогенетика
52.95. Царство Бактерии
- Эволюция микроорганизмов - молекулярная филогенетика
- какими организмами являются бактерии с точки зрения эволюции - Биология »
- Лучший ответ:
- Почерневшие бабочки, неуязвимые бактерии. Эволюция в наши дни и как ее «увидеть» — Нож
- Как шла эволюция бактерий 🚩 когда появились первые бактерии 🚩 Естественные науки
- Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий
Бактерии эволюционировали в лаборатории?
Цианобактерии представлены как одноклеточными, так и многоклеточными формами. Носток — съедобная синезеленая водоросль, употребляемая в пищу в разных странах Китай, Монголия, Южная Америка Рис. Побочным продуктом такой реакции — кислород. Некоторые цианобактерии не способны выделять кислород, так как при фотосинтезе они не используют воду. К автотрофным бактериям так же относят и хемосинтезирующие формы, использующие энергию химических реакций азотобактерии, железобактерии, серобактерии и др.
Гетеротрофные от греч. В свою очередь эти бактерии подразделяются на паразитов и сапрофитов. Паразиты являются болезнетворными формами, которые питаются тканями своих хозяев, вызывая различные заболевания растений бактериозы , животных и человека. Для сапрофитных бактерий характерно питание отмершими остатками или выделениями других живых организмов.
Благодаря сапрофитным бактериям происходит процесс гниения и брожения. По сути сапрофиты — это санитары нашей планеты, разлагающие остатки пищи, трупы животных, экскременты, сухие листья, ветки и др. Отношение бактерий к кислороду По отношению к кислороду все бактерии, как и другие организмы, делятся на две большие группы: 1. Анаэробы — бактерии способные обходиться без кислорода полностью или частично.
Бактерии, которые могут жить как в присутствии кислорода, так и без него — называют факультативными от фр. К ним относят бактерии гниения или уксуснокислые бактерии. Микроаэрофильные бактерии лучше растут в атмосфере с низким содержанием кислорода. Бактерии, для которых кислород губителен, называют облигатными от лат.
К ним относят винные бактерии или бактерии ботулизма.
В то же время бактерии характеризуются коротким жизненным циклом и высокой скоростью обновления биомассы. Уже на основании этого можно оценить их вклад в функционирование основных биогеохимических циклов. Бактерии способны расти как в присутствии атмосферного кислорода аэробы , так и при отсутствии анаэробы. Участвуют в формировании структуры и плодородия почв, в образовании полезных ископаемых и разрушении растительной и животной мортмассы; поддерживают запасы углекислого газа и кислорода в атмосфере. Бактерии в мутуалистических отношениях с другими организмами Многие бактерии находятся в мутуалистических и даже симбиотических отношениях с другими организмами. Растения, например, выделяют значительную долю созданной в процессе фотосинтеза органики поверхностью корней.
Преобразованная таким образом часть почвы ризосфера благоприятна для развития бактерий, в том числе азотфиксирующих. Увеличение интенсивности азотфиксации называемой в таком случае ассоциативной улучшает условия минерального питания растений.
Для содержательной интерпретации этих результатов необходимо участие специалистов по геохимии и геологии. В наше время есть несколько основных подходов к изучению древнейших этапов земной жизни.
Первый из них — это поиск следов в каменной летописи. В породах протерозойского и даже, возможно, архейского возраста при пристальном исследовании можно обнаружить структуры, схожие с бактериями или одноклеточными грибами или эукариотами. Что это за структуры? Или бактерии, но окаменевшие совсем в другое время?
Чаще всего исследователи ископаемой летописи не могут с уверенностью ответить на эти вопросы. Другой путь не менее скользкий имеет дело с реальными свидетелями тех непостижимых времен. Эти свидетели — гены живущих ныне организмов. В генах отпечаталась история нашей планеты, так как они изменялись по мере планетарной эволюции, по ходу климатических нововведений, приспосабливаясь сами и приспосабливая своих носителей к текущим обстановкам.
Поэтому, прослеживая ход изменений генов, ответственных за то или иное свойство организмов, можно реконструировать изменение во внешней среде, связанное с этим свойством. Например, этот подход помог ученым реконструировать палеотемпературы Земли см. Этот подход во многом основан на статистических приближениях и вероятностных оценках, поэтому идеологически он не слишком близок палеонтологам, привыкшим иметь дело с фактами. Однако именно он в условиях чрезвычайно скудных фактических данных по ископаемым объектам дает впечатляющие результаты.
К таким результатам относится и работа Лоренса Дэвида Lawrence A. David и Эрика Альма Eric J. Alm из Массачусетского технологического института MIT. Будучи специалистами в области биоинформатики, они смогли обрисовать динамику разнообразия генов в ходе земной эволюции.
Иными словами, они оценили общее разнообразие генов, темпы их появления и элиминации, а также интенсивность горизонтальных переносов и дупликаций, то есть все те процессы, из которых складывается эволюция генов. Естественно, в этой обобщенной картине учитывались не каждая нуклеотидная замена и не каждый ген, пришлось работать широкими эволюционными мазками: обсчитывались не отдельные гены, а семейства генов. При этом все уникальные семейства генов вообще не принимались во внимание, так как их не с чем сравнить. Однако результат того стоил.
Динамика темпов обновления семейств генов. Мы видим изменения скоростей появления, элиминации, дупликации и горизонтального переноса. Самые бурные события происходили в период 3,3—2,85 млрд лет назад это средний архей , который на графике затонирован серым цветом. График из обсуждаемой статьи в Nature Справа на графике рис.
Мы видим, что в истории земной жизни был особый период, когда скорость появления новых генных семейств резко возросла; вслед за этим резко возросла и скорость выпадения генных семейств.
На поверхности мембран мезосом находятся ферменты, участвующие в процессе дыхания. Над клеточной стенкой у многих бактерий расположена слизистая капсула, предназначенная для дополнительной защиты бактерии от внешних воздействий. Бактерии размножаются простым делением надвое. После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка. В дальнейшем дочерние клетки расходятся или остаются связанными в группы. Значение бактерий Разнообразие биохимических процессов у прокариотов велико: необходимую для жизни энергию различные бактерии получают или окисляя неорганические соединения, или используя для питания готовые органические вещества, или посредством фотосинтеза.
Некоторые бактерии являются паразитами животных или растений. Жизнеспособность бактерий поразительна.
11. Бактерии. Эволюция или адаптация?
С точки зрения эволюционного учения, бактерии являются. Другие микроорганизмы — и археи, и бактерии — могут использовать водород для восстановления сульфата или серы, в результате чего образуется сероводород. Как с точки зрения биологии можно объяснить эту ситуацию? Вместе с тем плазмидные элементы придают бактериям ряд свойств, представляющх большой интерес, с точки зрения инфекционной патологии. Новости Новости.
Роль бактерий в эволюции жизни на Земле
Тело первых бактерий имело примитивное строение. Со временем структура микроорганизмов усложнилась, но и сейчас они являются наиболее примитивными одноклеточными организмами. Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86]. Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ. В целом клетка бактерии устроена достаточно просто.
Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий
Думаю, что никакого конфликта здесь нет. Во второй половине XIX в. Кстати, на текущий момент экспериментально доказано, что эукариоты, включая нас с вами, произошли от слияния клетки археи с клеткой бактерии. Согласно теории симбиогенеза, клетки бактерий, слившись с клетками архей, превратились в митохондрии, то есть внутриклеточные органеллы, снабжающие клетку археи энергией. Клетка археи, поглотившая бактерию и ставшая затем эукариотной клеткой, получила много преимуществ с точки зрения эффективности метаболизма, устойчивости, выживаемости. Это послужило мощным толчком для последующей эволюции. В 2019 г.
Им удалось вырастить лабораторную культуру этой археи, которая может расти только в паре с бактерией. Их метаболизм тесно связан. Бактерия поглощает продукты жизнедеятельности археи, тем самым облегчая ей рост, и при этом питается сама. Отсюда один или, может быть, несколько шагов до появления эукариот. На этом примере мы видим только кооперацию. Возможно, изначально в природе между этими клетками конкуренция и была, но мы просто не видим ее следы.
У нас ведь нет никаких ископаемых материальных свидетельств этих ранних этапов эволюции. От древнего прокариотного мира практически ничего не осталось, и мы в точности не знаем, что именно там происходило. Тем не менее за последние годы ученым удалось получить большое количество новой информации благодаря молекулярно-биологическим и биоинформатическим методам анализа природных экосистем: было найдено очень много микробов, неизвестных в лабораторных культурах. Биологи смогли собрать их полные геномы и исследовать присущие им свойства, существенно пополнив наши знания о метаболическом разнообразии прокариот. Однако описывать геномы и предсказывать свойства микробов мы можем только на основании того, что уже известно благодаря работе с лабораторными культурами.
Это было правильное ожидание для тех, кто верит в эволюцию, поскольку бактерии размножаются быстро и у них будет много поколений. У них также большая скорость мутаций, чем у организмов с большим размером генома, как у таких позвоночных как мы. Как уже указывалось в статье Giving up on reality , Ленский по всей видимости бросил «эволюцию в лаборатории» и обратился к компьютерному моделированию «эволюции» в программе под названием Avida смотрите оценку этого, написанную Др. Ройалом Труманом, в технических статьях Part 1 и Part 2. В действительности, у Ленски была хорошая причина оставить надежду.
Он рассчитал, что все возможные простые мутации, по всей видимости, произошли по несколько раз не добавив даже простую адаптационную черту. Теперь Ленски и его коллеги утверждают, что они уже наконец-то наблюдают то, на что он наделся. Наука: что они обнаружили? В статье, опубликованной в журнале Proceedings of the National Academy of Science, Ленски и коллеги описали, как одна из 12 культур бактерий выработала способность усваивать цитрат в качестве источника энергии в аэробных условиях. Используя замороженные образцы бактерий из предыдущих поколений, они указали, что нечто произошло на приблизительно 20 000 поколении, и оно привело к тому, что всего одна из культур смогла перерабатывать цитрат. Это близко к тому, что Майкл Бихи называет «пределом эволюции» — предел того, что «эволюция» ненаправленный естественный процесс может сделать. Например, адаптивные случайные изменения, требующие одной мутации, могут происходить часто. Именно поэтому малярийный паразит может адаптироваться к большинству антималярийных препаратов; но на преобретение сопротивляемости хлорохину ушло больше времени, поскольу нужно было произойти двум мутациям одновременно в одном гене. Даже такое маленькое изменение находится за пределами возможностей организмов, таких как люди, у которых длительность поколений намного большая. В тоже время, популистский подход например New Scientist к этому исследованию создает впечатление, что E.
Однако, это явно не тот случай, потому что цикл лимонной кислоты, цикл трикарбоновых кислот ЦТК или цикл Кребса разные названия одного и того же производит и использует цитрат в нормальном окислительном метаболизме глюкозы и других углеводов. Среди которых есть ген транспортера цитрата, кодирующий белок-транспортер, встроенный в клеточную стенку и отвечающий за транспорт цитрата в клетку. Так что же произошло? Еще не все очевидно, исходя из опубликованной информации, но скорее всего, мутации нарушили регуляцию этого оперона, в результате чего бактерия производит транспортер цитрата независимо от окислительного состояния окружающей среды то есть, он постоянно включён. Это можно сравнить с переключателем, который включается, когда солнце заходит, поскольку сенсор обнаруживает недостаток света и активирует переключатель. Нарушение в работе этого сенсора может привести к тому, что свет будет включен все время. Это именно тот тип изменения, о котором идет речь. Другая возможность состоит в том, что существующий ген-транспортер, например, тот, который доставляет тартрат,[3] который обычно не транспортирует цитрат, мутировал и в следствии этого он потерял специфичность и теперь способен к транспортировке цитрата в клетку. Подобная потеря специфичности также является следствием случайных мутаций.
За счёт чувства кворума бактерии могут координировать экспрессию генов и начинают выделять и улавливать аутоиндукторы [en] или феромоны , концентрация которых повышается по мере роста популяции [135]. Основная статья: Систематика бактерий Филогенетическое древо, построенное на основании анализа рРНК , показывает разделение бактерий, архей и эукариот Бактерий можно классифицировать на основе строения клетки, метаболизма, а также различий в химическом составе клеток наличия или отсутствия некоторых жирных кислот , пигментов , антигенов, хинонов [97]. В то время как перечисленные характеристики подходят для выделения штаммов, непонятно, можно ли их использовать для разделения видов бактерий. Дело в том, что у большинства бактерий нет отличительных структур, а из-за широко распространённого горизонтального переноса генов родственные виды могут сильно отличаться по морфологии и метаболизму [136]. В связи с этим в настоящее время современная классификация базируется на молекулярной филогенетике. К числу её методов относят определение GC-состава генома, гибридизация геномов, а также секвенирование генов, которые не подверглись интенсивному горизонтальному переносу, такие как гены рРНК [137]. Релевантная классификация бактерий публикуется «Международным журналом систематической бактериологии» англ. International Journal of Systematic Bacteriology [138] и руководством по систематической бактериологии Берджи англ. Международный комитет систематики прокариот [en] англ. International Committee on Systematics of Prokaryotes регулирует международные правила именования таксонов бактерий и определение их рангов согласно правилам Международного кодекса номенклатуры прокариот [en] англ. International Code of Nomenclature of Prokaryotes [139]. Термин «бактерии» традиционно применяли по отношению к микроскопическим одноклеточным прокариотам. Однако данные молекулярной филогенетики свидетельствуют о том, что в действительности прокариоты подразделяются на два независимых домена, которые первоначально получили названия эубактерии лат. Eubacteria и архебактерии лат. Archaebacteria , но в настоящее время называются бактерии и археи [15]. Эти два домена, наряду с доменом эукариоты, составляют основу трёхдоменной системы , которая является наиболее популярной системой классификации живых организмов [140]. Археи и эукариоты состоят в более близком родстве, чем каждый из этих доменов к бактериям. Впрочем, высказывается мнение, что археи и эукариоты произошли от грамположительных бактерий [141]. Поскольку количество отсеквенированных последовательностей бактериальных геномов очень быстро растёт, классификация бактерий постоянно меняется [3] [142]. В медицине идентификация бактерий имеет огромное значение, поскольку от неё зависит схема лечения. По этой причине ещё до эры молекулярной биологии учёные активно разрабатывали методы, позволяющие быстро идентифицировать патогенные бактерии. В 1884 году Ганс Кристиан Грам предложил метод дифференциального окрашивания бактерий на основе строения их клеточной стенки [62]. При окрашивании по Граму грамположительные бактерии с толстым слоем пептидогликана имеют фиолетовый цвет, а грамотрицательные бактерии с тонким слоем пептидогликана окрашены в розовый. Комбинируя окрашивание по Граму и морфотипы , выделяют четыре основные группы бактерий: грамположительные кокки, грамположительные бациллы, грамотрицательные кокки, грамотрицательные бациллы. Однако для идентификации некоторых бактерий больше подходят другие методы окрашивания. Например, микобактерии и бактерии рода Nocardia не обесцвечиваются кислотами [en] после окрашивания по Цилю — Нильсену [143]. Некоторых бактерий можно идентифицировать по их росту на специфических средах и при помощи других методов, например, серологии [144]. Методы культивирования бактерий [en] разработаны так, чтобы способствовать росту определённых бактерий, но подавлять рост других бактерий из того же образца. Часто эти методы разрабатываются специально для определённых образцов, откуда берутся микробы. Например, для идентификации возбудителя пневмонии для дальнейшего культивирования берут образец мокроты , для идентификации возбудителя диареи для выращивания на селективной среде берут образец стула , причём во всех случаях рост непатогенных бактерий будет подавляться. Образцы, которые в норме стерильны например, кровь , моча , спинномозговая жидкость , культивируются в условиях, подходящих для роста любых микроорганизмов [97] [145]. После изоляции патогенного микроорганизма можно изучать его морфологию, особенности роста например, аэробный или анаэробный рост , характер гемолиза [en] , а также окрашивать его разными методами. Как и для классификации бактерий, молекулярные методы всё чаще применяют и для их идентификации. Диагностика, использующая такие молекулярные методы, как полимеразная цепная реакция ПЦР , набирает всё большую популярность благодаря своей скорости и специфичности [146].
Прокариоты: у подножья пирамиды жизни. Интервью с чл. РАН Е. Бонч-Осмоловской 23. С тех пор прошло более 2 млрд лет, но эти невидимые существа по-прежнему выполняют незаменимые функции в круговороте жизни на Земле. О микробах и их роли в развитии биосферы рассказывает микробиолог Елизавета Александровна Бонч-Осмоловская. Ломоносова, заведующая отделом биологии экстремофильных микроорганизмов в Институте микробиологии им. Они действительно самые древние организмы на Земле. При этом бактерии и археи в отличие от вирусов способны к самостоятельному существованию в природной среде. Клетки и тех и других крайне маленького размера и очень похожи, но эти две группы безъядерных микроорганизмов, прокариот, имеют большие различия в базовых механизмах жизнедеятельности и поэтому отнесены к разным доменам: Archaea и Bacteria. К ним относимся и мы с вами. Бактерии и археи были первыми живыми организмами на Земле и оставались ее полноправными хозяевами на протяжении более 2 млрд лет. Строение бактериальной клетки. Источник: Foxford. Считается, что биомасса бактерий и архей на Земле сравнима с биомассой всех остальных живых существ: они точно не уступают другим организмам по своей многочисленности, а возможно, и превосходят их. Бактерии и археи присутствуют практически повсюду: в воде, почве, осадках водоемов, глубоко под землей, под дном океана, в горячих источниках и в вечной мерзлоте. Как это произошло? Их долгое время называли сине-зелеными водорослями, потому что они выглядят как одноклеточные водоросли, но на самом деле это прокариоты, ведь у них нет ядра.
Концепции происхождения и развития микроорганизмов
Искусственный отбор — это любопытный процесс, но у подвергаемых ему видов нет времени, чтобы развиться в совершенно другие формы: ни разу еще при искусственном отборе не получался настоящий новый вид, отличающийся от предковой формы. Есть много разных пород и подвидов. Были даже попытки скрещивать разные виды, но их потомство в большинстве своем оказывалось нефертильным и дать начало новому таксону не могло. Возможно, когда-нибудь, через тысячи лет, домашняя лиса станет совершенно не похожа на своего дикого предка, полностью поменяет внешний вид и даже количество хромосом.
Но пока что в целом это та же самая лиса — слишком мало времени прошло. За всё это время она, хоть и изменилась, не «получила» совсем уж новых признаков — не стала, грубо говоря, травоядной и не отрастила перепонки на лапах. А можно ли хоть на ком-то увидеть жизненно важные изменения?
Мировое поле экспериментов Нет ничего лучше для эволюции, чем что-то маленькое, активное и быстро размножающееся. Речь, разумеется, о бактериях — в рамках эволюции они стали своеобразной экспериментальной установкой, а потому именно на них можно исследовать эволюционный процесс, причем буквально в лаборатории под собственным микроскопом! При достаточно благоприятных условиях окружающей среды бактерии способны делиться каждые 20—40 минут, то есть за одни сутки они могут «выдать» исследователям сразу несколько десятков поколений!
Одним из ярких примеров современной эволюции бактерий является развитие устойчивости к антибиотикам. Бактерии, которые подвергаются частому и несмертельному воздействию антибиотиков, нередко мутируют: выживают в популяции именно те, которые оказываются устойчивыми, а потом передают свои «способности» потомству. Антибиотики всё менее эффективны, а некоторые инфекции становится трудно или даже невозможно лечить.
Это явление называется антибиотикорезистентностью , и его масштабы растут с каждым годом из-за неправомерного использования лекарственных препаратов в сельском хозяйстве и распространенности самолечения. В самом начале эры антибиотиков больному, чья патогенная флора никогда не сталкивалась с такими препаратами, хватало буквально капли пенициллина для быстрого излечения. Сейчас же антибиотики помогают, только если их пить курсом, а иногда и вовсе не помогают — за свою жизнь человек пробует столько препаратов, что его бактериям уже все их уловки знакомы.
Читайте также Почему инфекций, устойчивых к антибиотикам, становится все больше — и как с этим бороться Помимо развития бактериальной устойчивости есть и другие примеры быстрой эволюции, причем примеры рукотворные. В 1988 году американский микробиолог Ричард Ленски начал длительный эксперимент, который показал, как быстро может происходить эволюция, если дело касается маленьких и активно размножающихся кишечных палочек. У них не только маленький геном, но еще и невероятная популярность: кишечные палочки служили модельными объектами практически весь ХХ век, а потому научное сообщество знает о них куда больше, чем о многих других.
Ленски взял популяцию бактерий E. В течение нескольких поколений бактерии, которые успешнее использовали другие источники пищи, стали доминировать в популяции. Оказалось , что через несколько десятков тысяч поколений геном бактерий изменился, обеспечивая адаптивность.
Во всех популяциях при этом наблюдался быстрый рост относительной приспособленности в течение первых поколений, но со временем он замедлялся. Всего лишь несколько мгновений, с нашей точки зрения, — но бактерии эволюционировали. Эксперимент Ленски и его команды всё еще продолжается, и кто знает, что еще удастся обнаружить.
Кроме бактерий, эволюцией активно «пользуются» вирусы, которые постоянно изменяются, чтобы избежать атак иммунной системы организма и лекарственных средств. В последние годы эволюция вирусов происходит всё более быстрыми темпами, как все мы могли заметить. Этому способствует и мобильность населения планеты, самая высокая в истории, и частые контакты с животными, и даже изменение климата!
Именно изменение климата способствует распространению некоторых вирусов, которые раньше были ограничены определенными географическими рамками, и появлению у них новых признаков. В результате эволюции вирусы приобретают новые свойства, которые делают их опаснее. Они могут стать не только более заразными — то есть развить механизмы, позволяющие им эффективнее проникать внутрь клетки, — но и устойчивыми к действию иммунной системы и лекарственных препаратов.
Бактерии распространены повсюду: в воздухе, в воде, в почве, в мёртвых телах и в живых организмах. Примером бактерий может служить сенная палочка. Она несколько крупнее других бактерий, поэтому её можно рассмотреть в школьный микроскоп. Бактерия сенная палочка имеет форму, соответствующую её названию. Она состоит из одной клетки. Снаружи клетка покрыта тонкой оболочкой, поэтому она сохраняет свою постоянную форму. Внутри находится протоплазма. Ядра нет, как нет и хлорофилла.
Содержимое клетки бесцветно. Многие бактерии имеет форму палочки. Само слово «бактерия» происходит от греческого слова «бактерион», что означает палочка. Однако многие бактерии имеют форму шара, изогнутых палочек, запятых или спиралей. Бактерии растут и размножаются необыкновенно быстро. Холерная бактерия делится на две клетки через каждые 20 минут. Новые клетки вырастают до размеров взрослой бактерии и снова делятся. Бактерии нуждаются в пище, влаге, в определённой температуре для поддержании своей жизнедеятельности.
При наступлении неблагоприятных для их жизни условий, например при недостатке пищи, влаги или при резком понижении или повышении температуры, протоплазма бактерии сжимается в шарик и покрывается новой прочной оболочкой. Такое состояние бактерий называется cпopoй. В состоянии споры бактерия не питается и не движется - она находится в покое. Споры многих бактерий выдерживают длительное высушивание, кипячение, замораживание, а также действие различных ядов. Попав во влажную питательную среду, споры набухают и затем прорастают. Из споры снова образуется бактерия, которая начинает двигаться, питаться и размножаться. Так, путём образования спор бактерии сохраняют своё существование. Таким образом, бактерии объединяются в царство мельчайших организмов очень простого строения.
Бактерии большей частью питаются органическими веществами; среди них встречаются сапрофиты и паразиты. Бактерии растут и размножаются очень быстро.
Сине-зелёные водоросли выделяют свободный кислород, одновременно химически связывая водород и углерод. Они замечательны тем, что способны использовать атмосферный азот и превращать его в органические формы азота. При фотосинтезе они могут использовать углекислый газ как единственный источник углерода. В отличие от фотосинтезирующих бактерий, цианобактерии при фотосинтезе выделяют молекулярный кислород. В течении прошедших 3-х миллиардов лет до начала кембрия они являлись основным источником свободного кислорода в атмосфере Земли, наряду с фотохимическими реакциями в верхних слоях атмосферы. Строматолиты ископаемые цианобактериальные маты Строматолиты др.
Следует иметь ввиду, что вещество, из которого построен строматолит, не создается матом; последний лишь структурирует естественное осадконакопление. На ранних стадиях изучения строматолиты ассоциировались с остатками многоклеточных эукариот — губками, кораллами или мхами. По степени сложности они более всего напоминали исследователям скелеты многоклеточных эукариот. Позже к числу возможных строматолитообразователей были отнесены миксомицеты. Дальнейшее изучение строматолитов позволило однозначно связать их образование с жизнедеятельностью колоний нитчатых цианобактерий. Это было показано в результате обнаружения остатков нитей в ископаемых строматолитах и подтверждено исследованиями их современных аналогов. Строматолиты чаще всего состоят из карбоната кальция потому лишь, что карбонатный тип осадконакопления в море наиболее обычен, однако в иных гидрохимических условиях формируются строматолиты фосфатные, кремнеземовые, железистые и пр. Мат, располагающийся на верхней поверхности создаваемого строматолита, представляет собой плотный многослойный "ковер" общей толщиной до 2 см; основу его составляют нитчатые либо пальмеллоидные цианобактерии, однако помимо них в формировании сообщества участвуют и другие бактерии.
Маты существуют во многих районах мира, однако в современное время настоящие строматолиты существуют только в Акульем заливе на западном побережье Австралии и на атлантическом побережье Багамских островов. Многослойная расцветка строматолитов может меняться в течении суток, поскольку обитатели нижних слоев могут подниматься в темное время наверх и наоборот. Скользят бактерии вверх и вниз со скоростью до 2см в час. Строматолиты достоверно появляются в геологической летописи в древнейших осадочных формациях Уарравуна Западная Австралия возрастом в 3,5 млрд лет — это древнейшая известная форма [прокариотической] жизни. Наибольший расцвет цианобактерий пришелся на протерозойский эон, затем их роль резко снизилась. Строматолиты обитали в соленых и пресных водах. В протерозое из строматолитов состояли огромные рифы мощностью в сотни метров. Отдельные глубоководные строматолиты достигали высоты 75 м.
Протерозойские строматолиты достигли высокого уровня сложности: появились формы со всевозможными ветвящимися столбиками, козырьками, разнообразной слоистостью и микроструктурой и т. Современные строматолиты, образуемые бактериальными матами, устроены намного проще. Микростроматолиты строматолиты-столбики Министроматолиты - мельчайшие столбчатые строматолиты с диаметром столбиков Представительный комплекс раннепротерозойских министроматолитов имеет возраст 2. Следующий возрастной комплекс министроматолитов, развитый в раннем и начале среднего рифея 1. В целом рифейские министроматолиты однообразнее раннепротерозойских из-за исчезновения одной сложно построенной надродовой дорифейской группировки, преобладания в рифее форм с цилиндрическими вертикальными колонками и появления короткостолбчатых построек, связанных протяженными наслоениями. Наряду с этим, рифейские министроматолиты проявляют явную тенденцию к уменьшению диаметра и высоты колонок и к увеличению количества переходных мостиков. Имеются и возрастом 775 млн. Тенденции морфологических изменений министроматолитов, зафиксированные в протерозое, не находят продолжения в их раннепалеозойском комплексе и не совпадают с тенденциями изменения протерозойского комплекса столбчатых строматолитов обычной размерности.
Поэтому можно предполагать, что ответственность за формирование каждого из упомянутых комплексов несли специфические ассоциации микроорганизмов. Prochlorales — «дохлорофильные дробянки» — порядок прокариот, обычно относимый к царству бактерий, отличительной особенностью представителей которого является способность к оксигенному фотосинтезу, сходному с таковым у цианобактерий при отличном от цианобактерий составе фотосинтезирующих пигментов. Возможно, вместе с цианобактериями участвовали в строительстве строматолитов. В силу своей редкости прохлорофиты не имеют какого-либо существенного практического значения, однако представляют немалый научный интерес как возможные «предки» хлоропластов эукариот. Предполагается, что симбиоз каких-то других прокариот с прохлорофитами дал начало зеленым водорослям - предкам многоклеточных растений. Археобактерии археи - анаэробные бактерии От гипотетических протобионтов следует строго отличать археобактерии археи. Недавно они были признаны отдельной самостоятельной группой. Они настолько отличаются от всех остальных живых существ, что представляют собой целый "мир", отдельный от других бактерий эубактерий и организмов с ядросодержащими клетками эукариотов.
Кроме того, это некультивируемые микробы, отказывающиеся расти на лабораторных средах. Царство архей ранее архебактерии , впервые описано в 1977 г. Археи — чрезвычайно разнообразная группа, однако значительная часть их разнообразия известна лишь по последовательностям гена 16S рРНК, по которому строится эволюционное дерево прокариот.
Комбинируя окрашивание по Граму и морфотипы , выделяют четыре основные группы бактерий: грамположительные кокки, грамположительные бациллы, грамотрицательные кокки, грамотрицательные бациллы. Однако для идентификации некоторых бактерий больше подходят другие методы окрашивания. Например, микобактерии и бактерии рода Nocardia не обесцвечиваются кислотами [en] после окрашивания по Цилю — Нильсену [143].
Некоторых бактерий можно идентифицировать по их росту на специфических средах и при помощи других методов, например, серологии [144]. Методы культивирования бактерий [en] разработаны так, чтобы способствовать росту определённых бактерий, но подавлять рост других бактерий из того же образца. Часто эти методы разрабатываются специально для определённых образцов, откуда берутся микробы. Например, для идентификации возбудителя пневмонии для дальнейшего культивирования берут образец мокроты , для идентификации возбудителя диареи для выращивания на селективной среде берут образец стула , причём во всех случаях рост непатогенных бактерий будет подавляться. Образцы, которые в норме стерильны например, кровь , моча , спинномозговая жидкость , культивируются в условиях, подходящих для роста любых микроорганизмов [97] [145]. После изоляции патогенного микроорганизма можно изучать его морфологию, особенности роста например, аэробный или анаэробный рост , характер гемолиза [en] , а также окрашивать его разными методами.
Как и для классификации бактерий, молекулярные методы всё чаще применяют и для их идентификации. Диагностика, использующая такие молекулярные методы, как полимеразная цепная реакция ПЦР , набирает всё большую популярность благодаря своей скорости и специфичности [146]. С помощью этих методов можно обнаруживать и идентифицировать бактерии, которые, хотя и сохраняют метаболическую активность, не делятся и поэтому не могут быть выращены в культуре [147]. Однако даже с помощью молекулярных методов точно определить или хотя бы примерно оценить число существующих видов бактерий невозможно. По состоянию на 2018, год описано несколько тысяч видов бактерий, но лишь около 250 из них являются патогенами человека [148]. Общее число видов бактерий, по разным оценкам, составляет от 107 до 109, но даже эти оценки могут быть на порядки меньше настоящего количества видов [149] [150].
Однозначная и точная концепция вида бактерий так и не сформулирована. Это связано с невероятным разнообразием бактерий, широким распространением горизонтального переноса генов , невозможностью культивирования большинства бактерий и рядом других причин. Введение ПЦР и методов секвенирования в микробиологию позволило выделять виды бактерий на основании степени их сходства с геномами уже известных бактерий, однако и этот подход зачастую оказывается неэффективен из-за огромного разнообразия бактерий [151]. Помимо видов, при классификации бактерий иногда используют другие категории. К названию не до конца подтверждённых, а только предполагаемых видов добавляют слово Candidatus [152]. Многие виды подразделяются на так называемые штаммы — морфологические или генетические варианты подтипы бактерий в пределах одного вида.
Однако ряд специалистов считает категорию «штамм» искусственной [153]. Взаимодействия с другими организмами[ править править код ] Основные бактериальные инфекции человека и их возбудители [154] [155] Несмотря на видимую простоту, бактерии могут вступать в сложные взаимоотношения с другими организмами. Такие симбиотические отношения можно подразделить на паразитизм , мутуализм и комменсализм , а также хищничество. Из-за небольших размеров бактерии-комменсалы распространены повсеместно и обитают на всевозможных поверхностях, в том числе на растениях и животных. Рост бактерий на теле человека ускоряется от тепла и пота , и их большие популяции придают запах телу [en]. Хищники[ править править код ] Некоторые бактерии убивают и поглощают другие микроорганизмы.
К числу таких хищных бактерий [156] относится Myxococcus xanthus , формирующая скопления, которые убивают и переваривают любую попавшую на них бактерию [157]. Хищная бактерия Vampirovibrio chlorellavorus [en] прикрепляется к своей добыче, после чего постепенно переваривает её и всасывает высвобождающиеся питательные вещества [158]. Daptobacter проникает внутрь других бактериальных клеток и размножается в их цитозоле [159]. Вероятно, хищные бактерии произошли от сапрофагов , питающихся мёртвыми микроорганизмами, после того как приобрели приспособления для ловли и убийства других микробов [160]. Мутуалисты[ править править код ] Некоторые виды бактерий образуют скопления, которые необходимы для их выживания. Одна из таких мутуалистических ассоциаций, известная как межвидовая передача водорода, формируется между кластерами анаэробных бактерий, которые поглощают органические кислоты , такие как масляная и пропионовая кислоты , и выделяют водород, и метаногенными археями, которые используют водород.
Бактерии из этой ассоциации не могут поглощать органические кислоты сами по себе, так как в ходе этой реакции образуется водород, накапливающийся вокруг.
ГДЗ по биологии 7 класс Пасечник ФГОС | Страница 131
С точки зрения эволюционного учения, бактерии являются. Бактерии часто являются симбионтами и паразитами растений и животных. Бактерии — микроорганизмы, клетки которых не содержат ядра (прокариоты). Основателями биосферы являются – бактерии и археи, вирусы. Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, которое может быть использовано другими организмами. Рассматриваются гипотетические этапы возникновения жизни на Земле.