В этой статье вы узнаете что же такое пульсары и магнетары, как они появляются и представляют ли они опасность для нас и Земли.
Раскрыта загадка странного поведения пульсара
и рентгеновское излучение увеличилось в пять раз, а в видимом свете звезда стала ярче на 1-2 величины. Что такое пульсар? Пульсары – это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов). Пульсар — это маленькая вращающаяся звезда. Пульсары также называют нейтронными или вырожденными звёздами. Наблюдаются пульсары двумя различными способами: по радиоизлучению пульсаров и по рентгеновскому излучению двойных рентгеновских источников[3].
Раскрыта 10-летняя загадка странного поведения пульсара
Астрономы из Австралийской национальной обсерватории телескопов (ATNF) открыли новый миллисекундный пульсар. Пульсары — это небесные тела, которые были обнаружены только в прошлом веке, что вызвало любопытство в научном сообществе у поклонников предмета. В видео можно услышать, как звучит пульсар, магнитосфера Ганимеда (луна Юпитера), полярное сияние на Земле, Солнце, магнитосфера Юпитера, межзвездное пространство и даже черная дыра.
Раскрыта загадка странного поведения пульсара
Планета, вращающаяся вокруг пульсара, спросите вы? Пульсары рождаются, когда массивная звезда обычно в 8-25 раз больше массы нашего Солнца взрывается в виде сверхновой. Это чрезвычайно энергичные события, которые разрывают большую часть звезды-прародителя на части. Но точно так же, как большая часть звезды выбрасывается в космос, внутренняя часть звезды падает сама на себя под действием силы тяжести. Это приводит к некоторым довольно захватывающим, и в равной степени ужасающим результатам.
Такой плотной, что чайная ложка, наполненная этим материалом, весила бы столько же, сколько все человечество вместе взятые в большой шар каши. Однако высокая масса и плотность — не единственные примечательные особенности этих компактных остаточных объектов. Они также демонстрируют чрезвычайно высокую скорость вращения вращаются быстрее, чем ваш кухонный блендер и содержат мощные магнитные поля в триллионы раз сильнее магнита вашего холодильника. Эти особенности унаследованы от звезды-прародителя, но усиливаются по мере того, как они сжимаются в небольшой объем.
Сложный характер магнитных полей пульсаров. Когда пульсар вращается, лучи энергии от магнитных полюсов проходят мимо Земли, и мы видим его пульсацию. В большинстве моделей мы предполагаем, что пульсар имеет диполь т. Быстрое вращение и сильное магнитное поле создают идеальные условия для генерации радиоизлучения от магнитных полюсов этого быстро вращающегося массивного объекта, и когда эти лучи проходят мимо нашего поля зрения, мы видим импульс.
Как космический маяк, мерцающий в радиоволнах. Мы используем радиотелескопы, чтобы обнаружить эти «импульсы» отсюда и пульсары , и мы обнаруживаем, что они вращаются очень быстро, но также и замедляются на крошечную долю с каждым оборотом это известно как их производная периода. Измерения, которые мы проводим, настолько точны, что для некоторых пульсаров мы получаем производную периода вплоть до значений 10-21 или, другими словами, точных значений, которые простираются до 21 знака после запятой, прежде чем мы достигнем предела погрешности. Это делает регулярное тиканье пульсаров одними из самых точных часов во Вселенной.
То, что они разбросаны по всей Галактике, дает нам возможность проводить с ними чувствительные временные эксперименты в условиях, которые мы никогда не смогли бы воспроизвести на Земле можете ли вы представить себе попытку воспроизвести такое магнитное поле и такую сильную гравитацию, не разрушив планету в процессе? После нескольких десятилетий наблюдений мы теперь знаем, что часть пульсаров живет в двойных системах, и точно так же, как мы делаем с обычными звездами, мы можем измерить пульсирующий сигнал по мере его приближения к нам или удаления от нас, что известно как доплеровский сдвиг. И благодаря точной природе этих надоедливых импульсов мы можем делать это с очень высокой точностью, что дает нам представление о внутренней природе пульсара, а также о любом бинарном компаньоне, который у него может быть. Сплошная кривая — это модель, предсказанная для системы из двух планет, и точки данных соответствуют модели, доказывая, что планетная система существует.
Иногда мы замечаем, что тиканье пульсаров доходит до нас раньше или позже, чем мы ожидали, создавая небольшое колебание в данных, которые мы наблюдаем с течением времени. Это говорит нам о том, что что-то должно притягивать пульсар, и когда мы измеряем это колебание в течение нескольких циклов, мы обнаруживаем, что оно следует регулярной схеме, как будто пульсар движется вокруг центра масс по орбите. Это похоже на нашу Солнечную систему: Юпитер достаточно велик, чтобы заставить Солнце двигаться вокруг центральной точки, известной как барицентр. Таким образом, если бы вы могли измерить данные с Солнца из удаленной точки, вы бы увидели, что оно лишь незначительно колеблется в течение цикла около 12 лет что соответствует длине орбиты Юпитера.
Тщательный анализ данных, которые производят эти колебания, позволяет нам узнать о периоде обращения тела и его массе. И еще раз, благодаря чувствительности, которая достигается при измерении импульсов пульсара, мы можем сделать вывод о массах компаньона, которые могут быть меньше, чем у Луны Земли , даже на расстоянии стольких световых лет. Именно это и произошло в 1992 году. Вскоре они поняли, что смотрят на планету, вращающуюся вокруг мертвой звезды.
На самом деле они обнаружили не одну, а две планеты, вращающиеся вокруг пульсара! Они стали первыми планетами, обнаруженными за пределами нашей Солнечной системы, или экзопланетами. Жизнь на планете-пульсаре Орбитальное поле обломков вокруг пульсара с материалами, которые могут медленно сливаться, образуя планеты. Итак, какой будет жизнь на одной из этих планет-пульсаров?
Пульсар PSR J1748-2446ad, обнаруженный в 2005 году, является самым быстровращающимся пульсаром, известным по состоянию на 2012 год: его скорость — 716 оборотов в секунду. Тем не менее, в начале 2007 года космические рентгеновские обсерватории RXTE и INTEGRAL обнаружили нейтронную звезду XTE J1739-285, которая вращается со скоростью 1122 оборотов в секунду[16], однако этот результат не является статистически значимым, с уровнем значимости всего 3 сигма. Таким образом, этот пульсар является интересным кандидатом для дальнейшего наблюдения, текущие результаты не являются окончательными Пульсар - это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита. Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, а вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля.
И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 1010-1014 гаусс.
Загадки космоса: что такое пульсары 08:05, 3 апреля 2019 г. Наука Исследователи Кембриджского университета в 60-е годы прошлого века занимались изучением различных излучений космоса.
И случайно обнаружили особый вид пульсации с периодичностью в 0,3 сек. Поскольку излучение происходило «организованно», периодично, то поначалу ученые даже приняли его за послания внеземных цивилизаций. И привлекли к расшифровке сигналов специалистов по кодировке.
Но прочесть «письма космоса» так и не удалось, зато вскоре нашлось еще три источника подобного мерцания. Им и дали наименование пульсаров. Энтони Хьюиш, возглавлявший группу британских первооткрывателей, за этот прорыв в науке был отмечен Нобелевской премией по физике.
Что представляют собой пульсары? Природа пульсаров была понята не сразу. Из-за особенностей излучения сначала было решено, что они имеют примерно ту же структуру, что и атомные ядра, обладая и такой же плотностью.
Хотите понять, что такое нейтронные звёзды? LIFE разбирался, почему они "нейтронные", почему их ещё называют пульсарами и откуда такие странные звёзды берутся в космосе. Так происходит, когда эта массивная звезда "умирает", а вернее, просто завершает свой основной эволюционный этап.
А почему звезда "умирает": потому что в ядре заканчивается водород для термоядерных реакций. Только эти процессы и были в состоянии противостоять гравитации, которая без них обязательно заставит ядро сжиматься до самого последнего возможного предела. Оно сжимается, а от этого раскаляется, представьте себе, даже гораздо больше, чем от термоядерного синтеза.
Поэтому оболочка звезды и раздувается, а в конце концов сбрасывается. От перегрева.
Новый миллисекундный пульсар нашли в Млечном Пути
излучений, приходящих на Землю в виде периодически повторяющихся всплесков (импульсов). Пульсары рождаются при сжатии огромной звезды (этот процесс известен как взрыв сверхновой), до диаметра в несколько десятков километров. В ее центральной зоне находится быстровращающаяся нейтронная звезда-пульсар, которая инжектирует в окружающее вещество релятивистские потоки заряженных частиц, что приводит к возникновению ударной волны в виде внутренней кольцеобразной структуры. последние новости об открытиях российских и зарубежных ученых, острые дискуссии об организации науки в России и взаимодействии науки и бизнеса, собственные рейтинги российских ученых, научных организаций и инновационных компаний.
Новые сведения о пульсарах
IXPE — первая обсерватория, которая сможет изучать поляризованное рентгеновское излучение от чёрных дыр, нейтронных звёзд и пульсаров. Её три рентгеновских поляриметра на два порядка чувствительнее, чем оборудование, используемое на существующих обсерваториях. Изображение NASA Телескоп IXPE будет исследовать рентгеновское излучение, которое образуется при нагреве газа до сотен миллионов градусов в окрестностях чёрных дыр, пульсаров и активных ядер галактик.
А более «медлительные» — самые молодые.
У пульсаров «старейшин» отмечаются самые слабые магнитные поля. Есть и такой тип нейтронных звезд, как рентгеновские пульсары. Из названия ясно, что они испускают рентгеновское излучение.
Они имеют разные свойства. На сегодняшний день известно свыше 1 300 пульсаров. Самый короткий период вращения из ныне известных имеет пульсар в созвездии Лисички.
У него этот показатель равен 0,00155 сек. Самый яркий Пульсар в Крабовидной туманности, как считают ученые, «зажегся» в 1054 году. Хроники арабских стран и Китая отметили необычное небесное явление.
Взрыв сверхновой звезды был столь мощным, что был виден землянам даже в дневные часы.
Наиболее быстро вращающиеся пульсары с периодом вращения менее 30 миллисекунд известны как миллисекундные пульсары MSP. Предполагается, что они образуются в двойных системах, когда изначально более массивный компонент превращается в нейтронную звезду, которая затем раскручивается за счет аккреции вещества вторичной звезды.
Некоторые пульсары состоят из двух нейтронных звезд так называемые системы двойных нейтронных звезд — double neutron star, DNS. Они являются одним из наиболее важных классов объектов, используемых для проверки и понимания многочисленных явлений астрофизической и фундаментальной физики, включая общую теорию относительности. Источник был обнаружен в ходе повторной обработки результатов обзора пульсаров Вселенной с высоким временным разрешением на южных низких широтах HTRU-S LowLat.
Мы уже разобрались с тем, что пульсары являются мощнейшими радиоисточниками, излучение которых сосредотачивается в отдельно взятых импульсах определенной частоты. Квазары также являются одними из интереснейших объектов во всей Вселенной. Они также являются чрезвычайно яркими — превосходят по своей мощности общую силу излучения галактик, которые подобны Млечному Пути. Квазары были обнаружены астрономами как объекты, обладающие большим красным смещением.
Согласно одной из распространенных теорий, квазары — это галактики на начальном этапе своего развития, внутри которых находится сверхмассивная черная дыра. Самый яркий пульсар в истории Одним из самых знаменитых таких объектов Вселенной является пульсар в Крабовидной туманности. Данное открытие показывает, что пульсар — это один из самых удивительных объектов во всей Вселенной. Взрыв нейтронной звезды в нынешней Крабовидной туманности был настолько мощным, что это даже не может вписаться в современную теорию астрофизики.
В 1054 году н. Взрыв ее наблюдался даже в дневное время, что было засвидетельствовано в исторических хрониках Китая и арабских стран. Интересно, что Европа не заметила этого взрыва — тогда общество было настолько поглощено разбирательствами между папой римским и его легатом, кардиналом Гумбером, что ни один ученый того времени не зафиксировал этого взрыва в своих работах. А несколько веков спустя на месте этого взрыва была обнаружена новая туманность, впоследствии получившая название Крабовидной.
Ее первооткрывателю, Уильяму Парсонсу, она почему-то по своей форме напомнила краба. Источником пульсации, если судить более строго, является не сама звезда, а так называемая вторичная плазма, которая образуется в магнитном поле вращающейся с бешеной скоростью звезды. Частота вращения пульсара Крабовидной туманности составляет 30 раз в одну секунду. Открытие, которое не вписывается в рамки современных теорий Но этот пульсар удивителен не только своей яркостью и частотой.
Это число в миллионы раз превосходит то излучение, которое используется в медицинском оборудовании, а также оно в десять раз выше, чем то значение, которое описывается в современной теории гамма-лучей. Мартин Шредер, американский астроном, говорит об этом так: «Если бы всего лишь два года назад вы задали любому астрофизику вопрос о том, может ли быть обнаружено такого рода излучение, вы бы получили однозначное "нет". Такой теории, в которую может уложиться открытый нами факт, попросту не существует». Что такое пульсары и как они образовались: загадка астрономии Благодаря исследованиям пульсара Крабовидной туманности, ученые имеют представление о природе этих загадочных объектов космоса.
Теперь можно более-менее четко представлять себе, что такое пульсар.
Загадки космоса: что такое пульсары
В настоящее время все пульсары обозначают буквами PSR, за которыми следует более точное обозначение координат прямое восхождение и склонение. В настоящее время астрономам известно о существовании 1300 пульсаров. Помимо радиопульсаров, излучающих импульсы в радиочастотном диапазоне, существуют также рентгеновские пульсары, излучающие в диапазоне рентгеновских лучей. Рентгеновские пульсары имеют мощные магнитные поля.
Это число в миллионы раз превосходит то излучение, которое используется в медицинском оборудовании, а также оно в десять раз выше, чем то значение, которое описывается в современной теории гамма-лучей. Мартин Шредер, американский астроном, говорит об этом так: «Если бы всего лишь два года назад вы задали любому астрофизику вопрос о том, может ли быть обнаружено такого рода излучение, вы бы получили однозначное "нет". Такой теории, в которую может уложиться открытый нами факт, попросту не существует». Что такое пульсары и как они образовались: загадка астрономии Благодаря исследованиям пульсара Крабовидной туманности, ученые имеют представление о природе этих загадочных объектов космоса. Теперь можно более-менее четко представлять себе, что такое пульсар. Их возникновение объясняется тем, что на финальной стадии своей эволюции некоторые звезды взрываются и вспыхивают огромнейшим фейерверком - происходит рождение сверхновой звезды. От обычных звезд их отличает мощность вспышки.
Всего в нашей Галактике происходит порядка 100 таких вспышек в год. Всего лишь за несколько суток сверхновая звезда увеличивает светимость в несколько миллионов раз. Все без исключения туманности, а также пульсары появляются на месте вспышек сверхновых звезд. Однако наблюдать пульсары можно не во всех остатках этого типа небесных светил. Это не должно смущать любителей астрономии - ведь пульсар можно наблюдать только в том случае, если он расположен под определенным углом вращения. Кроме того, в силу своей природы пульсары «живут» дольше, чем туманности, в которых они образовываются. Ученые до сих пор не могут точно определить те причины, которые заставляют остывшую и, казалось бы, давно мертвую звезду становиться источником мощнейшего радиоизлучения.
Несмотря на обилие гипотез, ответ на этот вопрос астрономам предстоит дать в будущем. Пульсары с самым коротким периодом вращения Вероятно, тем, кто задается вопросом о том, что такое пульсар и каковы последние новости от астрофизиков об этих небесных объектах, будет интересно знать и общее количество открытых на сегодняшний день звезд такого рода. Сегодня ученым известно более чем 1 300 пульсаров. Есть даже пульсары с еще меньшими периодами - они носят название миллисекундных. Один из них был обнаружен астрономами в 1982 году в созвездии Лисички. Период его вращения составлял всего лишь 0,00155 сек. Схематическое изображение пульсара включает в себя ось вращения, магнитное поле, а также радиоволны.
Такие короткие периоды вращения пульсаров и послужили главным аргументом в пользу предположений о том, что по своей природе они представляют собой вращающиеся нейтронные звезды пульсар является синонимом выражения "нейтронная звезда". Ведь небесное тело с таким периодом вращения должно быть очень плотным. Исследования этих объектов продолжаются до сих пор. Узнав о том, что такое нейтронные пульсары, ученые не остановились на открытых ранее фактах. Ведь эти звезды были поистине удивительными - их существование могло быть возможным исключительно при условии, что центробежные силы, которые возникают вследствие вращения, меньше сил тяготения, которые связывают вещество пульсара. Различные виды нейтронных звезд В дальнейшем оказалось, что пульсары с миллисекундными периодами вращения являются не самыми молодыми, а, напротив, одними из старейших. И у пульсаров этой категории были самые слабые магнитные поля.
Есть также и тип нейтронных звезд, называемых рентгеновскими пульсарами. Это такие небесные тела, которые испускают рентгеновское излучение. Они также относятся к категории нейтронных звезд. Однако радиопульсары и звезды, излучающие рентгеновское излучение, действуют по-разному и имеют разные свойства. Впервые пульсар такого рода был открыт в 1972 году в Природа пульсаров Когда исследователи только лишь начали изучать, что такое пульсары, то они решили, что нейтронные звезды обладают той же природой и плотностью, что и ядра атомов. Такой вывод был сделан, поскольку для всех пульсаров характерно жесткое излучение - точно такое же, какое сопровождает и ядерные реакции. Однако дальнейшие расчеты позволили астрономам сделать другое утверждение.
Тип космических объектов "пульсар" - это небесное тело, которое подобно планетам-гигантам иначе называемым "инфракрасными звездами". Радиотелескоп FAST обнаружил новый миллисекундный пульсар. Пульсар — это космический объект , который испускает мощное электромагнитное излучение в радиодиапазоне, характеризующееся строгой периодичностью. Энергия, высвобождаемая в таких импульсах, является небольшой частью всей энергии пульсара. Абсолютное большинство обнаруженных пульсаров находятся в Млечном Пути. Каждый пульсар испускает импульсы с определённой частотой, которая составляет от 640 пульсаций в секунду до одной — каждые пять секунд. Периоды основной части таких объектов находятся в пределах от 0,5 до 1 секунды.
Исследования показали, что периодичность импульсов увеличивается на одну миллиардную секунды каждые сутки, что в свою очередь объясняется замедлением вращения в следствии излучения звездой энергии. Первый пульсар был открыт Джоселин Белл и Энтони Хьюишем в июне 1967 года. Обнаружение такого рода объектов не было предсказано теоретически и стало большим сюрпризом для учёных. В ходе исследований астрофизики обнаружили что такие объекты должны состоять из весьма плотного вещества. Такой гигантской плотностью вещества обладают только массивные тела, например, звёзды. В следствии громадной плотности ядерные реакции проходящие внутри звезды превращают частицы в нейтроны, именно поэтому эти объекты именуются нейтронными звёздами. Большинство звёзд имеют плотность немного больше чем у воды, ярким представителем тут является наше Солнце, основным веществом в котором является газ.
Пульсары по массе сопоставимы с Солнцем, но их размеры весьма миниатюрны — примерно 30 000 метров, что в свою очередь увеличивает их плотность до 190 млн. С такой плотностью Земля имела бы диаметр примерно 300 метров. Вероятнее всего пульсары появляются после взрыва сверхновой, когда оболочка звезды исчезает, а ядро сжимается в нейтронную звезду. Этот пульсар совершает 30 оборотов в секунду, индукция его магнитного поля составляет тысячу Гаусс. Энергия этой нейтронной звезды в сто тысяч раз больше, чем энергия нашей звезды. Авторы и права: Dr. Mark A.
Продолжительность радиоимпульса у стандартной нейтронной звезды составляет тридцатую часть от времени между пульсациями. Все импульсы у пульсара значительно отличаются друг от друга, однако общая форма импульса конкретного пульсара свойственна только ему и одинакова на протяжении десятков лет. Эта форма может рассказать очень много всего интересного. Чаще всего любой импульс делится на несколько субимпульсов, которые в свою очередь делятся на микроимпульсы. Размер таких микроимпульсов может доходить до трёхсот метров, а испускаемая ими энергия равна солнечной. На данный момент пульсар представляется учеными как вращающаяся нейтронная звезда, имеющая мощное магнитное поле, которое захватывает ядерные частицы вылетающие с поверхности звезды и затем ускоряет их до колоссальных скоростей. Пульсары состоят из ядра жидкое и коры толщина которой равна примерно одному километру.
В следствии этого нейтронные звёзды больше похожи на планеты нежели на звёзды. Из-за скорости вращения пульсар имеет сплюснутую форму.
Черные дыры могут быть в десять или в миллиард раз больше Солнца по массе, что делает их гравитационную тягу намного сильнее, чем у пульсара. По мере того как вещество попадает в черную дыру, гравитационная энергия превращает его в тепло, что порождает рентгеновский свет. Чем больше черная дыра, тем больше у нее энергии, которая заставляет объект блестеть. Вспышки действительно были там, один импульс в каждые 1,37 секунды.
Следующим шагом было выяснение того, какой источник рентгеновского излучения мог бы производить такие вспышки. Исследователи проанализировали данные NuSTAR и второго рентгеновского телескопа NASA «Чандра», чтобы исключить порядка 25 разных рентгеновских источников, и наконец остановились на ультраярком рентгеновском источнике M82X-2. После того как были определены пульсар и его местоположение в M82, осталось еще много вопросов без ответа. Пульсар во много раз превосходит предел Эддингтона , базовое правило в физике, которое устанавливает предел светимости, которую может достичь объект с определенной массой. Мы знаем, что предел может нарушаться на небольшое значение, но наша находка просто взрывает его».
Не могут они и вращаться так быстро — центробежная сила разорвет их. Это может быть только очень плотное тело, состоящее из вещества, предсказанного Л. Ландау и Р. Оппенгеймером в 1939. В этом веществе ядра атомов вплотную прижаты друг к другу. Сжать вещество до такой степени может только гигантская сила тяжести, которой обладают лишь очень массивные тела, такие, как звезды. При огромной плотности ядерные реакции превращают большинство частиц в нейтроны, поэтому такие тела называют нейтронными звездами. Обычные звезды, такие, как Солнце, состоят из газа со средней плотностью чуть больше, чем у воды. Белый карлик с такой же массой, но диаметром около 10 000 км имеет в центре плотность ок. У нейтронной звезды масса тоже близка к солнечной, но ее диаметр всего ок. Если бы до такой плотности сжать Землю, то ее диаметр составил бы ок. По-видимому, нейтронная звезда может образоваться из центральной части массивной звезды в момент ее взрыва как сверхновой. При таком взрыве оболочка массивной звезды сбрасывается, а ядро сжимается в нейтронную звезду. Эта нейтронная звезда делает 30 оборотов в секунду и ее вращающееся магнитное поле с индукцией 1012 Гс «работает» как гигантский ускоритель заряженных частиц, сообщая им энергию до 1020 эВ, что в 100 млн. Полная мощность излучения этого пульсара в 100 000 раз выше, чем у Солнца. Оставшаяся мощность, вероятно, приходится на низкочастотное радиоизлучение и высокоэнергичные элементарные частицы — космические лучи. Последовательно приходящие импульсы сильно отличаются друг от друга, но средняя обобщенная форма импульса у каждого пульсара своя и сохраняется в течение многих лет. Анализ формы импульсов показал много интересного. Обычно каждый импульс состоит из нескольких субимпульсов, которые «дрейфуют» вдоль среднего профиля импульса.
Что такое пульсар: определение, особенности и интересные факты
последние новости об открытиях российских и зарубежных ученых, острые дискуссии об организации науки в России и взаимодействии науки и бизнеса, собственные рейтинги российских ученых, научных организаций и инновационных компаний. Иллюстрация пульсара J1023, высасывающего вещество из звезды-компаньона. Что такое пульсары и квазары. Пульсар, как выяснилось – это нейтронная звезда. Пульсары — (англ. pulsars, сокращенно от Pulsating Sources of Radioemission — пульсирующие источники радиоизлучения) слабые источники космического излучения, всплески которого следуют друг за другом с очень медленно изменяющимся периодом. В представленной работе описываются открытие пульсаров, основные характеристики и общепринятые модели возникновения пульсаров. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам.