Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака).
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы
Дальше мы производим считывание. То есть мы считываем состояние атомов. Если он был возбуждён или если он не был возбужден. И в зависимости от этого получаем ответ на поставленный вопрос». Процесс сложный, но ученые излучают уверенность и делают кубиты также на сверхпроводниках, которым нужны экстремально низкие температуры. Уже есть успехи — американская IT-компания , например, в конце 2022 года представила процессор, внутри которого 433 кубита. Теоретически в нем может одновременно содержаться на много порядков больше бит информации, чем атомов в наблюдаемой Вселенной. Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы. Подобные удачи, впрочем, уже случались.
Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях.
Увидев это, Юнг предположил: одна частица света проходит через две щели одновременно. Примерно такую картину интерференции волн наблюдал Томас Юнг. Свойство частиц находиться одновременно во всех состояниях и называется суперпозицией. Оно активно используется в квантовых вычислениях, которые основаны на кубитах с частицами. Чем полезна суперпозиция в квантовых процессорах Особенность суперпозиции квантовых частиц принимать все доступные значения в один момент времени позволяет значительно ускорить работу процессоров. Теперь им не нужно раз за разом перебирать последовательности нулей и единиц, чтобы найти верное решение поставленной задачи. Эти последовательности уже существуют здесь и сейчас.
Именно поэтому квантовые компьютеры работают быстрее обычных. Выше мы писали о Google Sycamore — она справилась со сложнейшими вычислениями за 200 секунд. На выполнение той же задачи у суперкомпьютера IBM ушло бы 10 000 лет. Суперкомпьютер Google. Как кубит может принимать все значения разом Вы можете спросить: как так вышло, что в предыдущем параграфе кубит принимает значения 0 и 1 одновременно, а в этом — одновременно все возможные состояния, которые могут находиться и на промежутке от 0 до 1? Это справедливое замечание. Дело в том, что у частиц есть ещё одно примечательное свойство: они находятся в состоянии суперпозиции до тех пор, пока не окажутся под наблюдением, но как только кто-то начинает наблюдать их, они принимают полярное значение в множестве возможных — либо 0, либо 1. Всё зависит от того, к какому полярному значению частица находится ближе до того момента, как к ней обратились. Что такое квантовая запутанность Квантовая запутанность quantum entanglement — это фундаментальное явление в квантовой механике, когда два или более кубита или другие квантовые системы становятся так плотно связанными, что состояние одного кубита немедленно влияет на состояние другого, независимо от расстояния между ними.
Грубо говоря, это большой часовой механизм, который состоит из кубитов, как из шестерёнок. Если повернуть одну шестерёнку, неизменно повернётся другая.
И о будущем. Экспоненциальное ускорение вычислительного времени кубитов в сравнении с битами, взлом квантом шифрования RSA. Станут ли квантовые компьютеры нормой. Кубит и суперпозиция Чтобы понять, что такое кубит, сначала нужно разобраться с тем, что такое бит. Ваш компьютер работает на битах, принимающих значение 0 и 1. Биты способны представлять огромные массивы данных — все программы на вашем компьютере хранятся в очень длинных цепочках битов. Физически биты представлены транзисторами, в которых присутствие электрона, проходящего через затвор, означает 1, а отсутствие — 0. Компьютерная микросхема заполнена несколькими триллионами миниатюрных транзисторов, обеспечивающих его функционирование микросхемы не могут стать меньше, так как информация представлена в виде электронов.
Кубиты принципиально отличаются от битов тем, что не ограничиваются только 0 и 1. Они могут принимать любые значения между 0 и 1. Это явление называется суперпозицией и существует только в квантах — очень маленьких объектах. Кубитом может быть любой объект, проявляющий квантовое поведение, например фотон. Кубит, находящийся в суперпозиции, при измерении коллапсирует в одно из двух детерминированных состояний 0 или 1. Вероятность состояния 1 или 0 определяется суперпозицией кубита. Если кубит находится в равной суперпозиции, то он находится наполовину в состоянии 0, наполовину в состоянии 1. Для понимания суперпозиции нужно думать о состояниях как о волнах, а не как о двух взаимоисключающих классах. Представьте себе две разные песни, одну из которых назовём песня A, другую песня B. Поскольку при измерении кубит коллапсирует в одно из двух детерминированных состояний, невозможно измерить истинное вероятностное состояние кубита.
Впрочем, можно измерить его приблизительно. Суперпозиция — реальное явление: знаменитый эксперимент с двумя щелями демонстрирует, что определённые кванты, подобные электронам или фотонам, находятся в волновых состояниях и, проходя через две щели, вызывают появление интерференционной картины на экране. Источник На аппаратном уровне главная сложность в конструировании кубитов заключается в их вероятностной природе ведь они не детерминированы , что означает, что их состояние может очень легко изменяться под воздействием внешних сил. Кубиты трудно поддерживать по той же причине, по которой они так мощны — множество их возможных состояний трудно контролировать более нескольких секунд. Применение квантовых вентилей для осуществления операций зачастую может приводить к ошибкам вентиля из-за случайного неосторожного обращения с кубитом.
Это часть реализации дорожной карты по квантовым вычислениям. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор.
До конца 2024 года планируется увеличить число кубитов в отечественных вычислительных машинах до 50-100. Российские ученые решили сосредоточиться на использовании кубитов из ионов, которые обладают более длительным временем когерентности и, следовательно, обеспечивают больше возможностей для успешного выполнения квантовых алгоритмов с меньшим количеством ошибок. В 2021 году был представлен прототип компьютера на ионах с четырьмя кубитами. Впоследствии ученые расширили платформу, заменив кубиты на кудиты.
Что такое квантовый компьютер? Разбор
В то время как кубиты имеют четыре значения, в нейронных сетях их несравненно больше, а образуемые ими структуры намного разнообразнее, чем entanglement. Последние новости о разработке собраны в этой статье. Термин «кубит» (QuBit — «квантовый бит») был введен физиком Стивеном Визнером в его статье «Сопряженное кодирование» (Conjugate Coding), опубликованной в 1983 году в SIGACT News. Удерживать кубиты в нужном состоянии, учитывая количество внешних факторов, крайне сложно — именно поэтому они работают при абсолютном нуле.
Как устроен и зачем нужен квантовый компьютер
Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды. Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0. В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры.
Почему от квантового компьютера зависит национальная безопасность и когда он появится в России
Один бит состоит из абсолютных состояний 1 и 0. Один pbit вероятностный бит может быть любым состоянием 1 или 0. Один кубит может быть равен 1 или 0. Кубиты обладают свойством суперпозиции, что означает, что они могут находиться в нескольких состояниях одновременно. Это свойство позволяет квантовым компьютерам выполнять несколько вычислений одновременно, что делает их намного быстрее классических компьютеров.
Суперпозиция — не единственное свойство, которое отличает кубиты от классических битов. Другим важным свойством является запутанность. Когда кубиты запутаны, они становятся связанными так, что их состояния коррелируют, независимо от расстояния между ними. Это свойство позволяет квантовым компьютерам выполнять операции, которые были бы невозможны с классическими компьютерами.
Для создания кубитов квантовые компьютеры используют различные технологии, включая сверхпроводящие схемы, ионные ловушки и фотонику. Одна из самых популярных технологий создания кубитов — сверхпроводящие схемы. Сверхпроводящие схемы состоят из крошечных витков сверхпроводящего провода, охлажденных почти до нуля. Схемы становятся сверхпроводящими при чрезвычайно низких температурах, что подразумевает, что они имеют нулевое электрическое сопротивление.
По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс. Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ. В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр. В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры.
Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года. По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией. Индустрия 4. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей. Как работает квантовый компьютер Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность. В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение.
Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию. Биты и кубиты Фото: Журнал Яндекс Практикума Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль. Для работы квантового компьютера используются квантовые вентили, собранные из кубитов.
Прогнозирование От финансового сектора до прогноза погоды — кубиты просчитывают множество переменных в разы быстрее, чем обычные компьютеры. Это значит, что прогнозы станут точнее, можно будет определить скорость ветра, температуру, влажность, движение облачных масс за секунды. Криптография В 1994 году Питер Шор разработал квантовый алгоритм разложения числа на простые множители.
В теории с его помощью компьютеры смогут взломать любые шифры — это прорыв в области криптографии и одновременно большой риск. Любые пароли, если технологию используют злоумышленники, не будут иметь значения — машина получит доступ к любой кредитке, разложив число на два простых множителя. Но для взлома понадобятся мощности, которых пока квантовые компьютеры не достигли. В ближайшие десятилетия, чтобы обеспечить конфиденциальность, ученым придется придумать новые методы шифрования и квантовой криптографии. Искусственный интеллект Volkswagen применяет квантовые компьютеры для разработки беспилотных автомобилей на основе искусственного интеллекта, а Сбер вместе с другими технологичными компаниями будут развивать квантовые технологии для вычислений в ИИ, которые пригодятся в медицине, финансовой сфере, обработке данных и прогнозировании. Квантовые компьютеры в России и мире: какие модели уже есть и в чем проблема широкого применения Первый работающий экспериментальный компьютер протестировали в 2001 году — им стал 7-битный образец компании IBM. С тех пор началась квантовая гонка и борьба за квантовое превосходство. Квантовое превосходство — способность квантовых компьютеров решать задачи, на которые у обычных уйдут годы.
Самый мощный квантовый компьютер в России пока содержит 16 кубитов. Разработка есть на различных платформах, в том числе на ионном процессоре. С помощью машины запущен алгоритм моделирования молекулы. К 2024 году российские ученые планируют увеличить число кубитов в отечественных ЭВМ до 50-100. На разработку выделили 24 млрд рублей. Россия активно включилась в квантовую гонку — для исследователей в области квантовой физики запустили мегагранты, а до конца 2024 в стране может появиться 100-кубитный квантовый компьютер. А в Китае стартап Shenzhen SpinQ Technology разработал, пожалуй, самый доступный квантовый компьютер для школ и колледжей. Первые образцы китайского квантового компьютера отправились в Тайвань и Гонконг.
В гонку стран включился даже Иран, правда, неудачно — в сети появилась новость об их удивительном квантовом компьютере. Но пользователей в интернете не так просто обмануть — подвох нашли быстро.
Кубиты также должны быть защищены от фонового шума, чтобы уменьшить ошибки в вычислениях.
Внутренности квантового компьютера выглядят как роскошная золотая люстра. И да, многие комплектующие сделаны из настоящего золота. Это дорогущий холодильник, который используется для охлаждения квантовых чипов, чтобы компьютер мог создавать суперпозиции и запутывать кубиты, не теряя при этом никакой информации.
Квантовый компьютер создаёт эти кубиты из любого материала, который обладает квантово-механическими свойствами, доступными для управления. Проекты квантовых вычислений создают кубиты различными способами, такими как зацикливание сверхпроводящего проводника, вращение электронов и захват ионов или импульсов фотонов. Эти кубиты существуют только при температурах близких к абсолютному нулю, создаваемых в холодильной установке.
Язык программирования квантовых вычислений Квантовые алгоритмы предоставляют возможность анализировать данные и создавать модели на основе данных. Эти алгоритмы написаны на квантово-ориентированном языке программирования. Исследователи и технологические компании разработали несколько квантовых языков.
Q : язык программирования, включенный в Microsoft Quantum Development Kit. Комплект разработчика включает в себя квантовый симулятор и библиотеки алгоритмов. Cirq: квантовый язык, разработанный Google , который использует библиотеку python для написания схем и запуска этих схем в квантовых компьютерах и симуляторах.
Forest: среда разработки, созданная Rigetti Computing, которая используется для написания и запуска квантовых программ. Использование квантовых вычислений Настоящие квантовые компьютеры стали доступны только в последние несколько лет, и только несколько крупных технологических компаний имеют квантовый компьютер. Эти технологические лидеры работают с производителями, фирмами, оказывающими финансовые услуги, и биотехнологическими компаниями, чтобы решить множество проблем.
Доступность квантовых компьютерных услуг и прогресс в области вычислительной мощности дают исследователям и ученым новые инструменты для поиска решений проблем, которые раньше было невозможно решить.
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации.