Искувственно смодулированная Кипом Торном СМЧД (сверхмассивная черная дыра («Гаргантюа») специально для киноленты Кристофера Нолана «Интерстеллар». По данным ЕКА, две черные дыры — Gaia BH1 и Gaia BH2 — являются ближайшими к Земле из всех обнаруженных до сих пор. 1) Почему черная дыра Гаргантюа в фильме выглядит именно так?
ЧЕРНЫЕ ДЫРЫ
Почти вся эта материя, как обнаружили ученые, попадает не на окраины W2246-0526, а в ее центральную часть, где ее захватывает притяжение черной дыры. Небольшая часть этого газа и пыли поглощается сингулярностью, а большая часть выбрасывается назад в виде раскаленных "объедков", вырабатывающих огромное количество света и других форм излучения. В прошлом, как предполагают ученые, W2246-0526 могла захватить и уничтожить и многие другие соседние галактики. Подобная форма "каннибализма", как считают Эйзенхардт и его коллеги, была характерна и для других "хот-догов". Это может объяснять, почему ученые часто находят в ранней Вселенной необычно яркие галактики с невозможно крупными черными дырами, и почему сами хот-доги скрываются от внешнего мира под толстым коконом из пыли и газа, состоящим, по всей видимости, из останков их прошлых трапез.
При разрушении приливами возникают яркие вспышки света, когда газовый поток взаимодействует с диском материала, вращающимся вокруг чёрной дыры. Учёные исследуют эти вспышки, чтобы получить характеристики системы: не все события разрушения приливными силами приводят к мгновенному уничтожению звезды. Иногда звезда обращается вокруг чёрной дыры на таком расстоянии, где приливные силы не так сильны, чтобы полностью разорвать звезду, но они всё равно стягивают с неё газ и материал. Звезда продолжает обращаться вокруг чёрной дыры до тех пор, пока не теряет слишком много газа и материала, и наконец истощается. Swift J0230 — одно из таких событий.
Однако группа исследователей из Университета штата Массачусетс в Дортмунде США считает, что эта фантазия на самом деле не так уж и далека от реальности. Черные дыры являются, возможно, самыми загадочными объектами во Вселенной. Они — результат гравитационного коллапса сверхмассивных звезд, приводящего к созданию настоящей сингулярности — объекта бесконечной плотности, появившегося вследствие сжатия целой звезды до крошечной точки. Эти горячие точки бесконечной плотности обладают настолько мощной гравитацией, что способны в буквальном смысле разрывать пространство-время. Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий. Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы. Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей.
Падающая частица будет наделена отрицательной энергией, а выходящая за пределы черной дыры будет иметь положительную энергию, которую можно заставить работать. Теоретически такие частицы могут служить безграничным источником свободной мощности до тех пор, пока черная дыра продолжает поглощать плазму с отрицательной энергией. Отличие от «процесса Пенроуза» заключается в том, что для образования частиц с отрицательной энергией требуется диссипация энергии магнитного поля, а у Пенроуза роль играла только инерция частиц. Что говорит о черных дырах наука Многие видели черные дыры в кино и, может, что-то даже о них читали, но мало кто хорошо разбирается в том, как они устроены и работают. Немного расскажем об этом. Черная дыра — это область пространства-времени, сила гравитации в которой настолько велика, что покинуть ее не могут никакие объекты или волны в том числе свет, а значит, увидеть саму черную дыру невозможно. Существование черной дыры подтверждает только тот факт, что какое-то количество небесных тел кружится вокруг невидимой зоны. Черная дыра изнутри не пуста, она заполнена огромной массой материи, сжатой в небольшом объеме, что и создает огромную силу притяжения. Вокруг черной дыры располагается область — горизонт событий, то есть «точка невозврата», после пересечения которой вырваться из гравитационной ловушки уже невозможно. Также вокруг черной дыры располагается еще и аккреционный диск — большая масса притягивает вещество, которое разогревается до огромных температур миллионы или даже триллионы Кельвинов. Черные дыры могут быть разных размеров — от маленьких до сверхмассивных. Первая фотография черный дыры галактика Мessier 87 Фотография черной дыры — это изображение вещества, движущегося вокруг черной дыры. В центре возникает темная область, поскольку там находится черная дыра, из которой не может исходить свет.
Сверхмассивная черная дыра в центре Млечного Пути. Сверхмассивная черная дыра в квазаре OJ 287
1) Почему черная дыра Гаргантюа в фильме выглядит именно так? По данным ЕКА, две черные дыры — Gaia BH1 и Gaia BH2 — являются ближайшими к Земле из всех обнаруженных до сих пор. Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли. Forwarded from ДПС контроль Благовещенск (@dpskontrol_28rus) Сканер портамур амурлайф новости ДТП аварии autoroadblg народный. В Белогорске автомобиль засосало в Гаргантюа (черную дыру). Невероятное приключение автомобиля на ул. Гастелло.
«Интерстеллар» с точки зрения науки
Gaia BH2 находится примерно в 3 800 световых годах от Земли, в созвездии Центавра. Оба объекта примерно в 9-10 раз массивнее Солнца и находятся в галактике Млечный Путь. Когда какой-то объект или облако межзвездного газа падает на черную дыру, появляется всплеск электромагнитного излучения. Астрономы фиксируют его и делают вывод о присутствии черной дыры.
Обе дыры оказались «спящими» или неактивными. Исследователи обнаружили их, тщательно отслеживая движения двух солнцеподобных звезд-компаньонов, вращающихся вокруг космических гигантов.
Как и во многих других фильмах Кристофера Нолана, в данной картине представлен ряд непростых для понимания моментов, которые могут сбить с толку некоторых зрителей. В фильме «Интерстеллар» задействованы различные научно-фантастические концепции, многие из которых связаны с временем и теорией относительности. В итоге, финал картины остается непосильным для многих зрителей. Как известно, в фильме «Интерстеллар» люди обнаруживают кротовую нору рядом с Сатурном, позволяющую кратчайшим путем отправиться в далекий регион космоса. Благодаря этой норе агентство NASA отправляет 12 астронавтов на исследование 12 миров, потенциально пригодных для жизни. Трое астронавтов отправляют свои сигналы назад на Землю, а потому ученые NASA разрабатывают два плана — «А» и «Б», чтобы спасти все человечество.
Первый план заключается в разработке теории гравитационного движения для продвижения человеческих колоний в космосе, тогда как второй план просто подразумевает отправку человеческих эмбрионов для колонизации одной из пригодных для жизни планет. В итоге, главный герой Купер Мэттью Макконахи отправляет на корабле «Эндюрэнс» вместе с остальными членами экипажа на изучение трех сигналов.
Она не светится. Светится вещество вокруг нее. Свечка у вас есть, зажгите. Почему горит? Потому что там идет химическая реакция и частички, которые там вылетают, они горячие. Чем горячее, тем белее свет.
То же самое и там. Когда газ падает вокруг черной дыры, он из-за трения нагревается до высоких температур и светится, как любое раскаленное тело Константин Постнов. Астрофизик отметил, что светятся плазма и газ, которые нагреты до огромных температур в окрестностях черной дыры. Постнов объяснил, что черная дыра — это очень глубокая «потенциальная яма», компактный объект с большой массой. Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света. Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной. До сих пор ученые имели только косвенные доказательства, что эти черные дыры существуют.
Сегодня произошло выдающееся событие. Впервые человечеству была предъявлена фотография реального изображения черной дыры. Физики ждали этого 100 лет.
Научно доказано, что пространство способно искривляться. Принимая это во внимание и представляя, что космос — это лист бумаги, если поставить одну точку в начале бумаги и вторую — в конце, то расстояние будет большим, но если пространство искривить или сложить бумагу пополам, то эти точки окажутся рядом. На самом деле этот туннель в пространстве имеет несколько названий, так, его можно называть кротовая нора или кротовина, однако червоточина является дословным переводом от слова wormhole. Кротовая нора, упомянутая и показанная в этом фильме — это портал во времени и пространстве, позволяющий попадать в любую часть вселенной. Червоточины пока не были обнаружены, но многие исследователи предполагают, что такие червоточины вполне могут существовать, опираясь на теорию относительности. Правда, никому до сих пор неизвестно, сможет ли космический корабль с экипажем внутри выйти из кротовой норы невредимым. Черная дыра и время Дальше можно обсуждать то, что происходит, когда героям удалось преодолеть большое расстояние и подобраться к черной дыре.
Здесь уже затрагивается искривление времени. Думать о времени как о чем-то простом и равномерном является такой же ошибкой, как думать, что Земля плоская. Развитие науки позволило разрушить наше представление о времени. Когда главные герои попали на планету Миллер, то получили сведения о том, что час, проведенный там, равен семи годам на Земле. Это связано с тем, что планета вращается вокруг черной дыры на близком расстоянии от нее. В фильме подробно объясняется влияние гравитации на время. Гаргантюа — черная дыра огромной массы, а объекты с большой массой способны создать сильную гравитацию.
Энергия из черных дыр – выдумка или реальность?
С NGC 1277 такого не произошло — возможно, из-за перетягивания материи соседними галактиками. Она так и не выросла, и понемногу звездообразование в ней угасло. Осталась лишь черная дыра невероятных размеров — настоящая достопримечательность.
В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной — звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные — между внутренним и внешним кольцами. На рис. Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка. Камера движется вокруг Гаргантюа против часовой стрелки.
Лучи света, формирующие изображения звезд, на которые указывают синие стрелки Модель Double Negative, та же, что на рис. Последовательно изучая эти рисунки, можно многое понять о гравитационном линзировании. Имейте в виду: действительное направление к звезде — вверх и вправо внешние концы красных лучей. Стрелка, идущая от значка камеры, указывает на изображение звезды.
Отметьте: настоящее направление на звезду - вверх и вправо посмотрите на внешние концы красных лучей. Камера и начало каждого луча указывают на изображение звезды. Десятое изображение совсем рядом с левым краем тени, а правое вторичное изображение - рядом с правым краем; сравнивая направления камеры для этих изображений, мы видим, что тень занимает дугу около 150 градусов в направлении вверх. Это несмотря на то, что настоящее направление от камеры к центру Гаргантюа - влево и вверх. Линза сместила тень относительно настоящего положения Гаргантюа. Лучи света, которые несут изображения звезд на кончиках голубых стрелок.
Пол вывел меня на связь с командой Интерстеллара, которую он собрал в студии по визуальным эффектам Double Negative в Лондоне. Я вошел в раж, тесно работая с Оливером Джеймсом, главным ученым. Мы с Оливером разговаривали по телефону и по Скайпу, обменивались электронными сообщениями и файлами и встречались лично в Лос-Анджелесе и в его офисе в Лондоне. У Оливера ученая степень по оптике и атомной физике, и он понимает законы теории относительности Эйнштейна, так что мы говорили на одном и том же техническом языке. Некоторые из моих коллег-физиков уже делали компьютерные модели того, что увидит наблюдатель, находясь на орбите черной дыры или даже падая в нее. Эндрю создал видео о черных дырах, которое показывают в планетариях по всему миру, а Ален смоделировал черные дыры, которые вращаются очень-очень быстро, как Гаргантюа. Так что первоначально я собирался свести Оливера с Аленом и Эндрю и попросить их предоставить ему необходимые входные данные. Несколько дней мне было неуютно от этого решения, а потом я передумал. В течение своей полувековой карьеры физика я прикладывал огромные усилия, совершая новые открытия сам и воспитывая студентов, совершавших новые открытия. Почему бы, для разнообразия, не сделать что-нибудь просто потому, что это весело, спросил я себя, даже если другие уже делали это до меня?
И это было весело. И к моему удивлению, побочным продуктом это привело скромно к новым открытиям. Эти уравнения рассчитывают траектории световых лучей, начинающихся от некоторого источника света, к примеру, от далекой звезды, и движущихся сквозь искривленное пространство Гаргантюа к камере. Из этих лучей света мои уравнения затем рассчитывают видимые камерой изображения, учитывая не только источники света и искажение пространства и времени Гаргантюа, но и движение камеры вокруг Гаргантюа. Получив эти уравнения, я сам опробовал их с помощью дружелюбного программного обеспечения под названием Mathematica. Я сравнивал изображения, создаваемые моим компьютерным кодом Mathematica, с изображениями Алена Riazuelo, и когда они согласовались, я возликовал. Затем я написал подробные описания своих уравнений и отправил их Оливеру в Лондон, вместе с моим кодом Mathematica. Мой код был очень медленным и имел низкое разрешение. Задачей Оливера было перевести мои уравнения в компьютерный код, который мог бы создать необходимые для фильма изображения IMAX сверхвысокого качества. Мы с Оливером делали это пошагово.
Мы начали с невращающейся черной дыры и неподвижной камеры. Затем мы добавили вращение черной дыры. Затем добавили движение камеры: сперва движение по круговой орбите, а затем падение в черную дыру. А затем мы переключились на камеру, вращающуюся вокруг кротовой норы. В этом месте Оливер поразил меня как громом среди ясного неба: чтобы смоделировать самые утонченные эффекты, ему понадобятся не только уравнения, описывающие траектории световых лучей, но еще и уравнения, описывающие, как поперечное сечение пучка света меняет размер и форму, проходя через кротовую нору. Я более или менее знал, как это сделать, но уравнения были ужасно запутанны, и я боялся наделать ошибок. Так что я поискал техническую литературу, и обранужил, что в 1977 году Serge Pineault и Rob Rouber из Университета Торонто получили необходимые уравнения в почти нужной мне форме. После трехнедельной борьбы с собственной глупостью я привел их уравнения точно в нужную форму, выразил их в Mathematica и расписал Оливеру, который включил их в собственный компьютерный код. В конце концов, его код смог создать качественные изображения, необходимые для фильма. В Double Negative компьютерный код Оливера был только началом.
Он вручил его художественной команде под руководством Евгении фон Танзельманн, которая добавила аккреционный диск Глава 9 и создала фоновую галактику со звездами и туманностями, которые будут искажаться линзой Гаргантюа.
NASA в фильме «Интерстеллар» считало, что эти неизвестные сущности способно существовать в пятимерном пространстве, тогда как знания людей пока ограничиваются лишь трехмерным пространством. По итогу же оказалось, что этими таинственные существами являются сами люди из будущего, освоившие законы вселенной, позволяющие им манипулировать временем и пространством. Эти люди решили помочь человечеству в прошлом и построили массивный тессеракт, находящийся в пятимерном пространстве. Именно в него попадает Купер под конец фильма и помогает своей дочери Мерф построить теорию гравитационного движения благодаря данным собранным ТАРСом. Таким образом, получается, что люди из будущего помогли человечеству из прошлого, построив специальный тессеракт, в котором затем Купер оставил координаты для себя из прошлого, а затем переместился в будущее и помог свой дочери решить уравнение и воплотить в жизнь план «А». Также стоит отметить, что фильм «Интерстеллар» наполнен темами относительности пространства и времени.
Находясь вблизи черной дыры «Гаргантюа» астронавты во главе с Купером находятся ближе к источнику гравитации, по сравнению с человечеством, а потому время для них течет значительно медленнее. К примеру, когда герои попадают на планету Миллер, то проводят на ней около 3 часов, тогда как на корабле «Эндюрэнс» проходит 23 года.
Гаргантюа черная дыра обои - 65 фото
Важно понимать, что чёрная дыра — это не пустое пространство, а, скорее, место, где огромное количество материи помещается в крошечную область, называемую сингулярностью, которая бесконечно мала и плотна (тут есть разные варианты, но остановимся на этом). Эти снимки неожиданным образом показали, что черная дыра-«гаргантюа» и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого «звездного мегаполиса». Важно понимать, что чёрная дыра — это не пустое пространство, а, скорее, место, где огромное количество материи помещается в крошечную область, называемую сингулярностью, которая бесконечно мала и плотна (тут есть разные варианты, но остановимся на этом). Искувственно смодулированная Кипом Торном СМЧД (сверхмассивная черная дыра («Гаргантюа») специально для киноленты Кристофера Нолана «Интерстеллар».
Тайны черных дыр: 6 занимательных вопросов астрофизикам
Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. “Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) – в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры. Скачайте видеоклип Черная Дыра Гаргантуа прямо сейчас. И найдите в библиотеке роялти-фри стоковых видеоматериалов iStock еще больше видео Чёрная дыра, доступных для простого и быстрого скачивания. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т.е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Широкая двойная система Gaia BH3 была обнаружена недавно и состоит из неактивной самой массивной черной дыры звездной массы (массой почти 33 массы Солнца) и малометалличной звезды из гало Млечного Пути. Вымышленная черная дыра «Гаргантюа» (сцена из фильма «Интерстеллар»).© Paramount/Warner Brothers/The Kobal Collection.
Наука в фильме "Интерстеллар": кротовые норы, черные дыры, пространство-время
Проект Event Horizon Telescope «Телескоп горизонта событий» , в рамках которого и получился итоговый снимок, был запущен в 2012 году для наблюдения за чёрными дырами. Всё это время учёные собирали необходимую информацию, а последние два года суперкомпьютер работал над получением того самого изображения. Зато для появления мемов и шуток по поводу нового фото потребовались считанные часы. My face when I saw the black hole pic.
Одним из самых популярных вариантов стало сравнение чёрной дыры с пончиком: I am sure the spatial resolution of the blackhole images will get better in future. That black hole photo is mighty blurry.
Когда ученые измерили массу черной дыры в центре W2246-0526, они не поверили своим глазам — она оказалась тяжелее Солнца как минимум в три миллиарда раз. Подобный вывод крайне удивил астрофизиков. Дело в том, что мы видим эту галактику в том состоянии, в котором она существовала примерно 12 миллиардов лет назад, через 1,3 миллиарда лет после Большого Взрыва. Этого времени, как сегодня считают астрофизики, просто не должно было хватить для того, чтобы эта дыра достигла современных гаргантюанских размеров, даже если бы она беспрерывно поглощала максимальные количества материи, допустимые с точки зрения теории. Обед Гаргантюа Астрономы НАСА нашли один из возможных ответов на этот вопрос, наблюдая за окрестностями W2246-0526 при помощи микроволнового телескопа ALMA, способного следить за движением даже самых холодных скоплений газа и пыли. Эти снимки неожиданным образом показали, что черная дыра-«гаргантюа» и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого «звездного мегаполиса».
А Вы смотрели: Битва вселенских монстров - черная и белая дыры Самым интересным является то, что размер чёрной дыры с массой наблюдаемой Вселенной в разы меньше размера самой Вселенной. Собственно, тут стоит вспомнить, оговоренную ранее разновидность горизонта событий, как завесу, окутывающую нашу наблюдаемую Вселенную.
То есть, то, что, находится за горизонтом событий Вселенной, скрыто от наблюдателя подобно звездолёту, находящемуся в чёрной дыре. Вселенский горизонт событий Горизонт Вселенной и сфера Хаббла Горизонт событий наблюдаемой Вселенной является одним из трёх параметров, характеризующих её границы. Кроме него также существует сфера Хаббла и горизонт частиц. Радиус сферы Хаббла равен расстоянию, который прошёл свет за время жизни Вселенной — то есть около 14 млрд. Однако, в силу того, что наша Вселенная не статична, сфера Хаббла не является её границей. Реальную границу характеризует горизонт частиц, который учитывает расширение Вселенной. Радиус горизонта частиц примерно в три раза больше горизонта сферы Хаббла. Он равен фактическому расстоянию, который преодолел самый далёкий объект, успевший испустить свет до наблюдателя. Горизонт событий несколько отличен от горизонта частиц. Он отсеивает от нас те события в нашей Вселенной, о которых мы не узнаем никогда.
Его радиус на несколько миллиардов световых лет больше радиуса сферы Хаббла. Все эти три параметра непосредственно зависят от самого наблюдателя. В этом и состоит одно из отличий горизонта событий чёрной дыры от горизонта событий Вселенной. То есть, горизонт событий чёрной дыры не зависит от местоположения различных наблюдателей. Напротив, каждый наблюдатель, в зависимости от своего местоположения, будет видеть границу Вселенной по-своему. Это похоже на то, как будет различаться горизонт с разных точек поверхности планеты. Горизонт Риндлера Горизонт событий также существует для наблюдателя, который находится в состоянии релятивистски равноускоренного движения. Такое тело будут сопровождать два горизонта, которые во многом схожи с горизонтом чёрных дыр. К примеру, этот горизонт будет также обладать излучением, аналогичному излучению испаряющихся чёрных дыр. Этот горизонт также называется горизонтом Риндлера.
Он назван в честь его первооткрывателя Вольфганта Риндлера, который, к слову, придумал сам термин «горизонт событий». Видимый горизонт Черная дыра в представлении художника Итак, теперь мы имеем представление о том, каким видит горизонт событий современная наука. Казалось бы, каким образом Стивен Хоккинг решил опровергнуть его существование. На самом деле новая гипотеза создана, чтобы разрешить некоторые противоречия, связанные с чёрными дырами.
Из-за этого излучение от таких звезд исходит, как свет от маяка, и наблюдателями на Земле считывается как мерцание отдельных импульсов. Несмотря на то, что пульсаров нет в радиусе примерно 25 парсеков от ядра галактики, до недавнего времени это ученых не слишком смущало: многие просто считали, что пока нет техники, способной их обнаружить, ведь как и все нейтронные звезды, пульсары по размерам сравнимы с небольшим городом на Земле, хоть и обладают массой больше, чем у Солнца. По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться.
Они, как считается, образуются в двойных звездных системах. Если одна, более массивная, звезда в процессе сверхновой отталкивает более мелкого компаньона и остается одна, она со временем теряет материал, замедляется и в конце концов не излучает сигнал, по которому ее можно было бы обнаружить. Но разве могут все системы в центре галактики быть двойными и все - пойти по одному пути развития? Черная дыра «на обед» Фото: Shutterstock.
Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом?
То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. Скрипя зубами от натуги, вы продолжаете движение по спирали.
При длине орбиты 25 тыс. Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления.
Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета.
В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру. Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле». Но почему же робот R3D3 оказался столь стойким к действию приливных сил?
Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши. Его высота, помнится, равнялась 10 см и, стало быть, приливная сила, действующая на него, была, соответственно, гораздо слабее. Но затем вы приходите к неутешительному выводу: даже проткнув горизонт, R3D3 должен был продолжать падать в область со все возрастающими приливными силами. Вы вспоминаете, что еще в 1965 г.
Пенроуз использовал законы ОТО Эйнштейна для доказательства того, что такая сингулярность «проживает» внутри любой черной дыры, а в 1969 г. Лившицем, И. Халатниковым и В. Это были «золотые годы» теоретических исследований черных дыр.
Но одна ключевая особенность их поведения ускользнула тогда от физиков, они лишь догадывались о ней. И только гораздо позже, в 2013 г. Чтобы изучить сингулярность, наблюдатель не только вынужден погибнуть — ему даже не удастся накопленный столь дорогой ценой опыт передать обратно, во внешнюю часть Вселенной. Не желая платить столь высокую цену за личное знакомство с сингулярностью, вы решаете ограничиться исследованием окрестностей черных дыр.
К счастью, вы припоминаете что большое разнообразие явлений может наблюдаться и снаружи от черной дыры, в непосредственной близости от ее горизонта. Вы решаете изучить эти явления в первую очередь и сообщить о результатах своих исследований на Землю, во Всемирное географическое общество. Черная дыра Гадес обладает слишком большими приливными силами, которые не позволяют приблизиться к ее горизонту, но, согласно законам Эйнштейна, величина приливных сил вблизи горизонта обратно пропорциональна квадрату массы черной дыры. Для черной дыры с массой в 100 тыс.
Иными словами, такая дыра должна быть весьма «комфортабельной» — никаких болевых ощущений. Достижим ли горизонт? Итак, вы начинаете строить планы следующего этапа путешествия: визит к ближайшей черной дыре с массой 100 тыс. Mслн из атласа черных дыр Уиткомба,— к черной дыре, расположенной в центре нашей Галактики — Млечного Пути.
Ваш план полета предполагает создание такой тяги ракетных двигателей, которая обеспечивала бы ускорение всего в 1 g, так что вы и ваша команда будете ощущать внутри звездолета силу притяжения, равную земной. Вы разгонитесь по направлению к центру Галактики в течение половины пути, а вторую половину будете замедлять движение с отрицательным ускорением —1 g. Все путешествие длиной 30 100 св. Вы предупреждаете Всемирное географическое общество, что следующее сообщение от вас прийдет из окрестностей галактического центра, после того как вы исследуете находящуюся там черную дыру с массой в 100 тыс.
Члены общества должны пребывать в анабиозе около 60 211 лет, если они хотят дождаться повторного сообщения 30 103 года, пока вы доберетесь до центра Галактики, и 30 108 лет, пока сообщение достигнет Земли. К сожалению, это так. Гораздо приятнее Вселенная в фантастических фильмах, где звездолеты переносят путешественников через галактики за времена, непродолжительные с любой точки зрения. Действительно, в 60-е годы XX в.
Но более пристальное изучение физических законов привело к заключению, что ни одно из таких путешествий не реализуемо. Самое большее, на что вы можете рассчитывать,— это путешествовать сравнительно недолго по своим часам, но чрезвычайно долго с точки зрения землян. Через 20 лет 7 месяцев ваш звездолет тормозит в центральной части Млечного Пути. Именно здесь, как подтверждают ваши датчики, находится чудовищная черная дыра, всасывающая под свой горизонт смесь газа и звездной пыли.
Вы переводите звездолет на тщательно выбранную круговую орбиту над горизонтом черной дыры. Измеряя длину и период своей орбиты и подставляя результаты в формулы Ньютона — Кеплера, вы определяете массу черной дыры. Mслн в точном соответствии с характеристиками, приведенными в атласе черных дыр Уиткомба. Основываясь на безвихревом характере падения газа и пыли, вы заключаете, что у дыры отсутствует заметный момент количества движения.
Это подсказывает вам, что ее горизонт имеет форму сферы с длиной большой окружности 1 млн 850 тыс. Детально изучив с помощью приборов падение газа в дыру, вы готовитесь к спуску в окрестности ее горизонта: организуете лазерную связь между спускаемыми аппаратами и компьютером звездолета, после чего выводите спускаемый аппарат из отсека звездолета и постепенно замедляете его, переводя на спиральную орбиту, приближающуюся к горизонту. Все происходит в соответствии с вашими ожиданиями, до тех пор пока вы не достигли орбиты длиной 5 млн 500 тыс. Здесь возникают пугающие перемены!
Плавное управление двигателями вместо плавного изменения вашей орбиты приводит к губительному падению по направлению к горизонту. В панике вы разворачиваете аппарат и, резко форсируя двигатели, вновь поднимаетесь на орбиту длиной больше 5 млн 500 тыс. Но этот закон нарушается вблизи горизонта черной дыры и должен быть заменен законами ОТО Эйнштейна. А законы Эйнштейна предсказывают внезапное изменение круговых орбит там, где вы это испытали,— на орбите, длина которой втрое больше длины горизонта.
Ниже все орбиты неустойчивы, как карандаш, поставленный на острие. Ничтожный импульс, переданный падающим газом или вызванный неправильным направлением тяги ракетных двигателей, приведет к падению спускаемого аппарата к горизонту; аналогично, такой же импульс, направленный не к дыре, а от нее, приведет к временному нырку назад, к орбите длиной, втрое превышающей длину горизонта, а затем — снова к стремительному падению к горизонту. Любой другой путь невозможен, пока вы не добьетесь тщательнейшей коррекции на случай таких нырков, детально проработав программу управления ракетными двигателями спускаемого аппарата. Вам, человеку, вручную немыслимо столь аккуратно управлять двигателями, но это могу проделать я.
Если хотите, я сохраню устойчивость орбиты спускаемого аппарата с помощью коррекции тяги, в то время как вы будете управлять спуском, меняя режим двигателей более грубо». Тем не менее вы принимаете предложение бортового компьютера, который затем объясняет, что неустойчивость — вовсе не единственная особенность вашей орбиты, появляющаяся при длине, втрое превышающей длину горизонта. Возникает также необходимость изменить направление тяги ваших ракетных двигателей. До сих пор, желая приблизиться по спирали к горизонту, вы были вынуждены, включая двигатели, разворачивать аппарат носом назад.
Теперь, внутри сферы с длиной большой окружности, втрое превышающей длину горизонта, вы сможете приближаться к горизонту, лишь если при включении двигателей развернете аппарат носом вперед. Последовательно уменьшающиеся орбиты будут требовать все больших моментов количества движения и больших значений орбитальной скорости. Итак, с помощью компьютера вы по спирали приближаетесь к горизонту, переходя от орбиты с длиной, превышающей длину горизонта в 3 раза, к орбите, длиннее горизонта в 2,5 раза, затем в 2; 1,6; 1,55; 1,51; 1,505; 1,501 раза... О, разочарование!
По мере того как ваша скорость приближается к скорости света, длина вашей орбиты приближается к величине, в 1,5 раза превышающей длину горизонта. Добраться до самого горизонта этим методом нет никаких надежд. Снова вы обращаетесь за помощью к компьютеру и снова он утешает вас, объясняя, что внутри сферы с длиной большой окружности, превышающей длину горизонта в 1,5 раза, вообще не может быть круговой орбиты. Силы притяжения там настолько сильны, что не могут компенсироваться центростремительными силами, даже если скорость движения по орбите равна скорости света.
Если вы хотите еще приблизиться к горизонту, вы вынуждены компенсировать силу притяжения силой тяги ваших ракетных двигателей. Получив это предостережении вы советуетесь с компьютером, как реализовать подобную компенсацию. Объясняете, что хотели бы приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта, где рассчитываете исследовать большинство эффектов, связанных с его влиянием, и откуда вы еще в состоянии выбраться. Но если вы удержите свой аппарат с помощью ракетных двигателей на такой орбите, какие ускоряющие силы вы будете ощущать?
Глубоко обескураженный, вы включаете тягу и по спирали возвращаетесь обратно в чрево звездолета. После продолжительного отдыха, пятичасовых расчетов с использованием формул ОТО для черных дыр и трехчасового изучения атласа черных дыр Уиткомба вы, наконец, составляете план следующего этапа путешествия. Затем передаете во Всемирное географическое общество оптимистически полагая, что оно все еще существует отчет о своем исследовании черной дыры с массой 100 тыс. Mслн, а в конце излагаете ваш план.
Расчеты показывают, что чем больше черная дыра, тем меньшая сила тяги ракетных двигателей необходима, чтобы удержать вас на орбите длиной 1,0001 длины горизонта. Ближайшая такая дыра под названием Гаргантюа находится далеко за пределами области размерами в 100 тыс. Черная дыра находится возле квазара 8C 2975, отстоящего на 1,2 млрд св. Вы решаете отправиться к ней.
Используя укоренив 1 g на первой половине пути и такое же замедление на второй половине, вы затратите на путешествие 1,2 млрд лет по земным часам, но всего лишь 39 лет и 11 месяцев — по вашим. Если члены Всемирного географического общества не желают рисковать и на 2,4 млрд лет погрузиться в анабиоз, они будут вынуждены отказаться от приема вашего следующего сообщения. Гаргантюа И вот через 39 лет и 11 месяцев ваш звездолет тормозит в окрестностях Гаргантюа.
Отличие от «процесса Пенроуза» заключается в том, что для образования частиц с отрицательной энергией требуется диссипация энергии магнитного поля, а у Пенроуза роль играла только инерция частиц. Что говорит о черных дырах наука Многие видели черные дыры в кино и, может, что-то даже о них читали, но мало кто хорошо разбирается в том, как они устроены и работают. Немного расскажем об этом. Черная дыра — это область пространства-времени, сила гравитации в которой настолько велика, что покинуть ее не могут никакие объекты или волны в том числе свет, а значит, увидеть саму черную дыру невозможно. Существование черной дыры подтверждает только тот факт, что какое-то количество небесных тел кружится вокруг невидимой зоны.
Черная дыра изнутри не пуста, она заполнена огромной массой материи, сжатой в небольшом объеме, что и создает огромную силу притяжения. Вокруг черной дыры располагается область — горизонт событий, то есть «точка невозврата», после пересечения которой вырваться из гравитационной ловушки уже невозможно. Также вокруг черной дыры располагается еще и аккреционный диск — большая масса притягивает вещество, которое разогревается до огромных температур миллионы или даже триллионы Кельвинов. Черные дыры могут быть разных размеров — от маленьких до сверхмассивных. Первая фотография черный дыры галактика Мessier 87 Фотография черной дыры — это изображение вещества, движущегося вокруг черной дыры. В центре возникает темная область, поскольку там находится черная дыра, из которой не может исходить свет. Разглядеть черноту внутри яркой области удалось всего один раз. Поскольку один телескоп не может запечатлеть такое изображение, для этого потребовалось несколько устройств, разбросанных почти по всей планете.
Каждый луч несет камере собственное изображение звезды. Эти два изображения, как их видит камера, показаны на вставке на рисунке 8. Я обвел их красными кружками, чтобы отличить их от всех остальных звезд, видимых камерой.
Заметьте, что правое изображение намного ближе к тени дыры, чем левое. Это потому, что его изогнутый луч прошел ближе к горизонту событий дыры. Сверху: Искривленное пространство невращающейся черной дыры на виде из балка и два луча света, движущиеся в искривленном пространстве от звезды к камере.
Снизу: Преломленный гравитационной линзой звездный рисунок, видимый камерой. Можете распознать какие-нибудь пары? Тень черной дыры на картинке состоит из направлений, из которых ни один луч не может прийти в камеру; посмотрите на треугольную зону, подписанную "тень" англ.
Все лучи, которые "хотят быть" в тени, ловит и глотает черная дыра. По мере движения камеры вправо по орбите рисунок 8. На этом рисунке выделены две отдельные звезды.
Одна обведена красным та же звезда обведена на рисунке 8. Другая - внутри желтого маркера. Мы видим два изображения каждой звезды: одно снаружи розовой окружности, другое внутри.
Розовая окружность называется "кольцо Эйнштейна". По мере движения камеры вправо изображения движутся вдоль красной и желтой кривых. Изображения звезд снаружи кольца Эйнштейна давайте назовем их первичными изображениями движутся так, как и можно было бы ожидать: плавно слева направо, но отклоняясь от черной дыры по мере движения.
Можете объяснить, почему отклонение происходит от дыры, а не к ней? Изменение звездного узора, видимого камерой по мере ее движения вправо по орбите на рисунке 8. Это можно понять, вернувшись к верхней картинке на рисунке 8.
Правый луч проходит рядом с черной дырой, так что правое изображение звезды находится рядом с ее тенью. В более ранний момент времени, когда камера находилась левее, правому лучу приходилось проходить еще ближе к черной дыре, чтобы изогнуться сильнее и добраться до камеры, так что правое изображение было совсем близко к краю тени. В противоположность этому, в более ранний момент времени левый луч проходил довольно далеко от дыры, так что был почти прямым и создавал изображение довольно далеко от тени.
Теперь, если вы готовы, вдумайтесь в последующее движение изображений, запечатленное на рисунке 8. Линза Быстро Вращающейся Черной Дыры: Гаргантюа Пространственный вихрь, создаваемый быстрым вращением Гаргантюа, меняет гравитационную линзу. Звездные узоры на рисунке 8.
В случае Гаргантюа струение рисунок 8. Снаружи от внешнего кольца звезды струятся вправо например, вдоль двух красных кривых , как и в случае невращающейся черной дыры на рисунке 8. Однако пространственный вихрь сосредоточил струящийся поток в узкие высокоскоростные полосы вдоль заднего края тени дыры, резковато изгибающиеся у экватора.
Вихрь также создал турбуленции в струении замкнутые красные кривые. Вторичное изображение каждой звезды видно между двумя кольцами Эйнштейна. Каждое вторичное изображение обращается по замкнутой кривой например, по двум желтым кривым , и обращается оно в направлении, противоположном красному струящемуся движению снаружи от внешнего кольца.
Рисунок звездного струения, каким его видит камера рядом с быстро вращающейся черной дырой вроде Гаргантюа. В этой модели команды по визуальным эффектам Double Negative дыра вращается со скоростью 99,9 процентов от максимально возможной, а камера находится на круговой экваториальной орбите с окружностью вшестеро больше окружности горизонта. Есть две совсем особые звезды в небе Гаргантюа с выключенной гравитационной линзой.
Одна лежит точно над северным полюсом Гаргантюа, другая - точно под ее южным полюсом.
Для проверки своих расчетов чешские ученые обратились к Миллеру из «Интерстеллара». В картине планета Миллер вращается вокруг сверхмассивной черной дыры Гаргантюа массой 100 миллионов солнц, удаленной от Земли на 10 миллиардов световых лет. Радиус дыры сравним с радиусом орбиты Земли вокруг Солнца, а окружающий ее аккреционный диск простирался бы далеко за орбиту Марса.
Из-за сильного гравитационного поля черной дыры один час, проведенный на поверхности планеты Миллер, оказывается равен семи годам на Земле, то есть время на ней течет в 60 тысяч раз медленнее, чем на Голубой планете. Энергия фотона пропорциональна его частоте, которая увеличивается в такое же число раз, в какое замедляется время. На роль жидкости в нем подходит алюминий, а не вода. Условия на Миллере были бы лучше, если бы планета располагалась дальше от Гаргантюа и замедление времени на ней не было бы таким сильным.
С выводами чехов согласен Лоуренс Краусс из Университета штата Аризона, а Леб подчеркивает, что его теория о холодном солнце и горячем небе для поддержания жизни не противоречит науке, но на практике представляется малоосуществимой. Что ждет землян, когда Солнце закончит существование и станет белым карликом? Спустя сто триллионов лет яркие звезды умрут, и во Вселенной останутся только черные дыры.