В 1916 году Нильс Бор возвращается в Данию, и уже на следующий год его избирают членом Датского королевского общества.
Исследование Нильса Бора: теоретик и создатель современной физики
Возможно, при определенных обстоятельствах например, если бы Гитлер не ввязался бы в войну с Советским Союзом Германия смогла бы с помощью концентрации ресурсов всей Европы, лежащей у ее ног, в течение нескольких лет подойти к созданию ядерной бомбы. Другой вопрос, насколько реальным был продолжительный мир с СССР и сколь трезво оценивали потенциал «уранового проекта» в высшем руководстве Третьего рейха. В конце концов, среди историков, изучавших проблему, сложилось три точки зрения на причины немецкого атомного провала. Послевоенные статьи и выступления Вернера Гейзенберга и его соратников настойчиво проталкивали мысль о пассивном саботаже учеными своей работы. Мол, германские физики понимали, чем грозит их успех человечеству, поэтому сознательно тормозили свою работу. В общем-то, в такой позиции ничего удивительного нет. Многие из непосредственных участников создания ядерного оружия в США или в СССР после Хиросимы и Нагасаки, холодной войны, «Карибского кризиса» стали убежденными противниками своих разработок и жалели о своем в них участии. Даже Эйнштейн переживал о том письме 1939 года Рузвельту, во многом инициировавшем включение США в атомную гонку: «Мое участие в создании ядерной бомбы состояло в одном-единственном поступке. Я подписал письмо президенту Рузвельту, в котором подчеркивал необходимость проведения в крупных масштабах экспериментов по изучению возможности создания ядерной бомбы.
Я полностью отдавал себе отчет в том, какую опасность для человечества означает успех этого мероприятия. Однако вероятность того, что над той же самой проблемой с надеждой на успех могла работать и нацистская Германия, заставила меня решиться на этот шаг. Я не имел другого выбора, хотя я всегда был убежденным пацифистом». Американские солдаты на немецком ядерном реакторе. Другая группа экспертов уверена, что неудачи нацистов были вызваны некомпетентностью немцев, изгнанием из рейха ученых-евреев, выбором в качестве замедлителя реакции тяжелой воды, а не графита, другими научными ошибками, в основе которых лежит принципиальная невозможность успешного творчества ученого в условиях тоталитаризма. Определенное рациональное зерно есть и в таком мнении. Гейзенберг и его команда, другие исследовательские группы, работавшие параллельно, действительно немало ошибались, но в этом и заключается экспериментальная наука. А аргумент про влияние степени тоталитарности режима на успешность решения поставленных научных задач и вовсе не выдерживает критики, как показывает уже опыт XXI века в Северной Корее.
Вернер Гейзенберг и Нильс Бор. Наиболее вероятной является третья причина. Третий рейх просто не мог себе позволить ядерное оружие. Крайнее напряжение немецкой экономики, особенно после начала войны на Восточном фронте, недостаток ресурсов, а со временем и концентрация их остатков на эфемерном, но казавшемся более эффективным «оружии возмездия», чудесном «вундерваффе», которое сможет в последний момент переломить ход войны, не оставили проекту Гейзенберга ни малейшего шанса. Нацисты, фюрер, увлекавшие публику, а с ней и самих себя фантазиями о чудо-оружии, баллистических ракетах Фау-2, межконтинентальных бомбардировщиках, реактивных самолетах и прочих разработках, в которых они действительно были пионерами, не поняли одного. Единственным настоящим чудо-оружием, которое могло спасти уже безнадежно проигранную войну, для них могла стать только атомная бомба. Невосполнимые потери миллионов человек, прежде всего гражданского населения, заставили бы союзников пойти на мир, и это могло спасти гитлеровский режим. Но при этом создание атомной бомбы было для немцев абсолютной фантастикой.
Даже американцы в условиях практически неограниченного финансирования смогли ее сделать только тогда, когда Вторая мировая была уже фактически закончена. Справиться быстрее, чем это сделали в США, нацисты никак не могли, а значит, они были так или иначе обречены. Читайте также:.
За свои открытия и исследования в 1922 году Бор получил Нобелевскую премию. Бор является создателем квантовой теории атома водорода, в которой доказывает, что электрон вращается по определенным квантовым орбитам. В 1916 году Нильс Бор возвращается в Данию, и уже на следующий год его избирают членом Датского королевского общества. В 1939 году Бор становится президентом Датского королевского общества. До последних дней Нильс не прекращал исследования, внося вклад в развитие науки.
Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения. По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома. На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории. В 1900 г. Макс Планк выдвинул предположение, что электромагнитное излучение, испускаемое горячим веществом, идет не сплошным потоком, а вполне определенными дискретными порциями энергии.
Назвав в 1905 г. Применяя новую квантовую теорию к проблеме строения атома , Бор предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца. Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента например, нагретого газа, состоящего из атомов водорода проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия то есть каждая отдельная длина волны соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией.
Бор вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны. Теория Бора, опубликованная в 1913 г. Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете — пост, который Бор занимал с 1914 по 1916 г. В 1916 г. В 1920 г. Под его руководством институт сыграл ведущую роль в развитии квантовой механики математическое описание волновых и корпускулярных аспектов материи и энергии. В течение 20-х гг.
Тем не менее атом Бора сыграл существенную роль моста между миром атомной структуры и миром квантовой теории.
Бору к тому моменту не исполнилось 27 лет, а он уже получил доктора наук в Копенгагенском университете, а также успел поработать с именитым ученым-физиком Томпсоном в Кембридже, правда, сотрудничество вышло неудачным. Томпсон был велик, но слегка зашорен: молодой ученый сходу сделал английскому гуру физики несколько замечаний и указал на ошибку в вычислениях. Закончилось тем, что Бор вскоре уехал от Томпсона в Манчестер к новому знакомому Резерфорду. Резерфорда все читатели, надеюсь, помнят по планетарной модели атома из курса школьной физики.
Именно общение с учителем и, впоследствии, другом Резерфордом и привело к появлению теории атомов. Прошло всего 3 месяца со дня переезда в Манчестер, и когда кто-то из студентов просил Резерфорда объяснить, как устроен атом, тот отвечал: «Спросите у Бора». В 1922 году датскому ученому была присуждена Нобелевская премия по физике. Альберт Эйнштейн писал о модели Бора: Было так, точно из-под ног ушла земля, и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы человеку с гениальной интуицией и тонким чутьем — Бору — найти главнейшие законы спектральных линий и электронных оболочек атомов… Это кажется мне чудом и теперь.
Это — наивысшая музыкальность в области мысли. Граждане Дании соотечественника-лауреата чествовали как ненормальные, тот же продолжал трудиться над теоретическими выкладками еще много последующих лет. Главным же своим научным достижением Бор считал принцип соответствия, который стал одной из основ методологии современной науки. Хотя, конечно, наследие гения гораздо шире. Фигура Бора вызывала мой интерес давно.
Во многом, потому что он был не только великим физиком, но и гуманистом, а также философом. Во времена подъема Рейха ряд ученых во имя науки начали работать над развитием ядерной физики и созданием оружия массового поражения нового поколения — атомной бомбы. Бор, спасаясь от нацистов в разгар Второй мировой, хоть и был вынужден некоторое время сотрудничать по аналогичным проектам в США, все-таки выражал категоричную позицию и говорил об атомной угрозе с политиками на самом высоком уровне, вплоть до Рузвельта. Особенно после того, как прогремели Хиросима и Нагасаки, а ядерные испытания проводились по всему миру чуть ли не «на заднем дворе» и в США в том числе. В 1950 году Бор написал открытое послание в ООН и выразил обеспокоенность продолжающейся огромными темпами милитаризацией атома, а также разобщением ученых.
Как мы знаем, это не сильно помогло. За дружбу с Петром Капицей Бора считали шпионом, холодную войну остановить было уже никак невозможно, но позиция ученого достойна уважения. Бор был уникальным по научным и коммуникативным способностям человеком.
Откройте свой Мир!
Нильс Бор на знаменитой конференции по теоретической физике в Вашингтоне 26 января 1939 года сообщил об открытии деления урана. Нильса Бора уже на студенческой скамье считали гением, но в противоположность этому титулу карьера его развивалась удивительно гладко. Нильс Хе́нрик Дави́д Бор — датский физик-теоретик и общественный деятель, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1922). создатель квантовой физики, которую многие предлагали назвать теорией дополнительности. На это Нильс Бор, сторонник квантовой механики, ответил ему: «Эйнштейн, перестань указывать Богу, что он должен делать со своими игральными костями!». Нильс Бор применил квантовую теорию Макса Планка к модели Резерфорда и создал свою знаменитую модель атома.
Нильс Бор: гений, который не боялся называть себя дураком
Его соплеменники очень гордились тем, что Нильс Бор сделал такой большой вклад в развитие физики. Нильс Бор, которому Фриш сообщил об этом, в первый момент потерял дар речи. Нильс Бор с женой Маргарет, 30-е годыВ год празднования столетия теории атома, с которой, как принято считать, началась квантовая механика, мне довелось. К концу 1930-х ученые из многих стран мира, включая Нильса Бора, Энрико Ферми, Ирен Кюри и ее мужа Фредерика Жолио, находились на пороге эпохального достижения, но первыми все равно стали немцы. Книжно-иллюстративная выставка «Лауреат Нобелевской премии по физике Нильс Хенрик Давид Бор (1885–1962)». Получивший известность в качестве основоположника квантовой теории, Нильс Бор глубоко погружался не только в науку, но также в религию и философию.
Так рождалась квантовая физика. Hильс Бор в Институте физических проблем Академии наук СССР
Этот принцип некоторые учёные считали настолько важным, что даже предлагали всю квантовую механику называть в его честь, проведя аналогию с теорией относительности Эйнштейна. В 1930-х годах Бор чрезвычайно увлёкся темой ядерной физики. Настолько, что весь его институт полностью изменил направление своих разработок. В 1936 году сформулировал процесс ядерной реакции, Через несколько лет он доказал, что у различных микроэлементов ядра делятся по-разному, в зависимости от того, какие нейтроны вызывают этот процесс. Вторая мировая и ядерное оружие Когда в Германии ко власти пришёл Гитлер, многие учёные бежали из страны.
Вместе с братом Бор помогал им обустроиться в Копенгагене. Под угрозой оказался и сам физик, ведь его мать имела еврейские корни. Но он решил оставаться в городе до последнего и защищать свой институт. В 1941 у него состоялась встреча с Вернером Гейзенбергом, этот физик в то время сотрудничал в нацистской Германией по вопросам разработки ядерного оружия.
Но Бор помогать не согласился. В 1943 они вместе с сыном бежали в США, где до конца войны жили под другими именами и разрабатывали атомную бомбу. Уже работая над проектом, он осознал опасность такого оружия, поэтому написал не одно письмо Черчиллю и Рузвельту, чтобы те с осторожностью относились к атомной энергии. Разработкой Бора заинтересовалась и другая сторона — СССР, его даже приглашали приехать туда для обмена опытом, что в США расценили как попытку шпионажа.
Последние годы физик провёл, выступая с лекциями и в написании философских статей. Своё самое важное, как он считал, открытие — принцип дополнительности, он хотел применить в различных сферах: биологии, психологии и культуре. Умер в возрасте 77 лет от сердечного приступа. Прах Бора находится в Копенгагене в семейной могиле.
Интересные факты Бор очень часто вступал в дискуссии с Эйнштейном. Часто они заканчивались на повышенных тонах, тем не менее оба считали друг друга близкими друзьями. С 1965 года Копенгагенский институт теоретической физики носит название «институт Нильса Бора».
Бор переехал в Манчестер на несколько месяцев в начале 1912 г. Он вывел много следствий из ядерной модели атома , предложенной Резерфордом, которая не получила еще широкого признания. В дискуссиях с Резерфордом и другими учеными Бор отрабатывал идеи, которые привели его к созданию своей собственной модели строения атома. Летом 1912 г.
Бор вернулся в Копенгаген и стал ассистент-профессором Копенгагенского университета. В этом же году он женился на Маргрет Норлунд. У них было шесть сыновей, один из которых, Oгe Бор, также стал известным физиком. В течение следующих двух лет Бор продолжал работать над проблемами, возникающими в связи с ядерной моделью атома. Резерфорд предположил в 1911 г. Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения.
По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома. На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории. В 1900 г. Макс Планк выдвинул предположение, что электромагнитное излучение, испускаемое горячим веществом, идет не сплошным потоком, а вполне определенными дискретными порциями энергии. Назвав в 1905 г.
Применяя новую квантовую теорию к проблеме строения атома , Бор предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца. Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента например, нагретого газа, состоящего из атомов водорода проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия то есть каждая отдельная длина волны соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией.
В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [24]. Дальнейшее развитие теории. Принцип соответствия 1916—1923 [ ] Летом 1916 Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете.
В апреле 1917 он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою теорию, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [26]. Начиная с 1918 , принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [27]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …«принцип соответствия», согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 Вернер Гейзенберг при построении своей матричной механики [29].
В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки [29]. В 1921 — 1923 в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева , представив схему заполнения электронных орбит оболочек, согласно современной терминологии [30]. Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 нового элемента гафния Дирком Костером и Георгом Хевеши , работавшими в то время в Копенгагене [31]. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию , а не к редкоземельным элементам, как думали ранее [32]. В 1922 Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома» [33]. В своей лекции «О строении атомов» [34] , прочитанной в Стокгольме 11 декабря 1922 , Бор подвёл итоги десятилетней работы. Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира.
Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия простейшей двухэлектронной системе , которой они занимались с 1916. Бор отчётливо понимал ограниченность существующих подходов так называемой «старой квантовой теории» и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему. Принцип дополнительности 1924—1930 [ ] Альберт Эйнштейн и Нильс Бор. Брюссель 1930 Новой теорией стала квантовая механика , которая была создана в 1925 — 1927 годах в работах Вернера Гейзенберга , Эрвина Шрёдингера , Макса Борна, Поля Дирака [35]. Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий ибо использование классической терминологии уже не было правомерным , то есть дать интерпретацию её формализма. Именно над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор. Итогом стала концепция дополнительности, которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927 [36].
Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [37] , что вылилось в совместную с Крамерсом и Джоном Слэтером статью, в которой было сделано неожиданное предположении о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер. Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ганса Гейгера [38]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 во время отпуска в Норвегии [39] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [40]. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса [41].
Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики [42] и анализа процесса измерения [43] характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата, импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором. Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности [44]. Через месяц после конгресса в Комо, на пятом Сольвеевском конгрессе в Брюсселе , начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики [45]. Спор продолжился в 1930 на шестом конгрессе, а затем возобновился с новой силой в 1935 после появления известной работы [46] Эйнштейна, Подольского и Розена о полноте квантовой механики. Дискуссии не прекращались до самой смерти Эйнштейна [47] , порой принимая ожесточённый характер.
Исполнительный совет фонда состоял из пяти участников, выбранных непосредственно из Датской королевской академии наук. В наше время она всё ещё действует по тем же принципам.
Отец Бора Кристиан, физиолог, был частью группы учёных, работающих на Датскую королевскую академию наук. Они встречались каждый вечер в доме Бора, чтобы обсудить свои исследования. Одним из участников был физик Кристиан Кристиансен, который позже контролировал молодого Нильса Бора во время его исследований в Копенгагенском университете. Он был членом исполнительного совета Фонда "Carlsberg" и помог Нильсу получить после защиты докторской диссертации его начальное финансирование исследований, базирующихся в Кембридже и Манчестере, Англия. Когда он преподавал в College of Advanced Technology в Дании, его зарплаты было недостаточно, чтобы сводить концы с концами, поэтому Фонд решил выручить нуждающегося учёного. На веб-сайте Фонда указано: "Бор получал финансирование из Фонда "Carlsberg" каждый год с момента его назначения преподавателем в 1916 году.
Нобелевские лауреаты: Нильс Бор. Физик и футболист
Нильс Бор прожил 77 лет и умер от сердечного приступа в 1962 году. Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам. Нильс Бор прожил 77 лет и умер от сердечного приступа в 1962 году. В этот день, 26 января 1939 года, известный датский физик Нильс Бор, выступая на конференции по теоретической физике в Вашингтоне, рассказал об открытии деления урана. В данном разделе вы найдете много статей и новостей по теме «Нильс Бор». Нильс Бор писал, что этому открытию он обязан сну.