Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука частота. Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Звуковой барьер в аэродинамике — название ряда технических трудностей, вызванных явлениями, сопровождающими движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её. На что разбивается непрерывная звуковая волна. Непрерывная звуковая волна разбивается на отдельные маленькие.".
Основные понятия
Но следует помнить, что для улучшения этого звука в телефонии применяются приборы, напоминающие синтезаторы речи и вокодеры. О вокодерах, также доступна эта статья Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек режим "стерео". Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно легко оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука 16 битов, 24 000 измерений в секунду.
Звуковые редакторы Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной визуальной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью компьютерной мыши. Кроме того, можно накладывать, перехлёстывать звуковые дорожки друг на друга микшировать звуки и применять различные акустические эффекты эхо, воспроизведение в обратном направлении и др.
Звуковые редакторы позволяют изменять качество цифрового звука и объём конечного звукового файла путём изменения частоты дискретизации и глубины кодирования.
Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб. При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.
Поскольку именно модель RGB соответствовала основному механизму формирования цветного изображения на экране, большинство графических файлов хранят изображение именно в этой кодировке. Если же используется другая модель, например в JPEG , то приходится при выводе информации на экран преобразовывать данные. Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой. Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т.
Для этого звуковая волна разбивается на отдельные временные участки. Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание.
Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно — с образованием ударной волны. Интенсивность этих ударных волн невелика — перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация. Это явление получило название волнового кризиса. Крыло в близком к звуковому потоке.
Крыло в сверхзвуковом потоке. У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад, в результате чего нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса — попав в него, было невозможно выйти из пикирования, не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость.
В то же время, реактивные Мессершмитт Me. Самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, поэтому на практике не применяются. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности — треугольное в плане крыло с ромбовидным или треугольным профилем.
Рекомендации для безопасных околозвуковых и сверхзвуковых полётов сводятся к следующему: на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта ; переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса. Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды.
Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации — это количество измерений громкости звука за одну секунду. Временная дискретизация звукового сигнала А t — амплитуда, t — время Частота дискретизации измеряется в герцах Гц и килогерцах кГц. Частота дискретизации, равная 100 Гц, означает, что за одну секунду проводилось 100 измерений громкости звука. Качество звукозаписи зависит не только от частоты дискретизации, но также и от глубины кодирования звука.
Глубина кодирования звука или разрешение — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. В результате измерений звукового сигнала см. Пусть под запись одного результата измерения громкости в памяти компьютера отведено n бит. Вы знаете, что это позволяет закодировать ровно 2n разных результатов измерений. Поэтому весь диапазон, в котором могут находиться результаты измерений громкости звука, можно разбить на 256 разных поддиапазонов — уровней громкости звука, каждому из которых присвоить свой уникальный код. После этого каждый имеющийся результат измерений громкости звука можно соотнести с некоторым поддиапазоном, в который он попадает, и кодировать его номером кодом соответствующего уровня громкости. В зависимости от ситуации на практике используются разные значения частоты дискретизации и глубины кодирования табл.
Презентация, доклад на тему Кодирование звука для 10 класса
Отличия аналогового звука от цифрового / Хабр | Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. |
Дискретизация звука | В звуковой аппаратуре звук представляется либо непрерывным электрическим сигналом, либо набором цифр (нулей и единиц). |
Что включает в себя процесс оцифровки звука? | Для этого звуковая волна разбивается на отдельные временные участки. |
Непрерывная волна | Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. |
Звук - теория, часть 1
Аудиоадаптер звуковая плата - устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно из числового кода в электрические колебания при воспроизведении звука. Характеристики аудиоадаптера: частота дискретизации и разрядность регистра. Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно.
Дальше по профилю эта скорость снижается и в какой-то момент опять становится дозвуковой. Но, как мы уже говорили выше, быстро затормозиться сверзвуковое течение не может, поэтому неизбежно возникновение скачка уплотнения. Такие скачки появляются на разных участках обтекаемых поверхностей, и первоначально они достаточно слабы, но количество их может быть велико, и с ростом общей скорости потока увеличиваются зоны сверхзвука, скачки «крепнут» и сдвигаются к задней кромке профиля.
Позже такие же скачки уплотнения появляются на нижней поверхности профиля. Далее с ростом скорости размер сверхзвуковых зон все увеличиваются и в конечном итоге весь профиль полностью попадает в зону сверхзвукового обтекания. Самолет переходит на сверхзвук. Полное сверхзвуковое обтекание профиля крыла. Чем все это чревато? А вот чем.
Это сопротивление растет за счет резкого увеличения одной из его составляющих — волнового сопротивления. Того самого, которое мы ранее при рассмотрении полетов на дозвуковых скоростях во внимание не принимали. Для образования многочисленных скачков уплотнения или ударных волн при торможении сверхзвукового потока, как я уже говорил выше, тратится энергия, и берется она из кинетической энергии движения летательного аппарата. То есть самолет элементарно тормозится и очень ощутимо! Это и есть волновое сопротивление. Более того, скачки уплотнения из-за резкого торможения потока в них, способствуют отрыву пограничного слоя после себя и превращения его из ламинарного в турбулентный.
Это еще более увеличивает аэродинамическое сопротивление. Отекание профиля при различных числах М. Скачки уплотнения, местные зоны сверхзвука, турбулентные зоны. Из-за появления местных сверхзвуковых зон на профиле крыла и дальнейшем их сдвиге к хвостовой части профиля с увеличением скорости потока и, тем самым, изменения картины распределения давления на профиле, точка приложения аэродинамических сил центр давления тоже смещается к задней кромке. В результате появляется пикирующий момент относительно центра масс самолета, заставляющий его опустить нос. Во что все это выливается… Из-за довольно резкого роста аэродинамического сопротивления самолету требуется ощутимый запас мощности двигателя для преодоления зоны трансзвука и выхода на, так сказать, настоящий сверхзвук.
Резкое возрастание аэродинамического сопротивления на трансзвуке волновой кризис за счет роста волнового сопротивления. Сd — коэффициент сопротивления. Из-за возникновения пикирующего момента появляются сложности в управлении по тангажу. Кроме того из-за неупорядоченности и неравномерности процессов, связанных с возникновением местных сверхзвуковых зон со скачками уплотнения тоже затрудняется управление. Например по крену, из-за разных процессов на левой и правой плоскостях. Да еще плюс возникновение вибраций, часто довольно сильных из-за местной турбулизации.
Вобщем, полный набор удовольствий, который носит название волновой кризис. Но, правда, все они имеют место имели,конкретное :- при использовании типичных дозвуковых самолетов с толстым профилем прямого крыла с целью достижения сверхзвуковых скоростей. Первоначально, когда еще не было достаточно знаний, и не были всесторонне исследованы процессы выхода на сверхзвук, этот самый набор считался чуть ли не фатально непреодолимым и получил название звуковой барьер или сверхзвуковой барьер, если хотите :-. При попытках преодоления скорости звука на обычных поршневых самолетах было немало трагических случаев. Сильная вибрация порой приводила к разрушениям конструкции. Самолетам не хватало мощности для требуемого разгона.
В горизонтальном полете он был невозможен из-за эффекта запирания воздушного винта, имеющего ту же природу, что и волновой кризис. Поэтому для разгона применяли пикирование. Но оно вполне могло стать фатальным. Появляющийся при волновом кризисе пикирующий момент делал пике затяжным, и из него, иной раз, не было выхода. Ведь для восстановления управления и ликвидации волнового кризиса необходимо было погасить скорость. Но сделать это в пикировании крайне трудно если вообще возможно.
Затягивание в пикирование из горизонтального полета считается одной из главных причин катастрофы в СССР 27 мая 1943 года известного экспериментального истребителя БИ-1 с жидкостным ракетным двигателем. После чего произошло затягивание в пике, из которого самолет не вышел. Экспериментальный истребитель БИ-1. В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера если это требуется :- особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию. Как известно, волновой кризис начинается при числах М, близких к единице.
Поэтому практически все реактивные дозвуковые лайнеры пассажирские, в частности имеют полетное ограничение по числу М. Обычно оно находится в районе 0,8-0,9М. Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация, после чего скорость полета должна быть снижена. Стреловидное крыло.
Аналоговыми источниками являются: винил и аудиокассеты. Преимущества и недостатки аналогового сигнала Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.
Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель лента или винил , устройства считывания, записи и передачи сигнала. Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать. Преимущества и недостатки цифрового сигнала К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии. Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.
Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат. На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.
Если амплитудная шкала разбита на уровни линейно, квантование называют линейным однородным. Точность округления зависит от выбранного количества 2 N уровней квантования, которое, в свою очередь, зависит от количества бит N , отведенных для записи значения амплитуды. Число N называют разрядностью квантования подразумевая количество разрядов, то есть бит, в каждом слове , а полученные в результате округления значений амплитуды числа — отсчетами или семплами от англ. Принимается, что погрешности квантования, являющиеся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными. Этот способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией, ИКМ англ. Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. Стандартный аудио компакт-диск CD-DA , применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44. Другие способы оцифровки [ править править код ] Способ неоднородного квантования предусматривает разбиение амплитудной шкалы на уровни по логарифмическому закону. Такой способ квантования называют логарифмическим квантованием. При использовании логарифмической амплитудной шкалы, в области слабой амплитуды оказывается большее число уровней квантования, чем в области сильной амплитуды при этом, общее число уровней квантования остается таким же, как и в случае однородного квантования. Аналогово-цифровое преобразование, основанное на применении метода неоднородного квантования, называется неоднородной импульсно-кодовой модуляцией — неоднородной ИКМ Nonuniform PCM. Альтернативным способом аналогово-цифрового преобразования является разностная импульсно-кодовая модуляция — разностная ИКМ англ. В полной аналогии с ИКМ, разностная ИКМ может сочетаться с использованием как однородного, так и неоднородного методов квантования. Разностное кодирование имеет много разных вариантов [3]. Аналогово-цифровые преобразователи АЦП [ править править код ] Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями АЦП. Это преобразование включает в себя следующие операции: Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.
Кодирование звуковой информации.
К слову, даже сейчас создание сверхзвукового авиалайнера является большой проблемой для инженеров. Разогнать обычный самолет до сверхзвуковой скорости особых проблем нет, но если он преодолеет сверхзвуковой барьер, потеряет управляемость и не сможет летать устойчиво. То есть, даже если он разгонится до такой скорости, то при ее достижении потерпит крушение. Преодоление сверхзвукового барьера не сопровождается хлопком Чтобы самолеты смогли преодолевать звуковой барьер, были созданы специальные крылья с особым аэродинамическим профилем. Кроме того, инженерам пришлось пойти на ряд других ухищрений, что в итоге обеспечило управляемость машин.
Но никаких звуковых явлений при этом не возникает. Мы подготовили для вас множество интересных, захватывающих материалов посвященных науке. Однако не стоит путать переход на сверхзвуковую скорость с турбулентностью, так как это совершенно разные явления. Подробнее о том, что такое турбулентность , почему она возникает и насколько опасна, мы рассказывали ранее.
Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах Гц. Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Аудиоадаптер звуковая плата - устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно из числового кода в электрические колебания при воспроизведении звука.
Дискретизация — это преобразование аналоговой информации непрерывнго звука в набор дискретных значений, каждому из которых присваивается значение его кода. На графике показана зависимость амплитуды звукового сигнала от времени. A t - амплитуда, t - время.
Слайд 21 Описание слайда: Задание 2 Оценить информационный объём цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука. Слайд 23 Описание слайда: Информационные ресурсы Угринович Н.
Информатика и ИКТ. Базовый курс: Учебник для 9 класса. Лаборатория знаний, 2007.
Основные понятия
Эта волна движется за самолётом в форме буквы V. Нечто подобное вы можете увидеть и при движении морского судна по воде. Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Происходит это на самом деле постоянно, однако люди слышат этот грохот только один раз - когда над ними пролетает «след» от самолёта.
Конус Маха. А коническая поверхность касается фронтов всех звуковых волн, источником которых стал самолет, и которые он «обогнал», выйдя на сверхзвуковую скорость. Кроме того скачки уплотнения могут быть также присоединенными, когда они примыкают к поверхности тела, двигающегося со сверхзвуковой скоростью или же отошедшими, если они с телом не соприкасаются. Виды скачков уплотнения при сверхзвуковом обтекании тел различной формы. Обычно скачки становятся присоединенными, если сверхзвуковой поток обтекает какие-либо остроконечные поверхности. Для самолета это, например, может быть заостренная носовая часть, ПВД, острый край воздухозаборника.
При этом говорят «скачок садится», например, на нос. А отошедший скачок может получиться при обтекании закругленных поверхностей, например, передней закругленной кромки толстого аэродинамического профиля крыла. Различные узлы корпуса летательного аппарата создают в полете довольно сложную систему скачков уплотнения. Однако, наиболее интенсивные из них — два. Один головной на носовой части и второй — хвостовой на элементах хвостового оперения. На некотором расстоянии от летательного аппарата промежуточные скачки либо догоняют головной и сливаются с ним, либо их догоняет хвостовой. В итоге остаются два скачка, которые, вобщем-то, воспринимаются земным наблюдателем как один из-за небольших размеров самолета по сравнению с высотой полета и, соответственно,т небольшим промежутком времени между ними. Интенсивность другими словами энергетика ударной волны скачка уплотнения зависит от различных параметров скорости движения летательного аппарата, его конструктивных особенностей, условий среды и др. По мере удаления от вершины конуса Маха, то есть от самолета, как источника возмущений ударная волна ослабевает, постепенно переходит в обычную звуковую волну и в конечном итоге совсем исчезает.
А от того, какой степени интенсивностью будет обладать скачок уплотнения или ударная волна , достигший земли зависит эффект, который он может там произвести. Ведь не секрет, что всем известный «Конкорд» летал на сверхзвуке только над Атлантикой, а военные сверхзвуковые самолеты выходят на сверхзвук на больших высотах или в районах, где отсутствуют населенные пункты по крайней мере вроде как должны это делать. Эти ограничения очень даже оправданы. Для меня, например, само определение ударная волна ассоциируется со взрывом. И дела, которые достаточно интенсивный скачок уплотнения может наделать, вполне могут ему соответствовать. По крайней мере стекла из окон могут повылетать запросто. Свидетельств этому существует достаточно особенно в истории советской авиации, когда она была достаточно многочисленной и полеты были интенсивными. Но ведь можно наделать дел и похуже. Стоит только полететь пониже … Однако в большинстве своем то, что остается от скачков уплотнения при достижении ими земли уже неопасно.
Просто сторонний наблюдатель на земле может при этом услышать звук, схожий с грохотом или взрывом. Именно с этим фактом связаны одно расхожее и довольно стойкое заблуждение. Люди, не слишком искушенные в авиационной науке, услышав такой звук, говорят, что это самолет преодолел звуковой барьер сверхзвуковой барьер. На самом деле это не так. Это утверждение не имеет ничего общего с действительностью по крайней мере по двум причинам. Ударная волна скачок уплотнения. Во-первых, если человек, находящийся на земле, слышит высоко в небе гулкий грохот, то это означает, всего лишь, повторяюсь :- что его ушей достиг фронт ударной волны или скачок уплотнения от летящего где-то самолета. Этот самолет уже летит на сверхзвуковой скорости, а не только что перешел на нее. И если этот же человек смог бы вдруг оказаться в нескольких километрах впереди по следованию самолета, то он опять бы услышал тот же звук от того же самолета, потому что попал бы под действие той же ударной волны, движущейся вместе с самолетом.
Она перемещается со сверхзвуковой скоростью, и по сему приближается бесшумно. А уже после того, как она окажет свое не всегда приятное воздействие на барабанные перепонки хорошо, когда только на них :- и благополучно пройдет дальше, становится слышен гул работающих двигателей. Язык, к сожалению, немецкий, но схема вобщем понятна. Более того сам переход на сверхзвук не сопровождается никакими единовременными «бумами», хлопками, взрывами и т. На современном сверхзвуковом самолете летчик о таком переходе чаще всего узнает только по показанию приборов. При этом происходит, однако, некий процесс, но он при соблюдении определенных правил пилотирования ему практически не заметен. Но и это еще не все. Скажу больше. Звуковой барьер в виде именно какого-то ощутимого, тяжелого, труднопересекаемого препятствия, в который самолет упирается и который нужно «прокалывать» слышал я и такие суждения :- не существует.
Строго говоря, вообще никакого барьера нет. Когда-то на заре освоения больших скоростей в авиации это понятие сформировалось скорее как психологическое убеждение о трудности перехода на сверхзвуковую скорость и полете на ней. Появились даже высказывания о том, что это вообще невозможно, тем более, что предпосылки к такого рода убеждениям и высказываниям были вполне конкретные. Однако, обо всем по порядку… В аэродинамике существует другой термин, который достаточно точно описывает процесс взаимодействия с воздушным потоком тела, движущегося в этом потоке и стремящегося перейти на сверхзвук. Это волновой кризис. Именно он как раз и делает некоторые нехорошие вещи, которые традиционно ассоциируют с понятием звуковой барьер. Итак кое-что о кризисе. Любой летательный аппарат состоит из частей, обтекание которых воздушным потоком в полете может быть не одинаково.
На графике это выглядит как замена гладкой кривой на последовательность «ступенек» рис. Временная дискретизация звука Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. Чем большее количество измерений производится за I секунду чем больше частота дискретизации , тем точнее «лесенка» цифрового звукового сигнала повторяет кривую диалогового сигнала. Частота дискретизации звука — это количество измерений громкости звука за одну секунду. Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Глубина кодирования звука. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука. Глубина кодирования звука — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему — 1111111111111111. Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки режим «моно». Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек режим «стерео». Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука 16 битов, 24 000 измерений в секунду. Последнее изменение: Tuesday, 11 November 2014, 12:57 Как это влияет на изображение?
Измеряется в битах bit. Звуковая информация хранится в виде значений амплитуды, взятых в определенные моменты времени т. Для оцифровки звука используются специальные устройства: аналого-цифровой преобразователь АЦП и цифро-аналоговый преобразователь ЦАП. Для того чтобы записать звук на какой-нибудь носитель, его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн.
Информатика. 10 класс
Гц и глубине кодирования 16 бит. Они позволяют изменять качество звука и объем звукового файла. Оцифрованный звук можно сохранять без сжатия в универсальном формате wav или в формате со сжатием mp 3. Гц Звук «живой» и оцифрованный Задачи 1.
Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 к. Задачи 2.
Качество компьютерного звука определяется характеристиками аудиоадаптера: частотой дискретизации и разрядностью. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Таким образом, непрерывная зависимость амплитуды сигнала от времени A t заменяется на дискретную последовательность уровней громкости.
Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание. Временная дискретизация звука Таким образом, непрерывная зависимость амплитуды сигнала от времени A t заменяется на дискретную последовательность уровней громкости. Процесс разбиения сигнала на отдельные составляющие, взятые в определенные тактовые моменты времени t0, t1, t2, …, tn через четко определенные тактовые интервалы времени, называется дискретизацией. Частота дискретизации — количества измерений уровня громкости звука в единицу времени. Частоту дискретизации принято измерять в кГц килогерцах : 1 кГц — это 1000 измерений в секунду. Чем большее количество измерений производится за I секунду чем больше частота дискретизации , тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.
Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.
Такие эксперименты проводились крайне редко, так как они смертельно опасны для самого самолета и летчика. Не каждый реактивный самолет способен и рассчитан, на то, чтобы разогнаться до сверхзвуковой скорости на малой высоте. Поэтому о длительном полете на сверхзвуковой скорости у поверхности земли никто и не мечтает. Но при советской власти, ученые и инженеры всерьез ставили перед собой задачу, создания такого сверхзвукового разрушителя. Проект подобного военного самолета M-25 успешно разрабатывался и назывался в узком кругу «адский косильщик». Жаль, но данный проект так и не был реализован. M-25 адский косильщик M-25 адский косильщик Тем не менее, даже сейчас военные самолеты, обладающие мощной силовой установкой, могут кратковременно, «наделать шума» в боевых порядках противника. Но однозначно, такой боевой прием, очень опасен для летчика и сложно выполним на практике, так как разогнать самолет на сверхзвуке и управлять им на малой высоте, это не только искусство пилотирования, но и огромное везение и риск для пилота.
Фактически максимального воздействия можно долбится именно в момент преодоления звукового барьера когда скорость самолета равна 1 Мах.
Принимается, что погрешности квантования, являющиеся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными. Этот способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией, ИКМ англ. Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. Стандартный аудио компакт-диск CD-DA , применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44. Другие способы оцифровки [ править править код ] Способ неоднородного квантования предусматривает разбиение амплитудной шкалы на уровни по логарифмическому закону. Такой способ квантования называют логарифмическим квантованием. При использовании логарифмической амплитудной шкалы, в области слабой амплитуды оказывается большее число уровней квантования, чем в области сильной амплитуды при этом, общее число уровней квантования остается таким же, как и в случае однородного квантования.
Аналогово-цифровое преобразование, основанное на применении метода неоднородного квантования, называется неоднородной импульсно-кодовой модуляцией — неоднородной ИКМ Nonuniform PCM. Альтернативным способом аналогово-цифрового преобразования является разностная импульсно-кодовая модуляция — разностная ИКМ англ. В полной аналогии с ИКМ, разностная ИКМ может сочетаться с использованием как однородного, так и неоднородного методов квантования. Разностное кодирование имеет много разных вариантов [3]. Аналогово-цифровые преобразователи АЦП [ править править код ] Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями АЦП. Это преобразование включает в себя следующие операции: Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения.
Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.
Ударной звуковой волной по бармалеям.
Пилот в кабине никаких звуков не слышит – о преодолении звукового барьера он узнает только по специальным датчикам. Звуковая волна Амплитуду звуковых колебаний называют звуковым давлением или силой звука. Составляющие непрерывной звуковой волны Непрерывная звуковая волна может быть разбита на несколько составляющих, которые определяют основные характеристики звука. Причина заключается в том, что звуковая волна является настолько длинной, что ей нужно 1/20 секунды, чтобы достичь Вашего уха.
Что включает в себя процесс оцифровки звука?
Периодические звуковые сигналы воспроизводят постоянный звук, повторяя форму волны снова и снова, и так до бесконечности. Составляющие непрерывной звуковой волны Непрерывная звуковая волна может быть разбита на несколько составляющих, которые определяют основные характеристики звука. В звуковой аппаратуре звук представляется либо непрерывным электрическим сигналом, либо набором цифр (нулей и единиц).
Что такое временная дискретизация звука определение
4 2 Панорамирование | это наибольшая величина звукового давления при сгущениях и разряжениях. |
Кодирование звуковой информации. - информатика, презентации | это чередование уплотнений и разряжений воздуха, т. е. волна, отделяющаяся от непрерывно от самолета. |
Физика 9 класс. §33 Отражение звука. Звуковой резонанс | Подобно звуковым волнам, они распространяются в среде (воде), но свойства их гораздо сложнее, потому что скорость их зависит от длины волны. |
Дифракция и дисперсия света. Не путать! | Фазовое разложение является одним из важных процессов в изучении и анализе звуковой волны. |
Кодирование звуковой информации.
Слайд 5 Непрерывная звуковая волна разбивается на отдельные маленькие временные. Временная дискретизация звука • Непрерывная звуковая волна разбивается на. Временная дискретизация звука • Непрерывная звуковая волна разбивается на.