На самом деле, сам «Дзен» исторически очень активно использовал алгоритмы искусственного интеллекта – например, для поиска и блокировки материалов, «не соответствующих правилам публикации». Технологии искусственного интеллекта (ИИ) стремительно развиваются. Гонка за искусственным интеллектом, которому сегодня приписывают мыслимые и немыслимые возможности процветания, переходит в ажиотаж. доступны поисковые возможности Яндекса и искусственного разума, а конкретно компьютерное зрение и технология обработки естественного языка.
В Smart Engines узнали как повысить эффективность работы нейросетей
На выходе также получаются числа. Внутри этого «ящика» происходят сложные математические вычисления, цель которых — поиск общего между входящими и выходящими числами. Данные, вне зависимости от формата, в цифровой среде представлены в виде цифр, будь то видео, фото, текст, звук. Задача сводится к тому, чтобы представить информацию в виде чисел, а искусственный интеллект должен вывести два числа — 0 и 1. В процессе обучения нейронных сетей загружается огромное количество данных, и в «чёрном ящике» посредством формул происходит автоматический перебор параметров до тех пор, пока не будут обнаружены максимальные совпадения данных. Термин «искусственный интеллект» начал активно распространяться с того момента, как компьютер обыграл человека в логической игре Го, во что практически никто не верил, поскольку для победы нужна интуиция, которая вроде как машине не присуща. Но важно понимать, что ИИ работает на наборе формул и на сложных алгоритмах, которые находят закономерности в совершенно любых данных. Так, в устройство современных нейронных сетей интегрированы триллионы параметров. Вопросы и ответы В каких областях искусственный интеллект может быть опасен? Он может быть опасен в любых отраслях. Его функция — размножение чьего-либо решения, автоматизация процессов с полным принятием машиных решений.
ИИ обучается на результатах деятельности человека. Соответственно, в областях, где критична человеческая ошибка, будет критична и ошибка машины. Сейчас многие студенты хотят стать стажёрами в компании «Яндекс». Чего вы ждёте от своих стажёров? На стажировку в «Яндекс» попасть непросто — компания тщательно отбирает кандидатов на любые должности. При этом принять большое количество стажёров и вовсе нереально, поскольку за каждым новичком закрепляется наставник. Стажёры в «Яндексе» по направлению искусственного интеллекта и нейронных сетей решают крайне сложные задачи. Такой подход позволяет привить ответственность и быстро набраться опыта. Были ли какие-то стажеры, которые сразу попадали на работу в «Яндекс»? Хороший пример: студент 4-го курса пришёл в компанию стажёром, а уже через пару лет внедрил нейронные сети в работу «Яндекса».
Как компания взаимодействует с университетами? Многие сотрудники преподают в университетах. Также существуют совместные программы с вузами. Вы отвечаете за практическую часть на базе искусственного интеллекта.
На конкретных примерах рассмотрели, какие задачи способен выполнить искусственный интеллект, а какие нет. Вместе с экспертом мы также попрактиковались в составлении запросов нейросети, в том числе связанных с системами ЖАТ. Отдельная часть встречи была посвящена кейсам и областям применения технологий искусственного интеллекта в повседневной жизни дома и на работе.
Действия человека всегда связаны с последствиями для него лично. Если он ошибётся, ему это каким-либо образом аукнется. Мы осознаём, что всякая ошибка имеет свою цену, а если что-то прошло мимо сознания, подключается подсознание — человеку просто не хочется что-то делать, как говорится, «душа не лежит».
Или наоборот: значимость последствий работает как стимулятор. Человек мобилизуется, включает внимание, уделяет задаче больше времени, тратит больше сил и энергии. Так или иначе, риск ошибки отражается на нашей деятельности, и в итоге получается, что чем больше риск, тем менее вероятна ошибка.
У искусственного интеллекта нет шкуры, на которой он мог бы почувствовать последствия своих решений. Компьютерная система — не субъект. Программисты пытаются создать эмуляцию сознания, закладывая в систему аналоги потребностей, чувств, интуиции и обучая компьютер уходить от жёсткой детерминированности.
Но всё это, в сущности, — не более чем имитация. Искусственный интеллект способен симулировать личность, но никогда ею не будет, поскольку осознание себя не является результатом вычисления. А это значит, что фактор риска компьютерная система будет обрабатывать иначе, чем человек.
Не обладая сознанием опасности, программный комплекс способен учитывать лишь те риски, которые уже распознаны и определены. Между тем, в реальной жизни каждая новая ситуация может иметь новые, не встречавшиеся прежде последствия. Эта область неизвестного в программных расчётах не учитывается, и потому любой программный комплекс, каким бы надежным он ни казался, работая в области определённого знания, по определению уязвим: достаточно возникновения неожиданных обстоятельств относящихся к новому, не встречавшемуся ранее классу , и система ошибётся.
Возникновение таких ошибок не зависит от степени угрозы: система равновероятно пропустит и «копеечный» укол и разрушительный удар, если они последуют из «слепой» зоны. Когда ответственность лежит на человеке, это означает, что он стремится обеспечить результат, невзирая на обстоятельства. Иными словами, предполагается, что человек управляет результатом своих действий.
Он может ставить цели, добиваться их достижения или менять их, если цена их достижения покажется ему слишком высокой. При этом само собой предполагается, что жизнь может подкинуть любые сюрпризы. Если мы перекладываем решение на компьютер, то надо понимать, что он не может управлять результатом.
И цели, и критерии действий ему задаёт человек. Поэтому применение искусственного интеллекта, без сомнения повышающее эффективность обработки тех прикладных задач, к решению которых он предназначен, обязательно накапливает проблемы, скажем так, метауровня, которые искусственный интеллект распознать просто не в состоянии.
И единственный способ решить эту задачу достаточно точно, это использовать опыт Яндекса в области искусственного интеллекта. К счастью, будущее не предопределено и все в наших руках. Но а если серьезно, то наработки в области ИИ уже сейчас помогают нам решать сложные задачи. Способность машины читать, видеть и, что наиболее важно, понимать смысл открывает большие перспективы. Когда мы говорим о рекомендациях, то подразумеваем себе материалы, которые были бы достаточно близки по своему смысловому наполнению к образцам пользователя. Иными словами, машина должна прочитать два текста и сделать вывод: близки ли они по смыслу или нет. Ровно это мы и учимся делать. Специально обученная нейронная сеть преобразует текст в вектор, в котором заключен смысл текста.
Два текста могут быть написаны с использованием разных слов и даже на разных языках, но смысл у них будет один. Сравнивая эти векторы, мы можем с определенной вероятностью предсказать интерес человека к новому материалу. Кстати, если векторы почти совпадают, то это уже говорит о смысловом дубликате рерайт текста или разные статьи об одном и том же событии , с которыми мы боремся в ленте. Другой подход к NLP, над которым работает команда Дзена, это автоматическое присвоение меток для любого текста. Так и здесь. Классификация публикаций с помощью меток помогает повысить точность итоговых рекомендаций. Работа с компьютерным зрением в целом похожа на NLP. Только вместо чтения текста машина учится «смотреть» и понимать смысл изображения. Помимо прямого применения в рекомендациях у компьютерного зрения есть и другие задачи в Дзене. Например, миниатюры картинок далеко не всегда удобно масштабируются, и их приходится обрезать, а компьютерное зрение помогает находить на картинках людей и спасает их от судьбы Нэда Старка из «Игры престолов».
Компьютерное зрение применяется и для нахождение текста на картинках. Некоторые сайты любят дублировать заголовок в виде изображения. В ленте это смотрится далеко не так красиво, поэтому подобные картинки выявляются и не используются в качестве миниатюр. Существует еще такое труднообъяснимое понятие, как «качество» картинки. Машина учится выбирать на сайте те изображения, которые больше нравятся людям, и использует их в качестве все тех же миниатюр. SVD Выше я рассказал вам о подходе к построению рекомендаций, который основан на фильтрации по содержимому объектов. Теперь пришло время вспомнить о коллаборативной фильтрации. В основе этого подхода лежит идея, что похожим людям нравятся похожие объекты. В этом случае вам не нужно знать свойства рекомендуемых объектов, достаточно собрать статистику о том, насколько они соответствуют интересам пользователей. На примере фильмов это может выглядеть так: Опираясь на уже известные оценки, можно выявить закономерности в поведении разных людей и попробовать предсказать реакцию на новый фильм.
На математическом уровне для применения коллаборативной фильтрации придуманы разные алгоритмы, о которых в свое время на Хабре хорошо рассказал мой коллега Михаил Ройзнер. В случае с Дзеном мы используем коллаборативную фильтрацию а точнее алгоритм SVD для предсказания интереса человека к определенному сайту в целом. Точность итоговых рекомендаций напрямую зависит от количества и разнообразия исходных данных, поэтому в качестве факторов используются и многие другие наши знания. Например, знания Яндекса о конкретном сайте или странице, информация о том, как человек использует Дзен, его обратная связь в виде кликов, «больше такого» и «меньше такого». Общее количество отдельных факторов, которые мы закладываем в систему рекомендаций, исчисляется тысячами.
Информация
- AI что значит
- Другие новости
- «Искусственный интеллект vs Человек». Мир будущего обсудили в Научном кафе
- Все свое, родное
- Три типа искусственного интеллекта
- Опубликован диалог с «разумным» ИИ Google LaMDA, который называет себя человеком
Google тестирует специализированный ИИ, способный писать новости
Получилось весьма недурно, результат можете оценить на фотографии ниже План написания весьма простой, идею статьи скармливаем на английском языке ChatGPT, а получившийся результат переводим с помощью DeepL. Также просим ChatGPT придумать заголовок к этой статье и повторяем манипуляцию с переводом. После мы по контексту составляем описание для изображений и скармливаем их Stable Diffusion. Вот и всё!
В финансовой сфере благодаря внедрению ИИ существенно сократилось время рассмотрения заявки на кредит. С момента отправки анкеты в банк до получения ответа проходит не несколько дней, а несколько минут. ИИ прогнозирует загрузку банкоматов, сколько денег внесут, а сколько снимут, что впоследствии уменьшает расходы на инкассацию. Государство стимулирует ИИ В сентябре 2022 года при правительстве России заработал Национальный центр развития искусственного интеллекта.
Кроме того, Центр будет регулярно проводить мониторинг ключевых показателей развития ИИ, а также экспертизу официальных документов в области национального регулирования сферы. В январе 2023 года стало известно, что правительство до 2030 года направит около 24,6 млрд руб. К 2024 году, согласно утвержденной властями дорожной карте «Развитие высокотехнологичного направления «Искусственный интеллект» ИИ на период до 2030 года», объем рынка технологий на базе ИИ в России составит 14 млрд руб. Кроме того, Минэкономразвития России планирует в текущем году перезапустить ряд программ федерального проекта «Искусственный интеллект».
В частности, запланирован отбор исследовательских центров для решения прикладных задач в сфере ИИ. Ритейлер X5 Group в феврале объявил о создании решения для моментального обнаружения и анализа сбоев в ИТ-инфраструктуре на базе ИИ. Например, система увидит сбой в работе кассы в магазине, увидит проблемы с системой планирования поставок, что позволит специалистам вовремя разрешить ситуацию. В будущем эта единая система мониторинга, построенная на интеллектуальной платформе MONQ, улучшит качество цифровых сервисов и оптимизирует затраты на обслуживание ИТ.
Россия вступила в уникальный период с точки зрения развития инновационных технологий, полагает руководитель практики «Машинное обучение и искусственный интеллект» компании Axenix экс-Accenture Алексей Сергеев. С одной стороны, на отрасль давит экономический кризис.
Тем не менее работы над искусственным интеллектом и алгоритмами обучения нейронных сетей активно ведутся, а сами системы уже вовсю применяются в различных направлениях науки, промышленности, в медицине и, конечно же, индустрии развлечений. Но как работает ИИ? Каково устройство искусственного интеллекта? Какие методы обучения нейронных сетей используются сегодня? Об этом Российскому обществу «Знание» рассказал Александр Крайнов, директор по развитию технологий искусственного интеллекта компании «Яндекс». На выходе также получаются числа. Внутри этого «ящика» происходят сложные математические вычисления, цель которых — поиск общего между входящими и выходящими числами. Данные, вне зависимости от формата, в цифровой среде представлены в виде цифр, будь то видео, фото, текст, звук. Задача сводится к тому, чтобы представить информацию в виде чисел, а искусственный интеллект должен вывести два числа — 0 и 1. В процессе обучения нейронных сетей загружается огромное количество данных, и в «чёрном ящике» посредством формул происходит автоматический перебор параметров до тех пор, пока не будут обнаружены максимальные совпадения данных. Термин «искусственный интеллект» начал активно распространяться с того момента, как компьютер обыграл человека в логической игре Го, во что практически никто не верил, поскольку для победы нужна интуиция, которая вроде как машине не присуща. Но важно понимать, что ИИ работает на наборе формул и на сложных алгоритмах, которые находят закономерности в совершенно любых данных. Так, в устройство современных нейронных сетей интегрированы триллионы параметров. Вопросы и ответы В каких областях искусственный интеллект может быть опасен? Он может быть опасен в любых отраслях. Его функция — размножение чьего-либо решения, автоматизация процессов с полным принятием машиных решений. ИИ обучается на результатах деятельности человека. Соответственно, в областях, где критична человеческая ошибка, будет критична и ошибка машины. Сейчас многие студенты хотят стать стажёрами в компании «Яндекс». Чего вы ждёте от своих стажёров? На стажировку в «Яндекс» попасть непросто — компания тщательно отбирает кандидатов на любые должности. При этом принять большое количество стажёров и вовсе нереально, поскольку за каждым новичком закрепляется наставник. Стажёры в «Яндексе» по направлению искусственного интеллекта и нейронных сетей решают крайне сложные задачи. Такой подход позволяет привить ответственность и быстро набраться опыта. Были ли какие-то стажеры, которые сразу попадали на работу в «Яндекс»?
Доступна она далеко не всем. Дорогое удовольствие. Придется приобрести технику, способную реагировать на команды робота, смартфона хозяина или того же бота: оборудование, регулирующее температуру воздуха в квартире, стиральную машину, пылесос и пр. К примеру, ругается с ботом. Иногда человек даже не знает, что его судьбу решил ИИ. Такое происходит, когда гражданин обращается в банк за кредитом. Искусственный интеллект на скоростях проверяет информацию о потенциальном клиенте, выясняет размер его доходов, кредитную историю, высчитывает риски для банка и дает свое заключение: давать деньги или нет. И если давать, то на каких условиях. Вокзалы, аэропорты и пр.
Искусственный интеллект в медицине: как это работает? Реальные примеры
Но пока время пополнять коллекцию глупостей. Кукольный домик в каждую семью Alexa, цифровой помощник от Amazon — настоящий кладезь смешных историй. Когда девайс, обслуживающий ваше жилище, слегка себе на уме, повседневная рутина никогда не будет скучной. Дело было так. Шестилетняя девочка из американского Сан-Диего попросила умную колонку заказать ей печенье и кукольный домик. Alexa не отказала, и вскоре пришла неожиданная для семьи посылка. Мама малышки, конечно, удивилась, но все же оставила домик, который оказался размером чуть ли не с ее дочь. Эту забавную историю подхватили СМИ. Сюжет об отзывчивой колонке вышел на местном телевидении. Во время обсуждения ведущая полностью повторила фразу маленькой героини выпуска, то есть буквально сказала: «Alexa, закажи мне кукольный домик». И что вы думаете?
Домашние ИИ всех семей, у которых была включена эта программа, дружно принялись исполнять поручение! Азиат с «закрытыми глазами» Житель Новой Зеландии Ричард Ли десять раз безуспешно пытался сделать документ на официальном государственном сайте, однако его заявка каждый раз отклонялась из-за фотографии. Все из-за того, что система распознавания лиц упорно считала , что у молодого человека азиатского происхождения на снимке закрыты глаза. Лицо автобуса Еще один забавный случай с системой распознавания лиц произошел в Китае. ИИ, использующийся для поимки нарушителей ПДД, слегка переборщил с бдительностью. Технология обвинила знаменитую бизнесвумен Дун Минчжу в том, что она переходила дорогу в неположенном месте. Загвоздка в том, что ее физически не было в том районе. Позже выяснилось, что виновником инцидента стал простой автобус. На транспортном средстве была изображена фотография женщины. И, разумеется, она злостно игнорировала красный свет для пешеходов.
А все потому, что в довольно невинном на первый взгляд тесте ИИ совершенно забыли про людей. Боты, которым дали задание отрабатывать диалог на основе компромисса, даже слишком хорошо поняли друг друга. Изначально их разговор выглядел вполне нормально. Что-то наподобие: «Мне нужны мяч и книга», «Мяч необходим и мне, но я могу отдать книги», «Несколько книг? Их поощряли за скорость, с которой удалось достигнуть согласия. В какой-то момент беседа перестала выглядеть осмысленной. Вместо полных конструкций боты выдавали странные обрывки фраз.
Результат оценили дизайнер Юлия Алексеева и шеф-повар Андрей Забелин, шеф-повар : «Изучил я меню, оно достаточно хорошее, сбалансированное. Я даже так скажу: очень грамотно составлено, потому что количество продуктов используется мало, оно пересекается». Юлия Алексеева, дизайнер: «Многим покажется, что здесь вообще неуютно, что здесь какой-то погреб. Но здесь все сделано четко по правильной формуле: натуральный кирпич, идеально натуральная сталь. Мне нравится, что роспись небанальная. Я, например, такую же не видела нигде. То есть видно, что это специально рисовали». Фирменное азиатское блюдо придирчивым гостям тоже пришлось по вкусу. Трюфельное масло в сочетании с осьминогом — это необычно. Да и говядина в сочетании с осьминогом тоже. Главный секрет этого места стал известен только в конце. Участие искусственного интеллекта оказалось для экспертов сюрпризом. Юлия Алексеева: «Серьезно? Я не ожидала вообще! Даже немного страшновато становится, скажу честно». Владельцы заведения, правда, не раскрывали, что именно сделал компьютер и в какой степени его выдумки подправляли люди. Для привлечения посетителей упоминание нейросетей сработало не очень: вскоре после съемок кафе закрылось. В Интернете еще обсуждают рецепты, созданные искусственным интеллектом. Кулинарный блогер Софья Тукаева взялась проверить, как нейросеть может преобразить, например, классический десерт тирамису. Сетевой повар предложил добавить к рецепту шоколадный соус и карамелизированный бекон. Софья уверена, что ее собственный необычный вариант тирамису интереснее, он с малиной и маракуйей.
Чтобы найти закономерности в Big Data и решать задачи в маркетинге или применения в производстве например, связь между количеством визитов и заказов , необходимы методики обработки больших массивов данных. Применение алгоритмов машинного обучения помогает справляться с потоком больших данных: обрабатывать их быстрее и точнее. При этом разнообразие Big Data прокачивает алгоритм и способствует развитию разума. В каких областях развивается искусственный интеллект в 2024 году На Всемирном экономическом форуме в Давосе Билл Гейтс указал, что в ближайшие пять лет искусственный интеллект разум изменит мир. Области, которые затронут технологии и интеллектуальные системы Artificial Intelligence: здравоохранение — ИИ облегчит доступ к медицинской информации, решит задачу оценки риска заражения инфекцией, поможет в борьбе с устойчивостью к антибиотикам; образование — применение новых технологий позволит обеспечить практически каждого собственным цифровым учителем; быт — у пользователей появится личный интеллектуальный помощник, который сможет искать информацию на сайтах, делать саммари, создавать презентации, решать задачки и заниматься другой рутинной работой. Искусственный интеллект разум оптимизирует рутинную работу фронтенд- или бэкенд-программиста. Для поиска некоторых типов уязвимостей, расширенной кодогенерации и других задач возможно применение GigaCode technologies. Интеллектуальная система поддерживает более 15 языков программирования. В России над внедрением интеллектуальных систем работают: МВД. К 2025 году ведомство собирается подготовить датасеты для обучения нейросетей «Клон» борьба с подделкой видео и «Конъюнктура» прогноз чрезвычайных ситуаций ; в Подмосковье искусственный разум контролирует качество уборки улиц — компьютерная технология помогла выявить около 2,4 тыс. Бизнес всё чаще приходит с задачами адаптации нейросетей к особенностям профессиональной деятельности. К примеру, нужны интеллектуальные системы, которые дообучены для применения и способны решать задачи в областях: финансов; логистики; биологии. Виртуальный персонал.
На примере электрокардиограммы приведу пример, когда в России активно используются три школы: советская, российская и американская. Они во многом отличаются. Если для человека разница между ними незначительна, то для машины она критическая. Когда наши врачи видят американскую электрокардиограмму перед собой, они даже не знают, как ее трактовать и как категорировать. Для этого существуют инструменты аннотирования, которые позволяют, во-первых, сделать так, чтобы несколько врачей регистрировали одну и ту же единицу исследований, а специалисты, которые работают с данными компании, могли проанализировать и измерить такой параметр, как коэффициент согласия, позволяющий на примере трех и более экспертов верифицировать единицу данных, а уже после производить исследования", - сказал Андрей Бурсов. Он упомянул, что ИИ в медицине начал активно внедряться в 2019 г. Операционный директор ООО "Первый электронный рецепт" Григорий Милешкин сообщил, что региональные врачи за все время выписали более 5 млн электронных рецептов, а в 2024 г. Анна Мещерякова отметила, что представители медицинских программных продуктов ведут работу с персональными данными в закрытом контуре.
Искусственный интеллект на службе у человека: как нейросети упрощают нашу жизнь
Ученые из Института Карнеги (США) разработали алгоритм на основе искусственного интеллекта, способный с высокой точностью отделять современные и ископаемые образцы биогенного происхождения от абиогенных. Всё это выдается за искусственный интеллект и добро пожаловать за новым грантом. Искусственный интеллект спасает человеческий: теперь машина помогает московским врачам находить на снимках МРТ рассеянный склероз. Авторы ежегодного доклада AI Index Report 2023 подчеркивают, что искусственный интеллект вступает в новую фазу развития. [NS]: Мы начали разговор с отличной новости, что «Яндекс» вошел в число мировых лидеров в области развития искусственного интеллекта. В этом посте я рассказал вам о том, как формируется лента персональных рекомендаций в ре, и почему Дзен – это не очередная «лента новостей», а результат работы серьезных технологий. Наработки из области искусственного интеллекта уже сейчас.
Сбер поделится своими наработками в сфере искусственного интеллекта со странами Африки
Формулировка подразумевает, что руководство OpenAI в ходе обсуждения должно определять, какую часть ПО сделать открытой, а какую нет. Илону Маску, по мнению стороны ответчика, также не удастся доказать, что OpenAI не имеет права лицензировать свою технологию сторонним компаниям а именно Microsoft , а также предоставлять им наблюдательное место в совете директоров. Впрочем, промежуточный исход спора двух субъектов может стать понятен уже в середине этой недели, когда состоится судебное заседание. Данный шаг объясняется необходимостью сокращения затрат на фоне ужесточения конкуренции на рынке ИИ со стороны таких компаний, как OpenAI и Mistral. Сотрудники, которых уже коснулось сокращение, в основном занимались операционной деятельностью и были уведомлены о своих увольнениях, сообщил источник ресурсу CNBC на условиях анонимности. Его уход последовал за публикациями СМИ, ставящими под сомнение полномочия гендиректора. В июне 2023 года Forbes сообщил, что Мостак ввёл в заблуждение общественность, в том числе инвесторов, относительно получения степени магистра в Оксфордском университете, а также о характере партнёрства с Amazon. Stability AI охарактеризовала сделку с Amazon как стратегическую, хотя она представляла собой не что иное, как стандартный договор аренды облачной инфраструктуры. Кто из них вышел из схватки победителем, не уточняется, но испытания уже назвали прорывом в средствах ведения воздушного боя. Vista X-62A. Концепция мозаичной войны предполагает слаженные пилотируемые, полуавтоматические и автоматические действия управляемых пилотами и беспилотных воздушных боевых платформ.
Пилоты должны из тактиков стать стратегами, чтобы планировать бой в целом, тогда как беспилотные платформы займутся «чудесами на виражах». Первый бой между ИИ и пилотом состоялся в 2021 году на симуляторе. Машинный интеллект превзошёл опытного лётчика, выиграв у него практически все бои. В качестве пилота боевого истребителя F-16 — в виде испытательной платформы VISTA X-62A — ИИ осуществил первые полёты в начале 2023 года, проведя в воздухе под надзором инструктора в кабине 17 часов. По словам ответственных за программу лиц, ИИ уверенно выстроил как порядок оборонительных манёвров, так и наступательных. Благодаря этому владельцы этих устройств получат быстрый доступ к данному сервису. Источник изображения: Nothing «Благодаря новой интеграции пользователи с новейшей платформой Nothing OS и приложением ChatGPT, установленными на их смартфонах Nothing, смогут общаться с самым популярным в мире потребительским инструментом искусственного интеллекта прямо через наушники Nothing», — сообщила компания в своём официальном блоге. Представитель компании в разговоре с порталом The Verge отметил, что «интеграция ChatGPT в продукты будет проходить постепенно. С 18 апреля поддержку ИИ-бота получит смартфон Phone 2. Через несколько недель такой же поддержкой обзаведутся смартфоны Phone 1 и Phone 2a ».
В блоге компании также сообщается, в новую версию Nothing OS будут добавлены виджеты для запуска ChatGPT, а в меню управления скриншотами и всплывающем окне буфера обмена появилась функция, позволяющая напрямую вставить изображения в запрос для ChatGPT. Чем раньше это сделать, тем выше вероятность выживания пациента. Но часто источник заболевания остаётся неизвестным, а узнают о нём по появлению клеток метастаз в лимфе или других биологических жидкостях человека. Врачи научились распознавать некоторые из них, но привязка клеток метастаз к видам онкологии остаётся непростой задачей, а ИИ — это тот инструмент, который может делать это лучше. Клетка метастаз рака молочной железы. Они взяли за основу 12 типов наиболее распространённой онкологии, которые сопровождаются выбросом раковых клеток в лёгочную жидкость и жидкость брюшной полости, включая рак лёгких, яичников, молочной железы и желудка. Некоторые другие формы рака, в том числе те, которые возникают в предстательной железе и почках, включить в исследование не удалось, поскольку они обычно не сопровождаются выбросом клеток метастаз в биологические жидкости человека. По словам учёных, каждый год из 300 тыс. Против рака нет универсального метода лечения — оно своё для каждого случая, поэтому выживаемость среди больных без диагноза самая низкая. Исследователи обучили свою ИИ-модель примерно на 30 тыс.
Отдельная часть встречи была посвящена кейсам и областям применения технологий искусственного интеллекта в повседневной жизни дома и на работе. Встреча была очень насыщенной и прошла в активном и динамичном режиме. Благодарим нашего спикера за неподдельную увлеченность темой, интересный и содержательный рассказ!
Большинство из нас даже не представляет, насколько глубоко искусственный интеллект уже вошел в нашу жизнь. Что такое искусственный интеллект. Ликбез На современном этапе создание и развитие искусственного интеллекта ИИ связано с попытками в той или иной мере имитировать работу человеческого мозга. У нас в нем немногим меньше 100 млрд нейронов, каждый из которых имеет 7 тыс. Если представить мозг как компьютер стандартной архитектуры, то он оказывается весьма эффективен. Он способен выполнять примерно тысячу триллионов операций в секунду 1 тыс. Самый мощный на сегодня суперкомпьютер HPE Frontier в пике может выдавать 1686 петафлопс, потребляя 21,1 млн ватт. Интеллект — это способность воспринимать информацию и сохранять ее как знание, которое можно применить для адаптивного поведения в среде или контексте. То есть мы наш мозг по различным каналам получаем сигналы из окружающего мира, интерпретируем их и некоторым сложным образом реагируем. Выданных нам природой ресурсов хватает для самосознания, логики, абстрактного мышления, обучения, эмоциональных переживаний, творчества и пр. Система работы участков мозга в ИИ имитируется с применением концепции нейронов и нейронных сетей — математических моделей. Искусственные нейроны представляют собой сформированные в памяти компьютера узлы, содержащие или временно хранящие данные и взаимодействующие с соседями по человеческой схеме. Одной из ключевых особенностей ИИ является способность к самообучению — выдавать требующиеся результаты с учетом ранее накопленного опыта. В нем самообучение реализовано не было. Машина просто перебирала миллиарды возможных комбинаций и останавливалась на одном из них, а у инженеров была возможность в перерывах между партиями совершенствовать алгоритмы, устраняя «баги». ИИ как автор текстов Возможно, текст — самое простое, что может создавать ИИ в областях, которые еще недавно считались исключительно творческими, то есть только человеческими. Уже несколько лет многие мировые средства массовой информации СМИ поручают нейросетям всю черновую работу, а в октябре 2020 г. Она находит ценные истории, которые заслуживают большей рекламы, и соответствующим образом обновляет каждую страницу нашего веб-сайта. Стоит отметить, что за последний год ни один читатель не жаловался и не спрашивал, наполняется ли сайт компьютером». В мае 2022 г. ИИ был предварительно обучен на старых рассказах писателя и фрагментах его интервью. Этот сборник, получивший название «Пытаясь проснуться», авторы называют первым в мире изданным художественным произведением с авторством такого рода.
Осталось самое «простое». Научить машину строить рекомендации. Виды рекомендательных систем В истории рекомендательных технологий хорошо известны два их основных вида: фильтрация по содержимому и коллаборативная фильтрация. Начнем с первого, который основан на сравнении содержимого рекомендуемых объектов. Для примера предлагаю рассмотреть фильмы. Если два фильма относятся к одному и тому же жанру, и пользователь уже высоко оценил один из них, то с определенной вероятностью можно посоветовать ему и второй. И здесь интересно вспомнить онлайн-кинотеатр Netflix, который увеличил количество жанров с нескольких сотен до десятков тысяч , среди которых можно найти даже «Культовые ужастики со злыми детьми». Большая часть из этих жанров скрыта от глаз зрителей и используется только для построения рекомендаций. В нашем случае никаких жанров нет. Чтобы сделать вывод о соответствии веб-страницы интересам человека, нужно сравнить ее контент с известными образцами. Причем заниматься этим должен компьютер, которому нужно не просто прочитать материал, но и понять его смысл. И единственный способ решить эту задачу достаточно точно, это использовать опыт Яндекса в области искусственного интеллекта. К счастью, будущее не предопределено и все в наших руках. Но а если серьезно, то наработки в области ИИ уже сейчас помогают нам решать сложные задачи. Способность машины читать, видеть и, что наиболее важно, понимать смысл открывает большие перспективы. Когда мы говорим о рекомендациях, то подразумеваем себе материалы, которые были бы достаточно близки по своему смысловому наполнению к образцам пользователя. Иными словами, машина должна прочитать два текста и сделать вывод: близки ли они по смыслу или нет. Ровно это мы и учимся делать. Специально обученная нейронная сеть преобразует текст в вектор, в котором заключен смысл текста. Два текста могут быть написаны с использованием разных слов и даже на разных языках, но смысл у них будет один. Сравнивая эти векторы, мы можем с определенной вероятностью предсказать интерес человека к новому материалу. Кстати, если векторы почти совпадают, то это уже говорит о смысловом дубликате рерайт текста или разные статьи об одном и том же событии , с которыми мы боремся в ленте. Другой подход к NLP, над которым работает команда Дзена, это автоматическое присвоение меток для любого текста. Так и здесь. Классификация публикаций с помощью меток помогает повысить точность итоговых рекомендаций. Работа с компьютерным зрением в целом похожа на NLP. Только вместо чтения текста машина учится «смотреть» и понимать смысл изображения. Помимо прямого применения в рекомендациях у компьютерного зрения есть и другие задачи в Дзене. Например, миниатюры картинок далеко не всегда удобно масштабируются, и их приходится обрезать, а компьютерное зрение помогает находить на картинках людей и спасает их от судьбы Нэда Старка из «Игры престолов». Компьютерное зрение применяется и для нахождение текста на картинках. Некоторые сайты любят дублировать заголовок в виде изображения. В ленте это смотрится далеко не так красиво, поэтому подобные картинки выявляются и не используются в качестве миниатюр. Существует еще такое труднообъяснимое понятие, как «качество» картинки.
Мыслит ли искусственный интеллект?
Человечество продолжает испытывать искусственный интеллект на прочность. Запросы от пользователей сети нейросеть визуализирует яркими и запоминающимися артами. Эксперт в области искусственного интеллекта, CEO компании One Green Monkey Отари Меликишвили считает, что большие языковые модели "Яндекса" и Сбера сравнимы по уровню, но будущее не за общими генеративными нейросетями. В ответ компания разрабатывает методы раннего обнаружения мошеннических действий, увеличивает количество команд, работающих над безопасностью ИИ, и экспериментирует с технологиями удостоверения подлинности цифрового контента, такими как C2PA.
Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса»
Все новости о создании, развитии и достижениях в области искусственного интеллекта. "Будущее браузеров и искусственный интеллект. Искусственный интеллект уже обработал более 11 млн исследований и ускорил анализ медицинских изображений в восемь раз. К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события. Как отметил Александр Ведяхин, искусственный интеллект (ИИ) — приоритет в соответствии с национальными планами развития в 21 из 32 стран Африки, которые ответили на соответствующий опрос ЮНЕСКО. В российских медиа хорошим примером сотрудничества журналиста и искусственного интеллекта является сервис «».
Информация
- Ежу понятно
- ChatGPT на Дзене | Пикабу
- Обсуждение (1)
- На что способен искусственный интеллект уже сейчас
- Искусственный интеллект модифицировал медицину | ComNews
Искусственный интеллект заполучил серьезного противника
Документ также упоминает о наличии ИИ-модуля с производительностью 50 TOPS. С тех пор, как представители Дзена сообщили о внедрении нового алгоритма, новостей о появлении какого-то еще искусственного интеллекта от компании не было. Это искусственный интеллект, который в компании называют «персональным помощником журналиста».