Чем меньше площадь опоры тем давление производимое одной и той же. 1)меньше 2)больше. Чем меньше площадь опоры, тем больше давление, оказываемое на опору. Чем больше площадь соприкосновения, колеса с дорогой, тем меньше давление на дорогу(закон физики).
Задание МЭШ
Давление тем меньше площадь.** которую действует сила.И Чем больше сила, тем больше давление. Чем меньше площадь опоры, тем больше давление, оказываемое на опору. Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. Давление зависит от площади поверхности, на которую оказывается больше площадь, тем меньше давлениеЧем меньше площадь, тем большая сила действует на единицу площадиДавление зависит от значения силы, которая действует на поверхность. Чем меньше площадь поверхности, тем больше давление.
ГДЗ учебник по физике 7 класс Перышкин. §36. Упражнение 15. Номер №2
Чем меньше площадь опоры тем давление производимое одной и той же. 2 Чем больше площадь, тем меньше давление." в (PowerPoint). Таким образом, можно сделать вывод, что чем меньше площадь, на которую действует сила, тем больше давление. чем больше площадь опоры,тем меньше давление произвольное одной и той же силой на эту опору. Чем больше площадь поверхности тем меньше давление. то есть чем больше поверхность, тем меньше давление, оказываемое на нее. 1)меньше 2)больше.
Давление в динамике.
Понятно, что кроме того, что давление существует в толще жидкости, жидкость также давит на дно и стенки сосуда. Давление на дно соответствует давлению всего столба жидкости. А вот давление на стенки разное. Оно соответствует давлению жидкости на определенной глубине. Давление жидкости на стенки связано с тем, что жидкость пытается растечься под действием силы тяжести, а стенки сосуда препятствуют этому возникающей в них силой упругости.
Получается, что жидкость и стенки сосуда взаимно давят друг на друга.
Вообще изменение давления от точки к точке в атмосфере или в любом другом газе, находящемся под действием силы тяжести, подчиняется тем же законам, что и давление в жидкости: давление одно и то же во всех точках горизонтальной плоскости; при переходе снизу вверх давление уменьшается на вес столба воздуха, высота которого равна высоте перехода, а площадь поперечного сечения равна единице. Построение графика убывания давления с высотой. В правой части изображены столбики воздуха одинаковой толщины, взятые на разной высоте. Гуще заштрихованы столбики более сжатого воздуха, имеющие большую плотность Однако вследствие большой сжимаемости газов общая картина распределения давления по высоте в атмосфере оказывается совсем другой, чем для жидкостей. В самом деле, построим график убывания давления воздуха с высотой. По оси ординат будем откладывать высоты и т.
Будем подниматься вверх по ступенькам высоты. Чтобы найти давление на следующей ступеньке, нужно из давления на предыдущей ступеньке вычесть вес столба воздуха высоты , равный. Но с увеличением высоты плотность воздуха убывает. Поэтому убыль давления, происходящая при подъеме на следующую ступеньку, будет тем меньше, чем выше расположена ступенька. Таким образом, при подъеме вверх давление будет убывать неравномерно: на малой высоте, где плотность воздуха больше, давление убывает быстро; чем выше, тем меньше плотность воздуха и тем медленнее уменьшается давление. В нашем рассуждении мы считали, что давление во всем слое толщины одно и то же; поэтому мы получили на графике ступенчатую штриховую линию.
Это связано с тем, что сила давления распределяется равномерно по всей площади поверхности. Если площадь увеличивается, то на каждую единицу площади приходится меньшая сила давления.
Но так как общая площадь увеличивается, общая сила давления увеличивается. Таким образом, чем больше площадь поверхности, тем больше сила давления. Это важное свойство силы давления, которое необходимо учитывать при проектировании и использовании гидравлических систем. Примеры силы давления на плоские поверхности Сила давления на плоскую поверхность может быть наглядно проиллюстрирована с помощью нескольких примеров: Пример 1: Давление воды на дно сосуда Представьте себе сосуд, наполненный водой. Вода оказывает давление на дно сосуда. Чем глубже находится точка на дне, тем больше вес воды над ней и, следовательно, тем больше сила давления. Это объясняется тем, что вода находящаяся выше создает дополнительный вес, который давит на нижние слои воды и дно сосуда. Пример 2: Давление воздуха на поверхность тела Воздух оказывает давление на поверхность нашего тела.
Это объясняет ощущение сопротивления, когда мы двигаемся в воде или находимся на большой высоте. Чем выше мы поднимаемся, тем меньше давление воздуха, так как воздух становится менее плотным.
При увеличении объёма газа при той же массе уменьшится его плотность и число ударов молекул о стенки сосуда. Давление уменьшится. Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. При повышении температуры и уменьшении объёма молекулы с большей силой и чаще ударяются о стенки сосуда. Опыт показывает, что давление, производимое на жидкость или газ, передаётся по всем направлениям. Если шар с отверстиями, соединённый с трубкой, внутри которой находится поршень, наполнить водой, а затем нажать на поршень, то можно заметить, что вода брызнет из всех отверстий. При этом струйки вытекающей воды будут примерно одинаковыми.
Это говорит о том, что давление, которое мы создаём, действуя на воду, передаётся водой по всем направлениям одинаково. Тот же эффект можно наблюдать, если шар заполнить дымом. Дым тоже будет передавать производимое на него давление по всем направлениям одинаково. То, что газы и жидкости передают давление по всем направлениям, объясняется подвижностью их молекул. Она проявляется в том, что слои и частицы жидкостей и газов могут свободно перемещаться друг относительно друга но разным направлениям. Благодаря подвижности молекул давление, которое оказывает поршень на ближайший к нему слой, передаётся последующим слоям. Молекулы газа и жидкости движутся хаотически, поэтому и их действие распределяется равномерно по всему объёму шара. Таким образом, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения в каждую точку жидкости или газа. Это утверждение называется законом Паскаля.
Закон Паскаля находит применение в гидравлических машинах. Основной частью любой гидравлической машины являются два соединенных между собой цилиндра разного диаметра. Цилиндры заполнены жидкостью, чаще всего маслом, и в них помещены поршни. Согласно закону Паскаля, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения. Для этого можно, например, положить на поршень груз. Таким образом, гидравлическая машина даёт выигрыш в силе во столько раз, во сколько раз площадь большего поршня больше площади меньшего поршня. Это означает, что с помощью некоторой силы, приложенной к малому поршню гидравлической машины, можно уравновесить существенно большую силу, приложенную к большему поршню. Гидравлическая машина, так же как и любой простой механизм, даёт выигрыш в силе, но не даёт выигрыша в работе. Твёрдые тела производят давление на опору вследствие действия на них силы тяжести.
Поскольку на жидкости тоже действует сила тяжести, то и жидкости оказывают давление на дно сосуда. Это можно доказать экспериментально. Если в трубку, дно которой затянуто плёнкой, налить воду, то плёнка заметно прогнётся. Это происходит потому, что на воду действует сила тяжести, и каждый слой воды давит на слои воды, лежащие ниже, и соответственно на дно сосуда.
Давление в динамике.
потому что распределяется на БОЛЬШУЮ площадь. Чем меньше площадь, тем больше давление, при условии, что сила остается постоянной. Это объясняется тем, что чем больше площадь, тем меньше сила, действующая на определенную единицу площади, то есть давление. То есть, чем больше площадь, по которой распределена сила, тем меньше давление, и наоборот.
Чем больше площадь поверхности тем меньше давление
Таким образом, можно сделать вывод, что чем меньше площадь, на которую действует сила, тем больше давление. Таким образом, чем больше площадь, тем меньше давление, и наоборот. При одной и той же силе давление больше в том случае, когда площадь опоры меньше, и, наоборот, чем больше площадь опоры, тем давление меньше. Там, где она больше, давление выше, и наоборот, если воздуха меньше, то есть он разрежен, давление снижено. Таким образом, физический закон, утверждающий, что чем больше площадь, тем меньше давление, играет важную роль в нашей жизни.
Как площадь влияет на давление: чем больше площадь, тем меньше давление+
Давление тем больше, чем меньше площадь поверхности при одинаковой силе давления. Если давление и площадь известны, то силу давления можно найти по формуле: Единица измерения давлени в СИ — паскаль Па в честь французского ученого Блеза Паскаля. Одна и та же сила давления, приложенная к разным площадям, приводит к разным результатам.
На лыжах или без лыж человек действует на снег с одной и той же силой, равной своему весу. Однако действие этой силы в обоих случаях различно, потому что различна площадь поверхности, на которую давит человек с лыжами и без лыж. Площадь поверхности лыжи почти в 20 раз больше площади подошвы. Поэтому, стоя на лыжах, человек действует на каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз меньшей, чем стоя на снегу без лыж. Значит, результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, перпендикулярно которой она действует.
То есть, он говорит о своём понимании сути и силы трактата, а не о "космическом рычаге" с болтающимся на его конце всесильным механиком.
В Древней Греции составитель или автор хотя бы одного трактата назывался философом, а автор "Книги" из нескольких трактатов - Учителем. Все остальные мыслители именовались учениками. Примеры: известный нам Демокрит - это ученик философа Левкиппа; Аристотель - это Учитель, быть учеником которого считалось почётным даже для Александра Македонского. А вот гениев в науке Древней Греции почему-то не было... Само слово "трактатус" так и переводится: подвергнутый рассмотрению, хотя в наше время правильнее было бы "подвергнутый сомнению и рассмотрению". Очевидно, что речь в трактате идёт о значении для познания вновь открывшихся или по-новому открывшихся фактов и об их месте в логичной картине мира. Об этом же говорят и их простые названия: "О равновесии плоских фигур", "О плавающих телах", "О падении тел", "Об атмосфере и её весе" и т. Даже во времена Великой Инквизиции факты назывались уликами, а лжеученые - предателями улик.
И это очень верно, ведь всё тайное может стать явным только при наличии улик и безупречной логики. Отсюда: подсказки для ответов на все вопросы следует искать у Природы и в лабораториях, а не в научных текстах. Этой формулой познания руководствовался, например, Галилей, о чём он и говорил в своих письмах к Иоганну Кеплеру. А научные теории, основанные на домыслах и умствованиях математиков, Галилей называл "великой глупостью людской" и часто начинал свои письма так: "Посмеёмся, мой Кеплер, великой глупости людской". Теорема в трактате - это шаг или ступень на пути возможного познания тайн Природы. Справедливость первых теорем лемм, гипотез или предположений трактата доказывается очевидной справедливостью последней, логически следуемой из них. Последняя теорема в трактате - это, как правило, и есть и разгаданная тайна, и новая научная истина. Однако в самых ценных трактатах может доказываться справедливость и самих новых и неожиданных для всех аксиом.
Именно о таких аксиомах-догадках или эвриках говорил Архимед, как о точках опоры. Достоинствами или преимуществами хорошего трактата может быть только: простота краткость , ясность здравый смысл и логичность, основанные на фактах или наблюдениях , универсальность максимально возможная широта объясняемых явлений , «предсказательная сила» осознанная применимость в новейших технологиях или в умениях и антинаучность это само собой, ведь научность - это знание без понимания, то есть худший вид невежества; иначе говоря, научность - это то, чего нет в реальном мире, чего никто не понимает, но учёным видится умным. Точно такие же обязательные признаки или критерии хорошего трактата есть и у новой научной истины. Отсюда: есть все пять признаков сразу и в голове светло - значит, есть и хороший трактат, и новая научная истина. Пусть сегодня это будет Трактат «О потоках». Аксиома: "Истина всегда проста; мир запредельно прост". Но вот беда: истинная простота - это как раз то, что впервые даётся познанию людей труднее всего... И уже только поэтому "Самым большим парадоксом является то, что этот мир всё же познаваемый" С.
Мир не может быть сложным по определению, ведь его никто не придумал. Аксиома: "Невесомые вещества - это хаосы". Составное слово "воз-дух" - это у древних славян невидимый и невесомый дух, дающий жизнь, который везде, которого много. Однако сейчас известен лишь один пример невесомого хаоса - это так называемые "неорганизованные плазмы". Самый яркий пример такой плазмы - солнечная корона, оторванная от поверхности самого Солнца. Неорганизованная плазма окружает гиперзвуковую ракету, например, и в каждой точке траектории ракеты существует лишь мгновение. Речь о "плазменном коконе". Неорганизованные плазмы непрозрачны ни для звука, ни для эл.
Аксиома: «Все жидкости и газы на Земле имеют вес тяжесть и находятся под давлением веса собственных и выше расположенных слоёв» Архимед. Это Архимед путём сравнения "плавания малых твёрдых тел в воде и в воздухе" речь о частицах мути и пыли, то есть о взвешенных или броуновских частицах открыл, что у воздуха есть вес; что воздух - это не хаос, а вещество с послойным расположением весомых и малоподвижных равноудалённых частиц. Так что, кристаллы бывают твёрдые, жидкие и... Сейчас в узких кругах продвинутых физиков известно, что даже очень горячие и излучающие свет газы - это преимущественно так называемые "самоорганизованные плазмы", хотя само явление "мгновенной самоорганизации высокотемпературной плазмы, находящейся под давлением" было официально открыто не так давно - в 1986 году на токамаке. Температура и давление таких плазм могут быть очень высокими, а хаотического поступательного движения частиц и "длины свободного пробега частицы" в них нет вообще. Отсюда: температура - это опосредованное мерило интенсивности атомных вибраций, а также величины и частоты тепловых индукционных импульсов; а давление - это показатель напряжения взаимного отталкивания равноудаленных вибрирующих частиц. Так что, кинетическая теория теплоты и давления- это ещё один пример "великой глупости людской" из ваших учебников. Аксиома: «Давление в любой точке водоёма или атмосферы равно напряжению взаимного отталкивания равноудаленных и условно неподвижных вибрирующих частиц, которое равно весу всех частиц, находящихся над данной точкой».
Уберите атмосферное давление, и аквариум с водой словно взорвётся, а вся вода из него разлетится на молекулы. Сила обычного теплового взрыва тоже в суммарном напряжении взаимного отталкивания равноудаленных возбуждённых частиц, а не в кинетической энергии хаотических частиц в пограничном слое. Встречный индуктивный теплообмен между соседними вибрирующими частицами вещества и способность атомов к "безконтактному" движению взаимного отталкивания - это именно то, что существует в природе и буквально убивает МКТ наповал. Тепловизор позволяет нам видеть температуру сравнительно холодных тел, а температуру горячих твердых тел, жидкостей и газов мы можем наблюдать визуально через их свечение. А свет - это что? Это как раз и есть импульсы тепловой индукции определённого диапазона частот, имеющие, как пока говорят, электромагнитную, а не гравитационную природу. Просто о "гравитационном моменте атома" и об атомных синхронностях, проявления которых и есть так называемый эл. Теорема 1: «Любой поток жидкости или газа — естественный или принудительный - всегда движется только в сторону меньшего давления и стремится к расширению, поэтому давление в самом потоке всегда уменьшается и стремится к выравниванию с внешним давлением на него».
Здесь и далее рассматриваются такие потоки, причинность которых нельзя объяснить только силой тяжести, то есть водопады нас не интересуют. Теорема 2: «Чем больший перепад давления мы имеем или создаём, тем больше будет здесь и скорость самого потока». Скорость потока зависит от давления, а не давление в потоке зависит от скорости, как на картинке из ваших учебников вверху. К примеру, очень большая скорость реактивной струи есть результат большого перепада давлений. И ракету толкает не струя, не закон сохранения импульса, а асимметричное давление непрерывного взрыва в асимметричной камере сгорания: вперёд давление давления газов на ракету есть, а взад его нет - там "дырка". Тяга реактивного двигателя равна давлению в камере сгорания, помноженному на площадь критического сечения, плюс давление расширяющегося газа на раструб сопла. Там, где есть простая арифметика, там, скорее всего, есть и реальная физика, и простая истина. Теорема 3: «Давление в принудительном потоке в протяжённой горизонтальной или в вертикальной трубе постоянного сечения всегда уменьшается по мере приближения к расширителю потока, а скорость несжимаемого потока всегда одинаковая - и в начале, и в конце протяжённой трубы».
Или "Давление в начале потока всегда больше, чем в конце, а скорость потока может быть одинаковой". Теорема 4: «Давление потока на параллельную потоку поверхность или стенки трубы всегда тем меньше давления в самом потоке, чем больше скорость потока; а давление потока на поперечную поверхность всегда тем больше давления в самом потоке, чем больше скорость потока». Теорема 5: «Давление потока на отрицательно наклонную поверхность или верхнюю поверхность атакующего плоского крыла всегда тем меньше, чем больше скорость потока или крыла; а давление потока на положительно наклонную поверхность или нижнюю поверхность плоского атакующего крыла всегда тем больше, чем больше скорость потока или крыла". Положительная разница или асимметрия атмосферных давлений на крыло - это и есть "подъёмная сила крыла». Теорема 6: «Идеальный или самый эффективный аэродинамический профиль крыла — это «беспрофиль» то есть плоское, как лезвие безопасной бритвы, крыло. Вообще-то, это аксиома, так как Природа это знает со времён первых крылатых насекомых и летающих ящеров. Теорема 7: «Существенная подъёмная сила возникает и при нулевом угле атаки беспрофиля, если его верхняя поверхность испещрена мельчайшими неровностями, а нижняя — максимально гладкая». Это тоже знает Природа.
Теорема 8: «Скорость потока в зауженном участке трубы всегда больше, а давление потока на стенки трубы всегда меньше по причине трения и возрастающего хаоса в пограничном слое кристаллического потока: чем больше скорость, тем больше хаос". Как уже говорилось, в логическом трактате справедливость первых теорем и даже самих аксиом доказывается очевидной справедливостью последней. Справедливость восьмой теоремы трактата и всех аксиом как раз и показали поверхностные трубчатые манометры в опытах Даниила Бернулли см. И ещё, пожалуй. Давление в потоке выдуваемого из лёгких воздуха не может быть меньше атмосферного, но давление этого потока на внутренние стороны параллельных бумажных листов может быть меньше атмосферного, поэтому листы и сближаются под действием превосходящего атмосферного давления на их внешние стороны. Как видим, всё проще простого. И нечего было математику Леонарду Эйлеру свой огород городить и называть опыт с двумя подвешенными параллельно листами «Великим парадоксом». Просто не надо было в формулировке закона потоков причину и следствие путать местами и нужно было уметь отличать «давление в потоке» от «давление потока».
Увы, истинная простота впервые даётся познанию людей труднее всего, поэтому на каждого мудреца всегда довольно запредельной для него простоты. Реальный мир проще простого, а теоретики и математики создают свой собственный мир, в котором всё только усложняют. Развиваясь в попятном то есть в обратном направлении, наука превращается в научность, которую уже никто не понимает. Думаю, я смело могу утверждать: "Даже закон Архимеда уже не понимает никто! Профессору на засыпку". Статическое давление в самом потоке измеряется только мобильными манометрами или датчиками давления, движущимися внутри потока вместе с потоком. И зачем математикам нужно с помощью придуманных формул вычислять то, что можно измерить?..
Чтобы уменьшить давление, нужно увеличить площадь опоры. Чтобы увеличить давление, нужно уменьшить площадь опоры. Слайд 6 Знания о способах изменения давления очень широко используются и в природе, и в деятельности человека.
Давление в динамике.
В результате, при той же силе, чем меньше площадь, тем больше давление на поверхность. Слайд 14Способы уменьшения и увеличения давления: Чем больше площадь опоры, тем меньше. Таким образом, можно сделать вывод, что чем меньше площадь, на которую действует сила, тем больше давление. Мы знаем, что, чем больше площадь опоры, тем меньше давление, производимое данной силой, и, наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает. Давление тем меньше площадь.** которую действует сила.И