Новости теория струн кратко и понятно

Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации. Самые интересные и оперативные новости из мира высоких технологий. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны. Теория струн. Кратко и понятно. В связи с этим видео возникла ассоциация с фразой из Библии о том, что во время Апокалипсиса "небеса свернутся, как свиток".

Современное состояние теории струн

Теория струн кратко и понятно. Видео от пользователя. Самые интересные и оперативные новости из мира высоких технологий. Рассказать о теории струн кратко вряд ли получится. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений.

Теория струн. Что это?

Поэтому и в случае теории суперструн требуется либо развитие самой теории, то есть методов расчёта и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин. Фальсифицируемость и проблема ландшафта[ ] В 2003 году выяснилось [3] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100; не исключено, что их вообще бесконечное число. В результате получается удручающая картина. Каков бы ни был наш мир, всегда найдется способ свести его к суперструнной теории.

Таким образом, суперструнная теория не только не противоречит современным экспериментальным данным, но и не будет противоречить никакому эксперименту в обозримом будущем. Это означает, что теория суперструн близка к тому, чтобы потерять ключевое свойство научной теории — фальсифицируемость. В течение 2005 года неоднократно высказывались предположения [4] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа: мы существуем именно в такой Вселенной, в которой наше существование возможно. Вычислительные проблемы[ ] С математической точки зрения, ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет. Текущие исследования[ Изучение свойств чёрных дыр[ ] В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг.

Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции. Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры , Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры — энтропией , предсказанной Бекенштейном и Хокингом, — и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена. Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн.

Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Струнная космология[ ] Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва , для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений.

Главным же недостатком такого подхода является отсутствие критерия выбора такой теории. Струнных моделей оказывается ни сколько не меньше, чем обычных и при этом, отсутствуют критерии, позволяющие отдать какой-либо из них предпочтение. С попыткой избавиться от такого модельного многообразия связан второй сценарий Великого Объединения. Суть его состоит в попытке отождествления квантовой теории поля и струнных моделей с каким-то объединением этих моделей. Другими словами, эти модели в рамках такого подхода отождествляются с различными фазами единой теории, в которые попадает система при определенных условиях. Следующим шагом должно быть создание динамики на этом пространстве. Есть надежда, что теория струн, по крайней мере, может предоставить принципиальную возможность реализации подобного сценария, хотя от этой возможности до ее реализации еще очень и очень далеко. И в последнюю группу задач, решаемых теорией струн можно выделить проблемы чисто математического характера, решение которых тоже носит принципиальный характер.

Но на этих проблемах, в силу их достаточной математической сложности, абстрактности и специфичности останавливаться не будем. Струна, как физический объект Уважаемый читатель, если ты пробрался через общую характеристику проблем, стоящих перед теорией струн, поговорим о струнах, как физическом объекте. Струна в самом простейшем понимании — это одномерный протяженный объект с натяжением. То есть, его энергия растет с ростом его длины. Струна музыкального инструмента, давшая имя всему предмету, пример, лежащий на поверхности. Конечно, в теории музыкальных струн нас вряд ли ожидают какие бы то ни было неожиданности, но для полноты картины не упомянуть их нельзя. Другой важный пример струны — белковые молекулы. В связи с белковыми молекулами нельзя не упомянуть, например, что даже такой знакомый всем процесс, как сокращение мышцы, хорошо моделируется процессом распространения локализованного возбуждения солитона , бегущего вдоль струны.

Вихри Абрикосова в сверхпроводниках второго рода Более интересно появление струны в роли устойчивых квазичастиц или, другими словами, локализованных возбуждений в системе, а так же при изучении нетривиальных фазовых состояний, в частности, при спонтанных нарушениях локальной внутренней симметрии. В такой ситуации струны не только не редкость, а скорее закономерность. Как бы это ни было парадоксально, но причиной появления этих образований является трехмерность нашего пространства. Бывают и более сложные, а значит и более интересные причины появления струны — динамические. Примером такой струны является простейшая модель мезона, упомянутая выше. Стоит заметить, что задача о струне с натяжением, на концах которой закреплены точечные массы, а именно так и выглядит в струнной терминологии простейшая модель мезона, до настоящего времени полностью не решена в силу возникающих при ее решении математических сложностей. Говоря о струнах в физике, нельзя не обратиться и к несколько более спекулятивному понятию фундаментальной струны. Это понятие связано, в первую очередь, со сценариями объединения фундаментальных взаимодействий электромагнитного, слабого, сильного и гравитационного.

Тут полезно будет напомнить, что три из них исключая гравитационное , удовлетворительно описываются стандартной моделью, которая объединила в себе теорию электрослабого взаимодействия Вайнберга — Салама объединение электромагнитного и слабого взаимодействий и квантовую хромодинамику теорию сильного взаимодействия. Про гравитацию на настоящий момент мы знаем только то, что есть классическая теория гравитации — Общая Теория Относительности ОТО , и что наши наблюдательные возможности не позволяют нам наблюдать ни эффектов квантовой гравитации, ни наличие каких либо поправок к предсказаниям ОТО. То есть, с точки зрения физического метода тут царит полная гармония. А именно, имеющаяся теория полностью соответствует имеющемуся эксперименту. Тут надо ждать новых экспериментов, результаты которых разойдутся с теорией. Тогда появится необходимость эту теорию исправлять.

Автор: Яна Жежер 13 октября 2017, 12:15 Более пятидесяти лет назад физики предположили, что все частицы состоят из мельчайших петель. Так родилась теория струн, и, возможно, в будущем ее огромный потенциал поможет объяснить все фундаментальные проблемы современной физики. Поделиться 0 Поделиться 0 Твитнуть 0 Мы рассказывали про Стандартную модель , основную теорию, описывающую поведение микроскопических частиц. У нее есть ряд очевидных проблем, которые побуждают физиков предлагать различные альтернативные теории. До сих пор ни одна из моделей «новой физики» не нашла экспериментального подтверждения, но ученые не теряют надежды: предложенная в 60-х годах XX века теория струн до сих пор не потеряла своей актуальности и в перспективе сможет изменить наш взгляд на мир. Из чего сделаны частицы? Увидеть частицы напрямую ученым вряд ли когда-то удастся. Ни один, даже самый мощный микроскоп в мире не позволит увидеть хотя бы атом. Чтобы изучать структуру частиц, был придуман особый способ: «бомбардировать» объект другими, более мелкими частицами, и изучать, каким образом они разлетаются в разные стороны. Вы можете проделать такой эксперимент дома: взять два предмета, например, коробку и кастрюлю. И покидать в них небольшой резиновый шарик. Шарик будет по-разному отскакивать от ровных стенок коробки и скругленных стенок кастрюли — наших экспериментальных объектов.

Возникновение и использование теории струн, в широком смысле этих терминов, связано с необходимостью решения широкого круга задач, возникающих с завидным постоянством в самых различных областях современной физики и пониманием того, что от решения этих задач вряд ли возможно уйти. Попробуем выделить классы этих задач, избегая при этом излишней детализации и понимая, что такое разделение проблем на самом деле является довольно поверхностным и условным и никоим образом не претендует на какую бы то ни было общность. Теория сильной связи и вообще теория нелинейных явлений В настоящее время для обозначения всего, что связано с нелинейными процессами используется термин синергетика. По своим целям синергетика и теория струн весьма близки, но последняя отличается от первой более конкретными методами анализа, за что приходится платить меньшей универсальностью. Но при этом потеря универсальности приводит к более точным предсказанием развития процессов в изучаемом явлении. Методы теории струн позволяют довольно эффективно выделять различного рода симметрии процесса, очень часто являющиеся внутренними для изучаемой физической системы и далеко не очевидными на первый взгляд. Выделение подобных симметрий и их использование в дальнейшем, позволяет довольно эффективно описывать нелинейные системы. Струнный подход к описанию нелинейных систем исходит из кардинальной переформулировки исходной задачи в терминах, характерных для струнной теории. В этом смысле, от теории струн следует ожидать создание теории классов универсальности, фрагментами которой являются такие теории, как теория катастроф и теория фазовых переходов. Последняя из этих теорий, а точнее, задача о классификации фазовых переходов в 2- и 3-мерных системах, привела к созданию двух важнейших разделов струнной теории: двумерные конформные модели, например, известная специалистам сигма-модель в магнетизме, и исчисление случайных поверхностей. Теория систем со многими фазами и межфазовыми флуктуациями Этот круг проблем напрямую связан с предыдущими проблемами. В самом деле, системы со многими фазами и множественными случайными переходами из одной фазы в другую являются характерным примером систем с сильными по интенсивности взаимодействиями. Эти системы могут быть удовлетворительно описаны, если мы знаем или хотя бы догадываемся, как найти такую точку зрения, с которой она выглядит как слабовзаимодействующая. Однако и тут изменение параметров системы снова может снова превратить слабо нелинейную систему в сильно нелинейную. Тогда необходимо искать новый подход в описании системы, возвращающий ее в исходное состояние. Такая смена подходов в описании и является основным содержанием учения о фазовых состояниях и фазовых переходах. Традиционные разделы физики, посвященные этому предмету, ограничиваются простейшими случаями, когда имеется мало различных фазовых состояний и переходы между ними представляются довольно отчетливыми. Однако, в последнее время все больший интерес представляют собой системы, в которых это далеко не так. Открыты физические системы, в которых число различных фаз неограничено и, более того, существенны процессы перехода одной фазы в другую. Понятно, что описание таких систем должно строиться из каких-то иных, нетрадиционных соображений. Наиболее известные из таких систем — спиновые стекла системы хаотически ориентированных спинов и нейронные сети. Струнный подход к описанию таких систем основан на упомянутой выше переформулировке возникающей задачи в новых терминах, сглаживающих такие существенные различия между различными фазами и уравнениями, как число переменных, порядок и число уравнений и даже размерность пространства, в котором они записаны. Но тут сразу следует указать, что практического применения открывающихся в этом направлении возможностей пока дело не дошло. Изучение этих возможностей находится на начальной стадии развития. Объединение фундаментальных взаимодействий Эта проблема заслуживает отдельного рассмотрения, вследствие своей особой роли в естествознании. И тем более, ее нельзя обойти, поскольку создание единой теории всех фундаментальных взаимодействий — самый амбициозный проект, связанный со струнами, у истоков которого стоял Альберт Эйнштейн. Фактически имеется целых два проекта, а не один, которые не исключают, а скорее дополняют друг друга. Однако каждый из проектов имеет смысл и сам по себе. И если один из них в итоге будет признан несостоятельным, это не приведет к автоматическому закрытию второго. Первый сценарий, который можно считать наивным и прямолинейным приложением теории струн, приписывает струнам фундаментальную природу — элементарными следует считать не точечные частицы, а одномерные протяженные объекты.

Что такое Теория струн и существует ли 10-ое измерение

Мы понятия не имеет, как выглядят элементарные частицы. Как и темную энергию, темную материю, мы не можем наблюдать эти явления непосредственно, но у нас есть основания полагать, что они существуют. Мы рассматриваем эти частицы как точки в пространстве, хотя на самом деле они таковым не являются. Несмотря на все недостатки, этот метод — идея квантовой механики о том, что силы переносятся частицами — дает нам неплохое представление о вселенной и приводит к прорывам вроде квантовых растворителей и поездов на магнитной левитации. Общая теория относительности сама по себе тоже прошла хорошую проверку временем, объясняя нейтронные звезды и аномалии орбиты Меркурия, предсказывая черные дыры и искривление света. Но уравнения ОТО, к сожалению, перестают работать в центре черной дыры и в преддверии Большого Взрыва. Проблема в том, что свести их вместе не получается, потому что гравитация связана с геометрией пространства и временем, когда расстояния измеряются точно, а в квантовом мире измерить что-то нет никакой возможности. Когда ученые попытались изобрести новую частицу, которая поженила бы гравитацию с квантовой механикой, их математика просто дала сбой. В некотором смысле пришлось вернуться к школьной доске. Поэтому ученые предположили, что мельчайшие компоненты вселенной — это не точки, а струны. Различные колебания струн создают различные элементарные частицы вроде кварков.

Вибрирующие струны могли бы составить всю материю и все четыре силы во Вселенной — включая гравитацию. Высшие измерения У теории суперструн есть проблема.

Суперсимметрия, под которой понимается связь между двумя классами элементарных частиц — фермионами и бозонами. Объединение сил. Идея о струнах объединяет принципы теории относительности и квантовой механики, которые формулируют основы устройства Вселенной. Открытые и закрытые струны, взаимодействующие между собой. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной.

Именно она позволяет объяснять самые сложные явления — например, черные дыры.

Ученые накопили достаточно статистики, чтобы успешно применять этот принцип. Удалось определить, что одни частицы, например, входящие в состав атома протоны и нейтроны имеют составную структуру, а электроны и многие другие частицы… не состоят из чего-либо меньшего размера, то есть на языке физики являются «бесструктурными». Состоять из ничего Что значит «не имеет структуры»?

На этот вопрос Стандартная модель ответа не имеет и предпочитает сильно не задумываться. На самом деле есть всего два варианта: либо вещество можно бесконечно делить на мелкие составляющие что маловероятно , либо мы рано или поздно должны дойти до каких-то минимальных объектов, которые образуют все остальные. В качестве решения проблемы структуры частиц в середине прошлого века была предложена теория струн. В ней все частицы состоят из мельчайших «петель» — струн размером всего лишь 10-33 см.

В настоящий момент указаний на существование струн получено не было, но это легко объяснить: современные технические возможности просто не позволяют исследовать столь малые объекты. Что, собственно, физики уже давно и с успехом наблюдают. Как по нотам Петли, составляющие частицы, не просто парят в пространстве. В теории струн они колеблются, причем множеством различных способов.

В игре на гитаре в зависимости от толщины и длины струны последнюю мы регулируем, зажимая пальцами музыкант воспроизводит разные ноты.

Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения; Многомерное пространство, которое скрывается под бранами, является гиперпространством; С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести — гравитонов.

Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство. Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов. Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных.

По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами; Отсутствует возможность подтверждения. Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования; Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы; Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений.

Теория струн кратко и понятно. Теория струн для чайников.

Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано[7], связанных со струнными моделями строения адронов. Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Comments Off on Теория струн кратко и понятно. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на

Что такое теория струн простыми словами (насколько это возможно)?

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну. Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на

Что такое теория струн

Ваша эмоциональная реакция понятна. Но ЭМОЦИИ, позволяющие ориентироваться в мгновения настоящего с учётом всей бесконечности прошлого опыта полезны, но лишь в том случае, в котором они высвечивают направление по которому движение, вызвавшее данное эмоциональное СОСТОЯНИЕ будет эволюционировать и в дальнейшем. Эфир это та реальность, которая позволяет понять первоистоки многого. До Эйнштейна было множество ученых,которые успешно отвечали на вопрос" Как устроен этот мир?

Все естественно. Время меняется.

Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после. Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других — проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

Уровни строения мира: 1. Макроскопический уровень — вещество 2. Молекулярный уровень 3. Атомный уровень — протоны, нейтроны и электроны 4. Субатомный уровень — электрон 5. Субатомный уровень — кварки 6.

Ramos В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут — гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом.

Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак.

Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение — легенда. В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия — чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел уравнение двухсотлетней давности, впервые записанное швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что уравнение Эйлера, которое долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Уравнение, вероятно, стало результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Уравнение Эйлера, чудесным образом объяснившее сильное взаимодействие, обрело новую жизнь. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял — формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться.

Описав свое открытие, Сасскинд представил революционную идею струн. К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно. Стандартная модель В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц.

Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, — не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос — зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий.

Представьте себе гитару. Удар по струнам вызывает вибрацию, рождается звук. Зажать на грифе несколько струн — ноты изменятся.

Ударить сильнее — звук станет громче.

Это невероятное разнообразие идей о математике и физике, — восторженно пишет о своем детище Эдвард Виттен. Гравитация, о которой догадался еще Ньютон , никак не укладывалась в стандартную модель физики. Разбирая мир до микрочастиц, ученым приходилось делать вид, будто нет никакой силы притяжения между звездами, галактиками, планетами и Солнцем. Теория струн стала вмиг популярна, потому что она выступила объединяющим мостиком между квантовой механикой и общей теорией относительности, которые имели противоречия и никак не могли ужиться друг с другом. Объяснить все и сразу — это была давняя мечта Эйнштейна и многих других ученых, осознававших, что существующие теории не решают всех загадок макро- и микромира. Некоторые даже думали, что все законы физики возможно объяснить одним уравнением — осталось лишь догадаться, что это за формула. Почти приблизились к этому Джоэль Шерк и Джон Шварц. Позже они с обидой говорили, что теория струн изначально потерпела неудачу потому, что физики недооценили ее масштаб.

Игры нашего разума Какая польза от этих знаний, спросите вы? Ну, во-первых, она раздвигает границы воображения. Люди задумались над тем, что мир может быть устроен совсем не так, как кажется: возможно, Вселенная суперсимметрична и имеет 11 измерений. Не исключено, что есть частицы, которые еще не открыты и мы о них не догадываемся. Теория струн — это лишь теоретическая физика, отталкивающаяся от математических расчетов и родившаяся из любопытства ученых, любящих задавать вопрос «А что, если?.. Несколько досадных нестыковок и противоречий мешают ее сторонникам спать по ночам и восклицать на публику: «Осанна!

Похожие новости:

Оцените статью
Добавить комментарий