Новости почему магнит притягивает железо

Какое железо притягивает магнит.

Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов.

Именно за счет железа магнетит обладает свойствами притягивать себе подобное. Магнит притягивает только железо. Железа же в яблоках крайне мало и притянуть его даже самым сильным магнитом не удасться.

Почему магнит притягивает железо? Разбираемся в причинах магнитного притяжения

Движение электронов генерирует электрический ток, в результате чего каждый отдельный электрон действует как магнит на микроскопическом уровне. Это электромагниты. Магнитное поле — это периферийная область магнита, обладающая магнитной силой. Магнетизм — это сила, с которой магниты притягиваются или отталкиваются друг от друга. Направление этих электронов выровнено в случае стержневого магнита. В большинстве немагнитных металлов одинаковое число электронов обычно вращается в противоположных направлениях. Таким образом магнетизм отменяется. Вот почему немагнитные металлы или материалы, такие как ткань или бумага, не обладают магнитными свойствами. Интересно отметить, что если оставить или потереть скрепки о магнит, они какое-то время будут проявлять магнитные эффекты. Это индуцированные магнитные поля и магнитные свойства. Когда металл нужно намагнитить, требуется другое более сильное магнитное вещество с мощным существующим магнитным полем.

Это магнитное поле создает магнитную силу, которая, в свою очередь, вращает электроны в одном направлении, увеличивая магнетизм металла. Итак, металлы магнитятся благодаря свободным электронам. Доказано, что магниты имеют два полюса: южный и северный. Противоположные полюса притягиваются друг к другу, тогда как одни и те же полюса, как известно, отталкиваются. В другом методе несколько веществ можно превратить в магниты с помощью электрического тока. Этот магнетизм временный. Когда электричество проходит через катушку провода, создается магнитное поле. Это магнитное поле вокруг катушки с проволокой должно исчезнуть, как только отключится электричество. Их называют электромагнитами. Магниты, используемые для разделения различных типов металлов Магниты чаще всего используются при переработке промышленного оборудования.

Они используются для разделения магнитных и немагнитных материалов. Магниты в основном используются в процессе переработки. Сильные промышленные магниты используются для идентификации и разделения разные металлы. Эти магнитные сепараторы предназначены для отделения предметов из цветных металлов, таких как алюминий, в банках с газировкой.

Это происходит из-за линий напряженности которые возникают вокруг полюса магнита а в железе положительные катионы притягиваются к магниту в общем почитай в литературе -сложно в двух словах объяснить Татьяна Зыбарева Это сложный и глубокий вопрос. Дело в том, что мы имеем дело с, как уже заметили, проявлением взаимодействий новой природы, немеханической.

Представить ее себе тем более трудно, поскольку само по себе наблюдать непосредственно его нам нельзя - нам остается лишь довольствоваться тем, что мы наблюдаем за телами на которые то или иное поле влияет. В свое время, физика была разделена на два лагеря - сторонников гипотез дальнодействия и близкодействия.

Естественнонаучные исследования Эрстед, проводя эксперименты с магнитной стрелкой и проводником, приметил следующую особенность: разряд энергии, направленный в сторону к стрелке, мгновенно на нее действовал, и она начинала отклоняться. Стрелка всегда отклонялась, с какой бы стороны он не подошел. Продолжать многократные эксперименты с магнитом стал физик из Франции Доминик Франсуа Араго, взяв за основу трубку из стекла, перемотанную металлической нитью, посередине этого предмета он установил железный стержень. С помощью электричества, находившееся внутри железо начинало резко намагничиваться, из-за этого стали прилипать различные ключи, но стоило отключить разряд, и ключи сразу падали на пол. Исходя из происходящего физик из Франции Андре Ампер, разработал точное описание всего происходящего в этом эксперименте. Первые шаги к объединенной теории Ситуация изменилась лишь в конце 1990-х — начале 2000-х годов с появлением и развитием так называемой динамической теории среднего поля. Эта теория приближенно сводит сложную проблему движения электронов в кристалле к рассмотрению изменения их состояния со временем на одном выбранном атоме.

Теория позволила описать переходы металл — изолятор в ряде веществ, что, естественно, привело к вопросу о ее способности объяснить магнетизм переходных металлов. Читайте также: 1П611 Станок токарно-винторезный повышенной точности универсальный схемы, описание, характеристики В частности, железо и никель были исследованы в рамках этой теории Михаилом Кацнельсоном, Александром Лихтенштейном совместно с американским физиком Габриэлем Котляром в 2001 году. Ими впервые из полностью микроскопического то есть исходящего из первопринципных уравнений расчета в рамках зонной картины было получено линейное поведение обратной восприимчивости с температурой закон Кюри — Вейсса , которое обычно интерпретируется как указание на присутствие локальных моментов. Также ими была найдена слабая зависимость локальной восприимчивости от времени на оси мнимого времени, которое проще изучать с теоретической точки зрения , свидетельствующая о наличии локальных моментов. В какой-то момент казалось, что проблема железа и других переходных металлов почти решена. Энергетические зоны В атоме уровни энергии электрона дискретны. В кристаллическом твердом теле же образуются целые диапазоны разрешенных энергий разрешенные зоны и запрещенных энергий запрещенные зоны.

Электрон вертится от реакции отдачи при выбросе реонов как фейерверочное колесо, выбрасывающее искры и от ударов сходящегося потока реонов, раскручивающих электрон так же, как поток ветра вертит мельничное колесо [ 1 ]. Подобный механизм раскрутки электрона ещё 50 лет назад предложил В.

Демиденко, отметивший, что носящиеся в пространстве со скоростью света частицы-переносчики воздействий ударяют в электрон и крутят его, аналогично струе воздуха в опыте Отточека, поддерживающей вращение даже симметричного маховика [ 14 ]. В обоих случаях скорость вращения стабилизируется на стандартном уровне. Вот откуда стандартный магнитный момент электронов: причина в равенстве их размеров и скоростей реонов, задающих стандарт скорости вращения. Не случайно именно Ритц первым предсказал стандартный магнитный момент, ось электрона и осевое вращение элементарных зарядов для объяснения магнетизма и гравитации [ 1 , 9 ]. Но и это открытие хотят ныне приписать квантовым физикам Дж. Уленбеку и С. Хотя Уленбек, приняв вслед за Ритцем магнитный момент и вращение спин электрона для описания атомных спектров, исходно был физиком-классиком и учеником Эренфеста, знакомого с Ритцем и его идеями. А Гаудсмит, как квантовый теоретик, не имел отношения к открытию спина и лишь подписал работу Уленбека. И вообще кванторелятивисты теперь отвергают вращение электрона, считая спин абстрактным свойством.

Ведь вращение электрона означает наличие у него структуры, противореча принципу неопределённости и теории относительности так как окружная скорость V крутящегося электрона вышла бы сверхсветовой. Отметим, что реоны мог бы испускать и не сам электрон, а вытолкнутые им частицы-бластоны B, распадающиеся на расстоянии r0 на реоны рис. Эти частицы предсказал ещё Никола Тесла в честь которого названа единица магнитной индукции B , утверждавший, что "выталкиваемые электроном комья материи… расщепляются на фрагменты столь маленькие, что они полностью теряют некоторые физические свойства",— эти фрагменты реоны и производят своими ударами электромагнитные действия. Орбитальное и осевое вращение электронов объясняет все три типа магнетизма веществ диамагнетизм, парамагнетизм и ферромагнетизм , смотря по их реакции на внешнее магнитное поле B0 и по проницаемости для него. Удивительно, но такое деление веществ на три типа по проницаемости для магнитного поля потока реонов из магнита впервые произвёл всё тот же Лукреций, который, выделив железо, отметил: "Ток из магнита не в состояньи совсем на другие воздействовать вещи. Частью их тяжесть стоять заставляет,— как золото,— частью пористы телом они, и поэтому ток устремляться может свободно сквозь них, никуда не толкая при этом; к этому роду вещей мы дерево можем причислить, среднее место меж тем и другим занимает железо". Самые упрямые и странные — диамагнитные вещества, действующие наперекор внешнему полю. Однако электроны, летя по орбитам в магнитном поле атома, постепенно теряют энергию, отдаляются от ядра и в итоге его покидают. То есть намагниченность, казалось бы, возникнет лишь вначале, а затем плавно сойдёт на нет, раз генерирующие его электроны выбывают из игры.

Выходит, если без поля B0 моменты орбитальных электронов компенсировали друг друга, то во внешнем поле преобладают моменты, направленные против поля и снижающие его. И снижение сохраняется, ибо взамен электронов, покинувших атомы, приходят новые, попадающие в те же условия. Что касается эффекта индукции, то он как раз раскручивает одни электроны, тормозя другие, причём с лихвой. Быстрый прирост поля может намагнитить вещество сильнее хотя ненадолго , чем такой же, но медленный прирост, чего не могла объяснить квантовая физика. Отчасти эффект можно объяснить и влиянием на осевое вращение электронов: эффект индукции мог бы раскрутить одни электроны чуть быстрее, а электроны с обратным вращением — чуть замедлить. Эти сбои частоты вращения и магнитного момента быстро устранит стабилизация частоты вращения электронов в потоке реонов рис. В итоге останутся лишь слабые отклонения моментов электронов от стандарта, объясняющие диамагнетизм свободных электронов, частично вызванный и закруткой электронов вокруг линий поля B0, которую ошибочно трактуют по квантовой теории Ландау. Проще понять поведение парамагнитных веществ. В них внешнее поле ориентирует магнитики атомов, словно стрелки компасов на столе, создающие при параллельной ориентации добавочное поле намагниченность M , направленное вдоль внешнего поля B0 рис.

Однако тепловое движение атомов, их столкновения то и дело сбивают этот порядок, как при тряске стола с компасами, отчего их стрелки беспорядочно мельтешат, хотя в среднем больше стрелок, повёрнутых вдоль поля. Наконец, ферромагнетизм связан с постройкой вдоль поля осевых магнитных моментов атомных электронов рис. По мере увеличения внешнего поля B0 растёт его ориентирующее действие и собственное поле M ферромагнетика. Когда оси всех электронов установятся параллельно, намагниченность M перестанет расти — наступит насыщение рис. Эта кривая намагничивания ферромагнетика была открыта А. При снятии внешнего поля намагниченность не исчезает, а лишь снижается гистерезис , ибо намагниченный образец, создав сильное поле, уже сам поддерживает свою намагниченность. Так и создают "волшебные" камни-магниты, образованные элементарными магнитиками-электронами. В классике это казалось немыслимым: раз образующие ток электроны могут двигаться с любой скоростью и по любым орбитам, то и поток принимает любые значения. А в квантовой механике орбитальный момент импульса электронов меняется дискретно, отчего дискретно меняется и поток.

И всё же опыт легко объясним классически, ведь магнитное поле сверхпроводника реально создаётся не током проводимости, так как рассечение сверхпроводящего кольца не меняет магнитного поля [ 15 ]. Скорее, по гипотезе, выдвинутой ещё в 1915 г. Томсоном и возрождённой В. Федюкиным [ 15 ], сверхпроводник генерирует поле так же, как магнит,— крутящимися электронами. Магнитное поле магнита создано параллельными магнитными моментами электронов. А раз их величина стандартна, то и общее магнитное поле, и поток этого поля меняется дискретно. Точнее, дискретно меняется число n электронов, у которых моменты не скомпенсированы встречными. Такой сверхпроводник напоминает антиферромагнетик, где магнитные моменты соседних электронов противоположны, отчего лишь малая часть нескомпенсированных моментов создаёт слабое остаточное поле, меняющееся дискретно рис. Всё это ещё раз доказывает сходство сверхпроводимости и ферромагнетизма.

Поэтому в существовании высокотемпературных и керамических сверхпроводников отрицавшихся квантовой теорией до их создания не больше странного, чем в сильных керамических магнитах, работающих при комнатных температурах. Хотя есть вещества, становящиеся ферромагнетиками лишь при очень низких температурах, как сверхпроводники. Осталось выяснить, почему в магнитном поле моменты электронов и атомов ориентируются упорядоченно, порождая ферромагнетизм и другие явления. Полагали, что в классической теории такое невозможно: хотя внешнее магнитное поле и создаёт момент сил, стремящийся развернуть атом или электрон по полю, но за счёт вращения они прецессируют, словно волчок, вокруг направления магнитного поля. А в квантовой теории направление магнитного момента частиц квантуется,— моменты частиц направлены к внешнему полю лишь под строго заданными углами и скачком уменьшают этот угол. Но реально и классическая теория ведёт к установлению электронов и атомов вдоль поля, если учесть трение, от которого эти микромагниты сокращают размахи, как стрелки компаса, пока не установятся вдоль поля так же отклоняется под действием момента сил волчок, скажем в гирокомпасе. В итоге трение от столкновений атомов сокращает их колебания в поле, ориентируя их магнитные моменты вдоль внешнего поля, которое за счёт этого усиливается [ 12 ]. Для электронов это трение тоже вызвано столкновениями, но уже при испускании и поглощении потоков реонов, тормозящих качания, прецессию за счёт электродинамической необратимости, открытой Ритцем. Это так называемое радиационное трение, сопровождаемое излучением электромагнитных волн ускоренно движущимися, колеблющимися зарядами.

Итак, в магнитном поле электрон или атом должен излучать электромагнитные волны на частоте своих качаний. Такое явление известно в форме магнитного резонанса, при котором электроны и атомы эффективно поглощают и испускают электромагнитное излучение на частоте собственных колебаний или прецессии ларморовской частоте. Излучение на этой частоте при колебаниях ведёт к потере энергии атомом и ослаблению колебаний, к постройке всех атомов, электронов вдоль поля и появлению общего магнитного момента у ферромагнетика при намагничивании. На этом основан принцип действия магнитных холодильников, отбирающих энергию у атомов и электронов, колеблющихся в магнитное поле. Впрочем, и без внешнего поля магнитные моменты электронов устанавливаются параллельно, образуя домены — области спонтанной намагниченности, предсказанные П. Вейссом и экспериментально открытые Н. Акуловым [ 12 ]. Каждый электрон своим магнитным полем вынуждает соседние электроны повернуться в том же направлении, а те, в свою очередь, вынуждают соседние. Так и возникают в металле участки с упорядоченной ориентацией магнитных моментов, что снова легко смоделировать с помощью однотипных магнитиков, магнитных стрелок, строящихся параллельно за счёт взаимодействия рис.

Такие системы, цепочки магнитов ещё в XIX веке исследовали Остроградский и Риман, во многом предвосхитившие идеи Ритца. Внешнее поле лишь координирует, ориентирует домены, смещает их границы, наращивая домены с полем параллельным внешнему.

Почему магнит притягивает железо? — точный ответ!

Почему кусок железа притягивается к магниту почему магниты магнитят, смысл магнитов, суть магнитизма, магнитный эффект И так, с самой сутью магнита и его природой действия разобрались.
Статьи » Существуют ли поисковые магниты на золото и серебро? Пока железо и магнит притянуты друг к другу, их магнитные поля остаются в параллельном направлении.
Являются ли магниты металлом? Правда, объясненная любителям науки Почему магнит притягивает железо? Постоянный магнит — вещество, имеющее остаточную намагниченность. Атомы в магнитах упорядочены таким образом, что их способность взаимодействовать с атомами других тел значительно выше, чем у.

Магнетизм и электромагнетизм

  • Навигация по записям
  • Почему Магнит Притягивает Железо
  • Бестопливная миниэлектростанция на постоянных магнитах
  • Часто задаваемые вопросы

ПОЧЕМУ МАГНИТ ПРИТЯГИВАЕТ ЖЕЛЕЗО

Почему магнит притягивает только металл Два магнита будут притягиваться друг к другу, если соединить их разноименные полюса (Северный с Южным).
«Почему магнитится только железо, а алюминий-нет?» — Яндекс Кью Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками.
Магнит. 4. Почему к постоянному магниту притягиваются и другой магнит, и кусок железа? Почему железо притягивается к магниту Почему магнит не притягивает органические вещества? На самом деле, взаимодействие магнита с веществами имеет гораздо.

Почему магнит притягивает железо? — точный ответ!

Через один транзисторный ключ карбюратор катушки наполняются топливной смесью электротоком , а через другой транзисторный ключ выпускной коллектор смесь электроток удаляется из цилиндров катушек. Только электрическая топливная смесь не сгорает в цилиндрах как бензиновая, а с небольшими потерями на сопротивление в проводниках и блоке управления возвращается для повторного использования. С другой точки зрения, принцип работы данного устройства можно рассматривать как работу колебательного контура в радиоприёмнике. Там ток тоже колеблется между катушками индуктивности и конденсатором, при этом появляется электромагнитное излучение. А в данном устройстве появляется механическая мощность, которую можно использовать для работы электрогенератора. Качество электрического тока тоже заслуживает особого внимания. Как и в двигателе внутреннего сгорания, высококачественное топливо позволяет получить лучшие показатели работы двигателя, так и в данном устройстве этот фактор имеет огромное значение. Электрический ток характеризуется двумя параметрами: напряжением и силой тока.

Мощность тока это произведение напряжения на силу тока. Ток силой 10 Ампер и напряжением 100 Вольт имеет мощность 1 КВт. Ток силой 1 Ампер и напряжением 1000 Вольт также имеет мощность 1 КВт. Для определения мощности нет никакой разницы. Но в данном устройстве эти параметры имеют принципиальное значение. Ранее уже упоминалось, что магнитное поле не имеет сплошной конфигурации, а состоит из множества тонких магнитных полей. Так и электрический ток так же имеет множество тонких полей.

Поскольку электрический ток это направленное движение электронов, а они не могут слиться в общую массу. Они лишь могут выстраиваться в тонкие колоны, точно также как и домены в постоянном магните. Размеры доменов равны приблизительно 4 мкр. Не трудно подсчитать какое количество магнитных полей уместится на всей площади магнитного полюса. Но и размер электрического поля не превышает размера электрона. А одно магнитное поле может, соединится только с одним электрическим. Это же явление можно рассматривать и с точки зрения разности потенциалов.

Современные неодимовые постоянные магниты имеют огромный магнитный потенциал. Значит и на катушках необходимо создать соответствующий электрический потенциал. Или с точки зрения двигателя внутреннего сгорания, использовать высокооктановый бензин. Но топливная смесь в двигателе может быть либо «жирной», когда много бензина и мало воздуха, либо «сухой», когда много воздуха и мало бензина. Также и ток, подаваемый на катушки тоже должен быть не «сухим» и не «жирным». В данном устройстве предпочтительно топливную смесь « подсушить». То есть на катушки следует подавать электроток малой силы и высокого напряжения.

Но сила тока зависит от напряжения, делённого на сопротивление катушки.

Ну, да, ладно. Как нибудь переживём, не в первый раз. По моим представлениям, магнитное поле — это эфирный поток, точнее эфирный вихрь, созданный и поддерживаемый магнитом, телом специальной формы и из специального вещества. Материал магнита позволяет создать, а потом «загнать» эфирный вихрь в некий объем, которым можно уже управлять. Что делает магнитный, эфирный вихрь внутри магнита, никто не знает, одни предположения. А вот уже эфирные магнитные потоки между полюсами учёные исследовали более скрупулёзно, назвали струйки магнитного потока магнитные линиями, научились изображать их в виде красивых картинок. Но вот почему магнит притягивает к себе шар на рисунке, а вместе с ним человека, не каждый учёный может ответить. Давайте подумаем вместе и попытаемся ответить на этот простой ответ, почему магнит притягивает к себе скрепки.

Рассмотрим картину силовых линий в случае, если полюса магнита свободны и силовые линии в виде тока смещения текут по воздуху 1 , и случай, когда силовые линии проходят через железку 2. Когда магнитные линии проходят по воздуху, то плотность магнитного потока невысокая, а когда магнитные линии проводят через тело из железа, то плотность магнитных линий высокая. Ферромагнетик в силу своего строения и структуры атомов умеет концентрировать магнитные эфирные потоки. Там, где силовые магнитные линии редкие, там давление Эфира в среднем высокое, а внутри железного тела, где скорость магнитных эфирных потоков возрастает с одной стороны, а, с другой стороны, магнитные линии уплотняются, то там среднее давление Эфира уменьшается. Поэтому окружающий «спокойный» Эфир во втором случае прижимает железку и магнит друг к другу. Такая вот оказалась на деле природа способности магнитов притягивать к себе предметы из железа и других ферромагнетиков. Суть этого явления оказалась аналогичной тому, что показали Магдебургские полушария. Магдебургские полушария — знаменитый эксперимент немецкого физика Отто фон Герике для демонстрации силы давления воздуха и изобретённого им воздушного насоса.

Готовый набор для магнитной рыбалки: поисковый магнит F120, веревка и сумка Какие металлы можно найти с помощью поискового магнита Как и другие постоянные магниты, неодимовый магнит притягивает только ферромагнетики. К таковым относятся железо, никель и кобальт, а также их сплавы. Таким образом, поисковый магнит позволяет эффективно обнаруживать и поднимать объекты из этих металлов. Мощный поисковый магнит F300 Можно ли найти цветные металлы с помощью поискового магнита Не стоит рассчитывать, что с поисковым магнитом вы найдете золото, серебро, алюминий, медь, а также другие драгоценные или цветные металлы в чистом виде. По своим ферромагнитным свойствам эти материалы на несколько порядков уступают черным металлам. С другой стороны, отказываться от поисков тоже не стоит.

В завершении Определенные виды: кобальт, железо, никель поддаются влиянию магнита. Они являются ферромагнетиками, то есть имеют способность к намагничиванию. Если расположить эти металлы близко к магниту, атомы внутри них станут перестраиваться, образовывая магнитные полюса. Почему материалы магнитятся и не магнитятся В большинстве материалов, таких, как пластмассы, магнитные поля отдельных атомов ориентированы беспорядочно и взаимно гасят друг друга. Но в таких материалах, как железо, атомы можно сориентировать так, что их магнитные поля сложатся, поэтому кусок стали намагничивается. Атомы в материалах соединены в группы, которые называются магнитными доменами. Магнитные поля одного отдельного домена сориентированы в одну сторону. То есть каждый домен — это маленький магнитик. Интересно: Закон сохранения энергии — описание, фото и видео Различные домены ориентированы в самых разнообразных направлениях, то есть неупорядоченно, и гасят магнитные поля друг друга. Поэтому стальная полоса — не магнит. Но если нам удастся сориентировать домены в одну сторону, чтобы силы магнитных полей сложились, вот тогда берегитесь! Стальная полоса станет мощным магнитом и притянет любой железный предмет от гвоздя до холодильника. Интересный факт: минерал магнитный железняк — естественный магнит. Но все же большинство магнитов изготовляют искусственно. Почему магнит не притягивает органические вещества? Что означают здесь выражения «связь такова», «чувствуют», «скоординировано»? Кто или что осуществляет «координацию» всех атомов данного тела? Каким образом осуществляется координация? В чем «нетаковость» связей атомов в органических веществах? Думается, в данном случае тайна магнетизма «деткам» не раскрыта. Но, быть может, сгодится такой ответ? Если согласиться, что каждый атом в теле «ощущает» «чувствует» внешнее магнитное поле ВМП своими внешними — свободными, несвязанными — электронами и что внутренние электроны атома «не поддаются» ВМП, то выходит, что атомы реагируют на присутствие ВМП постольку, поскольку движения их несвязанных электронов во внешнем электронном слое а они создают, кстати, собственные магнитные поля не уравновешены движением других электронов: слой не заполнен и связи с электронами др.

Почему магнит притягивает железо? Магнит.

притягивать, «любить» железо. Почему магнит притягивает? И так, магнит притягивает к себе железо потому, что может намагнитить его из-за особых свойств.

Почему магнитится только железо, а алюминий-нет?

Так что такое магнит, и почему он притягивает? Расплавленное железо против магнита: увлекательный эксперимент. Как ведет себя расплавленное железо и обладает ли оно магнитными свойствами? Именно за счет железа магнетит обладает свойствами притягивать себе подобное.

Почему у магнита два полюса?

это явление, при котором магнит притягивает к себе предметы, содержащие железо. Лучше всего к магнитам притягиваются. Краткое объяснение причин по которым магнит может притягивать железо. Так что такое магнит, и почему он притягивает? Расстояние между магнитом и притягиваемым объектом влияет на силу притяжения: сила ослабевает с увеличением расстояния. Тем не менее немногие способны объяснить, что заставляет магнит притягивать, и почему его силе подвластно именно железо.

Почему магнит притягивает железо? Магнит.

Сила сцепления на отрыв — это усилие, которое необходимо приложить, чтобы оторвать магнитный материал от поверхности. В характеристиках изделия указана его сила притяжения в идеальных условиях, при которых он полностью прилегает к гладкому ровному стальному листу толщиной не менее 20 мм и отрывается от него под прямым углом. Поскольку на практике условия далеки от идеальных, то и удерживающая сила в реале будет ниже заявленной. Сила сцепления на сдвиг применима, когда магнит перемещается вдоль поверхности изделия. Если нагрузка выше заявленной характеристики, то предмет будет съезжать по вертикальной поверхности. Например, магнит прямоугольник 20х10х4 мм выдерживает нагрузку на отрыв 4 кг, но при использовании на сдвиг его предельная нагрузка будет равняться 1,8 кг. Для многих применений сила на сдвиг является основной характеристикой неодимового магнита. Сцепная сила зависит от многих факторов. Например, на шероховатой поверхности она несколько ниже, чем на гладкой и ровной поверхности. Чем тоньше металл, на который крепится магнит, тем слабее он будет держаться.

Предметы не всегда полностью прилегают к магнитной поверхности, и чем больше площадь их соприкосновения, тем сильнее притяжение.

Некоторые материалы имеют магнитное поле, где атомы двигаются без определенного порядка, подавляя друг друга. Если говорить о металлических предметах, то здесь атомы упорядочены в группы, которые ориентируются в одну сторону. Благодаря возможности воздействовать на атомы, ориентируя их в одном направлении, и сложить магнитные поля, железные предметы могут намагничиваться. Почему не все материалы могут магнититься? Взаимодействие магнита происходит практически со всеми веществами, при этом вариантов этих самых взаимодействий намного больше, чем известные нам «притягивание» и «отталкивание».

Специфическое строение некоторых металлов и сплавов позволяет им достаточно мощно притягиваться к магниту. Другие металлы и вещества тоже имеют это свойство, однако оно во много раз слабее. Рассмотреть притяжение в данный момент будет крайне сложно, для этого потребуется сильнейшее магнитное поле, которое невозможно создать в домашних условиях.

Ей можно дать возможность двигаться - то есть прекратит препятствовать движению, но не дать энергию. По аналогии - если изначально пластина на магните, то энергия возьмется от того, кто ее от магнита отрывает Да, я выше про это написал - если проводить эксперимент с одной железкой то понятно что на ее удаление тратится столько же энергии сколько вернется при притяжении и эту работу совершает тот кто ее удаляет. А я говорю о разных, пстоянно новых железках которые ни кто не удалял от магнита, а только подносил соершая работу, но когда магнит их подхватывает совершается работа кем? В первом посте я написал что железо не обязательно удалять механически от магнита - его можно растворять например. Облепляющие магнит железки деформируют наведенное им магнитное поле и его будет всё меньше и меньше. Добавлено спустя 48 секунд: avr123. Ну растворили, оно куда делось то?

Железосодержащую жидкость ничуть не проще будет от магнита откачать, чем железку оттянуть. Добавлено спустя 1 минуту 12 секунд: Вообще удивительная тема, в другой ситуации пришел бы avr123, сказал бы, что это дивный бред и потом ответил бы разноцветным постом и ссылками на учебники, а тут... Можно и так. При милионе опытов с одним и тем же шариком это не имеет значения. Если шарики разные то каждый раз их на высоту подняли. Например небесные тела и космические объекты получили энергию при расположении в настоящую конфигурацию. Поэтому ясно что меторит падающий на землю просто возвращает энергию затраченую ранее на удаление земли и той массы из которой метеорит образовался. Вот это отжиг!

Например, парамагнетик не реагирует на однородное магнитное поле. Парамагнетики втягиваются по направлению градиента неоднородного магнитного поля.

Но этот эффект очень слабый. Он в сотни и в тысячи раз слабее, чем притяжение ферромагнетика к магниту. В бытовых условиях это практически незаметно, потому что неоднородность магнитного поля обычного магнита очень маленькая.

Энергоинформ — альтернативная энергетика, энергосбережение, информационно-компьютерные технологии

Почему иногда магнит притягивает монеты? — современные монеты чаще всего делаются из ферромагнетиков с покрытием. Например, длинный железный гвоздь начинает притягивать к себе другие железные предметы, которых не может притянуть магнит, который намагнитил гвоздь. Это объясняет, почему некоторые магниты притягивают предметы с большей силой, чем другие. Почему магнит притягивает железо. Магнитом является тело, которое обладает собственным магнитным полем. В магнитном поле ощущается некоторое воздействие на внешние предметы, которые находятся рядом, наиболее очевидное – способность магнита притянуть металл. Стальная полоса станет мощным магнитом и притянет любой железный предмет от гвоздя до холодильника.

Похожие новости:

Оцените статью
Добавить комментарий