Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. Оказалось, что теория струн замечательно может свести все четыре фундаментальных взаимодействия Вселенной к одному — колебанию одномерной струны с соответствующим переносом энергии.
Теория струн, или Теория всего
Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Теория струн может и не станет теорией всего, но это хотя бы теория чего-то. Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн.
Что такое теория струн
О чем теория струн? Самое простое и понятное объяснение. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн. Теория струн в принципе может нам это объяснить, и вывести параметры элементарных частиц и их взаимодействий через фундаментальные физические константы типа скорости света или постоянной Планка. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики.
Теория струн — кратко и понятно
- Теория струн
- Войти на сайт
- Что такое теория струн простыми словами: объясняем на пальцах
- Где почитать о теории струн?
Теория струн, Мультивселенная
Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо. Струны бывают открытыми и замкнутыми. И те и другие имеют определённые устойчивые формы колебаний — моды. Механическая аналогия: зажимая по-разному скрипичные струны, можно извлекать самые разные звуки. Каждая колебательная мода струны соответствует той или иной частице и обеспечивает ей все наблюдаемые характеристики: массу, спин, заряд и прочее. Причем не только частицы-участники, но и частицы-переносчики взаимодействий предстают «на равных» в теории струн. Абсолютно все частицы могут быть описаны через единый объект — струну.
Некоторые верные, некоторые ложные, некоторые верные, но неверно истолкованные. Конечно: верные, ложные это с точки зрения Квантовой физики, представленной мною. В ней понятие квант представлен не словом, а физической сущностью кванта, то есть магнитным и электрическим полями в виде вихревых образований. Это на мельчайшая частица энергии, которая содержит строго фиксированное количество магнитной и электрической субстанций, которое приобрело диалектическое свойство: самостоятельно двигаться с определенной скоростью. Об этом подробно рассказано на этом же сайте в соответствующей статье.
То, что в природе существует частица, которая переносит энергию, знал еще Вальтер Ритц, современник Эйнштейна. Она родилась на кончике пера, ровно так, как на кончике пера родился линейный элемент в виде струны. В результате некоторых математических выкладок появилось антисимметричное тензорное поле 3-го ранга, которое по теории могло взаимодействовать только с продолговатыми объектами, которые и назвали струной. Но как Вальтер Ритц, так и разработчики теории струн не смогли наполнить родившиеся объекты материальной сущностью, поэтому были вольны с ними делать любые невероятные процедуры, которые не возможны для реальных объектов. Предложенная мною модель кванта отсекает все не возможное и объясняет все происходящее в природе логично, безо всякого дуализма, суперпозиции , суперсимметрии и т.
Обычно ученому, что не рассказывай, он никогда не будет тебя слушать, если ты не подкрепишь свои мысли математикой. Модель моего кванта подтверждается теорией Ритца, а модель фотона — теорией струн, хотя я их и не знаю. Будем двигаться по книге дальше. Брайан полагает, что это одно из предсказаний теории струн, вытекающее из суперсимметрии. До этого в различных теориях существовала симметрия, но она ничего не говорила о новых частицах.
Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на?. Они на много тяжелее протона. Из-за этого ученые полагают, мы их и не можем обнаружить. Книгу Брайан писал до постройки Большого адронного коллайдера, но уже знал, что такой ускоритель строится. Он, и много других ученых, возлагали надежду обнаружить суперпартёры этим ускорителем, но пока положительных результатов нет.
И только с больших расстояний такая струна выглядит, как точка. Индустрия 4. Но разные состояния теории отвечают разным типам элементарных частиц. Ситуация аналогична той, что возникает в случае с гитарной струной: если ее дернуть, возникнет стоячая волна. Тогда первая мода когда между зажимами умещается одна полуволна может отвечать, например, фотону. А вторая когда между зажимами умещается две полуволны или целая длина волны может отвечать какой-то другой элементарной частице: например, электрону. При этом стоит подчеркнуть, что теория струн пока не подтверждена экспериментально.
Как появилась теория струн Ученые наблюдали за столкновениями частиц на ускорителях и заметили, что в результате реакций возникали целые семьи частиц. Все выглядело так, будто различные разные частицы внутри одной семьи вели себя, как различные гармоники струны. Одним из первых придал этому наблюдению математическую форму итальянский физик Габриэле Венециано. Тогда, в 1960-х годах, исследователи пытались найти теорию, которая бы точно предсказывала спектр масс частиц в обсуждаемых семьях. К сожалению, полного сходства с реальностью не получалось. Однако ученые заметили, что в спектре струны возникали частицы, которые имели те же свойства, что и фотоны в случае открытой струны , и гравитоны в случае замкнутой струны.
К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно. Стандартная модель В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, — не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос — зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон — частица света. Ученые предсказывали, что именно этот обмен частицами-переносчиками — есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу». Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема — она не включала в себя самую известную силу макроуровня — гравитацию. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион — частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе. Ученый уже решил забросить свое гиблое дело, и тут его осенило — может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории — струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона — частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин. За открытие этих «оснований» в 2011 году была вручена Нобелевская премия по физике. Состояло оно в том, что расширение Вселенной не замедляется, как думали когда-то, а, наоборот, ускоряется. Объясняют это ускорение действием особой «антигравитации», которая каким-то образом свойственна пустому пространству космического вакуума. С другой стороны, на квантовом уровне ничего абсолютно «пустого» быть не может — в вакууме постоянно возникают и тут же исчезают субатомные частицы. Такое «мелькание» частиц, как полагают, и ответственно за существование «антигравитационной» темной энергии, которая наполняет пустое пространство. В свое время именно Альберт Эйнштейн, до конца жизни так и не принявший парадоксальные принципы квантовой механики которую он сам и предсказал , предположил существование этой формы энергии. Следуя традициям классической греческой философии Аристотеля с ее верой в вечность мира, Эйнштейн отказывался поверить в то, что предсказывала его собственная теория, а именно то, что Вселенная имеет начало. Чтобы «увековечить» мироздание, Эйнштейн даже ввел в свою теорию некую космологическую постоянную, и таким образом описал энергию пустого пространства. К счастью, через несколько лет выяснилось, что Вселенная — вовсе не застывшая форма, что она расширяется. Тогда Эйнштейн отказался от космологической постоянной, назвав ее «величайшим просчетом в своей жизни». Сегодня науке известно — темная энергия все-таки существует, хотя плотность ее намного меньше той, что предполагал Эйнштейн проблема плотности темной энергии, кстати, — одна из величайших загадок современной физики.
Теория струн. Что это?
Об этом пишет портал e ScienceNews. Ученые решили развернуть последовательность рассуждений. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. Сама по себе эта теория является попыткой избавиться от расхождений релятивистской квантовой теории и общей теории относительности.
Если вы будете увеличивать его, начнете видеть молекулы, затем — атомы. Но на этом история не заканчивается: далее идут элементы ядра, которые состоят из протонов и нейтронов. Внутри нейтрона есть крошечные частицы — кварки. Некоторые физики считают, что далее нет ничего.
Однако согласно теории струн, внутри этих кварков будут вибрирующие нитки, похожие на струны. Уровни строения мира: 1. Макроскопический уровень 2. Молекулярный уровень 3. Атомный уровень 4.
Через некоторое время даже пришлось забыть о перспективной теории струн, так как возникали новые предпосылки в квантовой хромодинамики. В ней использовалась точечная модель частиц. Позже часть ученых не смогла полностью отказаться от теории струн, и были найдены отдельные конфигурации колеблющихся струн. Они напоминали свойства глюонов. Это давало возможность предположить, что существует теория сильного взаимодействия.
В 70-е годы прошлого века европейские ученые смогли сделать громкое предположение, что превращало недостаток и пробел в квантовой теории струн в достоинство. Они изучили странные моды колебаний струн, которые напоминали частицы-переносчики. Свойства точным образом совпадали с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия. Его называли гравитоном. Гипотетические сверхмалые частицы гравитона до сих пор не удалось обнаружить, однако исследователи сегодня могут предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Особенности теории струн Европейские ученые заявил, что у них есть предположения, согласно которым теория струн обладает примечательными свойствами.
Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению. По всему миру физики разрабатывают новые мощные методы, далеко превосходящие использовавшиеся до сих пор многочисленные приближенные методы, коллективно собирая вместе разрозненные элементы головоломки теории струн с обнадеживающей скоростью. Удивительно, но эти разработки дают новые средства для пересмотра некоторых основных положений теории, которые считались устоявшимися. Например, при взгляде на рис. Почему не маленькие диски? Или микроскопические каплевидные ядрышки? Эти последние достижения будут рассмотрены в заключительных главах данной книги. Прогресс в науке осуществляется скачками. Одни периоды наполнены великими прорывами, в другие времена исследователи остаются без улова. Ученые получают новые теоретические и экспериментальные результаты.
Теория струн и квантовая механика
Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. •Краткая история теории струн. Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения.
Квантовая теория струн
Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн. Представьте себе гитару.
Или какие-нибудь комбинации данного количества энергии. Фотон, излученный протоном, аннигилирует или скроется с соответствующим отрицательным электрическим фотоном той или иной поляризации. Благо их полно в нашем окружении. Все дело в том, что период спонтанного распада протона очень большой, где-то 1031 лет, поэтому никак не удается это обнаружить. А чтобы получить вынужденный индуцированный распад протона у нас нет соответствующего положительного поля. У нас все отрицательное, в любом атоме сверху торчат электроны.
По этой же причине время распада антипротона в нашем мире значительно меньше. Что это за поля с небольшой интенсивностью и большим дальнодействием Брайан не расшифровывает и можно только предположить, что это некоторые виды передачи информации в виде мысли, телепатии, телепортации и тому подобное. Действительно, некоторые явления, из этого, возможны. Например, эффект сотой обезьяны, или то что мать чувствует что-то не хорошее со своим ребенком, или животные чувствуют наличие далекого водоема или надвигающегося ненастья и т. Но все это объясняется очень слабым потом фотонов, излучаемых происходящим явлением. Такой поток способна уловить только система, точно настроена в резонанс данному излучению.
Такое происходит при работе шестого чувства. Это происходит также, как и в любом приемнике. Что существует и малое дальнодействие? Физически это истолковано, истолковывайте математически. Да тут и устанавливать нечего. Еще Дирак предсказал существование моря энергии.
Это либо скопления масс скрытых фотонов в виде тёмного вещества, или аннигилировавших фотонов в виде черных дыр. Другого ничего в природе просто не наблюдается, да и не нужно оно не для чего, то есть ни в какую причинно-следственную цепочку ничего больше не встраивается.
Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий.
Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы.
Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик.
Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи.
Остальные ответы zz Гуру 3376 10 лет назад Подозреваю, что буду не прав, но выражу свою мысль: мы знаем, что каждая молекула во вселенной вибрирует, и состояния покоя не существует априори. Теория струн рассматривает вселенную с точки зрения этой абсолютной вибрации энергии а существование материальной вселенной лишь побочный эффект. Но повторюсь, вероятней всего я не прав.
Что такое Теория струн и существует ли 10-ое измерение
Что такое теория струн? Простой обзор | | теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. |
Теория струн простыми словами | В теории струн мироздание похоже на невероятно малые, вибрирующие нити энергии, способные извиваться, растягиваться и сжиматься. |
В чем суть Теории струн
- Современное состояние теории струн
- Теория суперструн кратко и понятно
- Теория суперструн кратко и понятно
- Войти на сайт
- Теория струн для чайников
Современное состояние теории струн
Войти на сайт | Основной проблемой теории струн является её незавершенность, то есть, нет какой-то единой теории, способной объяснить все процессы, происходящие во Вселенной, как например уравнение Эйнштейна для гравитации или уравнение Максвелла для электромагнетизма. |
Теория струн: кратко и понятно о сложном. В чем она заключается? | теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. |
Теория струн | Наука | Fandom | В рамках теории струн получено описание Вселенной с реалистичным значением плотности темной энергии. |
Простыми словами: что такое теория суперструн? | Пикабу | Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. |
Что такое теория струн? Простой обзор
Предсказания теории струн. | одно из направлений теоретической физики (можно сказать - физики элементарных частиц). |
Теория суперструн популярным языком для чайников | В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. |
Войти на сайт | Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. |
Мы заколебались: объясняем простым языком теорию струн | Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. |
Теория струн. Возникновение теории, ее приложения
Описание теории струн простым и понятным языком, или как принято говорить "Для чайников". Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Теория струн может и не станет теорией всего, но это хотя бы теория чего-то.
Современное состояние теории струн
Давайте же разберемся в теории струн. Сначала казалось, что эта теория может объяснить все процессы во Вселенной, но на деле она оказалась невероятно сложной. Теория струн — это идея теоретической физики о том, что реальность состоит из бесконечно малых вибрирующих струн — меньших, чем атомы, электроны или кварки. Согласно этой теории, когда струны вибрируют, скручиваются и сворачиваются, они производят эффекты во многих крошечных измерениях. Эти эффекты люди затем могут наблюдать во всем — от физики элементарных частиц до крупномасштабных явлений, таких как гравитация. В чем смысл теории струн?
Будем двигаться по книге дальше. Брайан полагает, что это одно из предсказаний теории струн, вытекающее из суперсимметрии. До этого в различных теориях существовала симметрия, но она ничего не говорила о новых частицах. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на?. Они на много тяжелее протона. Из-за этого ученые полагают, мы их и не можем обнаружить. Книгу Брайан писал до постройки Большого адронного коллайдера, но уже знал, что такой ускоритель строится. Он, и много других ученых, возлагали надежду обнаружить суперпартёры этим ускорителем, но пока положительных результатов нет. Да и быть не должно: там частицы разбиваются, а не собираются. Так что это предсказание пока ничем не подтверждено. Второе предсказание. Частицы с дробным электрическим зарядом. Ну а это, то что частица может обладать дробным зарядом, для тех, кто знает, что ускоряемая частица излучает и поглощает это является послесказанием, а не предсказанием. Излучившая частица потеряла часть заряда и массы, а поглотившая частица прибавила в заряде и массе. А величины этих изменений можно и посчитать. Для тех, кто этого не знал, выводы теории о дробности можно считать предсказанием. Некоторые более отдалённые перспективы. Еще одно предсказание в теории струн Виттен увидел такое. Он предположил, что некоторые струны могут быть гигантских размеров, и они могут быть зарегистрированы астрономами. Ладно, пусть регистрируют.
Современная физика поддерживается двумя столпами: теорией относительности и квантовой механикой. Теория относительности, которая была впервые предложенная Альбертом Эйнштейном , объясняет Вселенную в ее самых больших масштабах, используя такие понятия, как гравитация и скорость света. Квантовая механика — полная ее противоположность, это наука о мельчайших масштабах, таких как масштаб атомов и субатомных частиц. Вместе теория относительности и квантовая механика могут объяснить очень большое и очень маленькое. Однако, несмотря на то, что обе поддерживают все, что мы знаем о вселенной, теория относительности и квантовая механика плохо работают вместе. На самом деле ученые не смогли объединить две теории в единую теорию всего. Объединение двух столпов физики в одно целое может показаться не слишком важным. Ведь по отдельности теория относительности и квантовая механика могут объяснить большую часть Вселенной.
Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы. Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы. Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц скажем, нейтрон и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками. Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще. Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту. Иллюстрация струны Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам. Следовательно, кварк - это не что иное, как струна, вибрирующая по одной схеме, а электрон - это не что иное, как струна, вибрирующая по другой схеме. Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах. Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной. Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл.
Теория струн
Вихри Абрикосова в сверхпроводниках второго рода Более интересно появление струны в роли устойчивых квазичастиц или, другими словами, локализованных возбуждений в системе, а так же при изучении нетривиальных фазовых состояний, в частности, при спонтанных нарушениях локальной внутренней симметрии. В такой ситуации струны не только не редкость, а скорее закономерность. Как бы это ни было парадоксально, но причиной появления этих образований является трехмерность нашего пространства. Бывают и более сложные, а значит и более интересные причины появления струны — динамические. Примером такой струны является простейшая модель мезона, упомянутая выше. Стоит заметить, что задача о струне с натяжением, на концах которой закреплены точечные массы, а именно так и выглядит в струнной терминологии простейшая модель мезона, до настоящего времени полностью не решена в силу возникающих при ее решении математических сложностей. Говоря о струнах в физике, нельзя не обратиться и к несколько более спекулятивному понятию фундаментальной струны. Это понятие связано, в первую очередь, со сценариями объединения фундаментальных взаимодействий электромагнитного, слабого, сильного и гравитационного. Тут полезно будет напомнить, что три из них исключая гравитационное , удовлетворительно описываются стандартной моделью, которая объединила в себе теорию электрослабого взаимодействия Вайнберга — Салама объединение электромагнитного и слабого взаимодействий и квантовую хромодинамику теорию сильного взаимодействия. Про гравитацию на настоящий момент мы знаем только то, что есть классическая теория гравитации — Общая Теория Относительности ОТО , и что наши наблюдательные возможности не позволяют нам наблюдать ни эффектов квантовой гравитации, ни наличие каких либо поправок к предсказаниям ОТО. То есть, с точки зрения физического метода тут царит полная гармония.
А именно, имеющаяся теория полностью соответствует имеющемуся эксперименту. Тут надо ждать новых экспериментов, результаты которых разойдутся с теорией. Тогда появится необходимость эту теорию исправлять. Заметим, что это одна из надежд, по-прежнему возлагаемых по настоящий момент на Большой Адронный Коллайдер. Таким образом, при обсуждении проблем, связанных с созданием теории Великого Объединения, в современной физике можно проследить следующие направления. Либо ее признаки содержатся в стандартной модели, либо их надо усматривать в Общей Теории Относительности. Попробуем разобраться в этой ситуации. Можно было бы предположить, что на место стандартной модели на более фундаментальном уровне придет какая-то модель великого объединения, обладающая более высокими внутренними симметриями, или, большинство полей стандартной модели окажутся чем-то вроде частиц, составленных их полей какой-то иной, более фундаментальной природы. Однако, попытки найти подобное построение в рамках принятой локальной теории, в которой все частицы являются точечными, с неизбежностью приводит к существованию в такой теории ультрафиолетовой высокоэнергетической бесконечности, природа, которой заключена именно в точечности фундаментальных объектов. Поэтому, все с той же необходимостью, приходим к утверждению, что современная стандартная модель есть не что иное, как низкоэнергетический предел какой-то более универсальной модели.
Формальным подтверждением этого является известный факт, что все динамические уравнения обсуждаемой модели являются дифференциальными уравнениями второго порядка. Этот факт известен любому, кто изучал физику хотя бы в объеме средней школы. И он получает свое логическое объяснение, если признать, что фундаментального закона природы тут просто нет, а есть описание низкоэнергетического приближения к этому закону. Другими словами, ключевые свойства стандартной модели являются серьезнейшим указанием на ее нефундаментальность — фундаментальную теорию надо искать где-то в другом месте. Возможно, что направление этих поисков может указать нам гравитация. Попробуем проанализировать ситуацию, связанную с основными проблемами этой теории. Основные проблемы данной теории можно охарактеризовать следующим образом. Во-первых, это проблемы чисто математического характера. Эти проблемы связаны с сильной нелинейностью уравнений поля — уравнений Эйнштейна.
Но вот будет ли вин — ещё большой вопрос: вспоминаем, как физики ещё после Ньютона полагали, что все законы природы познаны, и больше ловить на этом поле нечего. Как бы то ни было, мозголомка по всему миру продолжается, пока ты сидишь в интернетах. Вины[ править ] Mузыкальное произведение, популяризирующее теорию струн и демонстрирующее какие проблемы привели к её появлению Ясен пень, что никто не стал бы мучиться с этой вашей непонятной теорией, если бы она не обладала большими плюсами в глазах физиков. И таковые действительно есть, причём какие! Прекращение борьбы бобра с ослом. На протяжении ХХ века бобро в лице ОТО и осло в лице квантовой механики цапались друг с другом, причиняя неистовый butthurt физикам. Как написано выше, теория струн нашла способ их помирить — не без обработки напильником, конечно, но осло по крайней мере перестало люто стремиться уничтожить бобро. Избавление от сингулярности. За что физики особенно благодарны теории струн — это за то, что ей в определённом смысле удалось укротить такое чудовище, как сингулярность, то есть возникающую по уравнениям ОТО бесконечную кривизну пространства-времени в экстремальных условиях например, в чёрных дырах или во время Большого взрыва. Теория струн утверждает, что никакой сингулярности не будет, ибо вся Вселенная имеет минимальный размер сжатия так называемый планковский размер , после которого она автоматически «вывернется наизнанку» и вновь начнёт расширяться. Точнее, продолжит сжиматься, но со стороны это будет выглядеть как расширение. Шанс стать Единой теорией. Физики полагают, что это одна из конечных целей физики как науки. Фейлы и трудности[ править ] M-теория таки идёт к успеху , но пока ещё не пришла, и у неё много своих проблем, при упоминании которых физики прикладывают руку к лицу. Сверхсложная высокость. Уравнения теории струн и уж тем более её последнего релиза — M-теории настолько сложны, что физики большей частью оперируют только их приближёнными формами. Что, конечно, не ведёт к повышению точности результатов. Более того, часто складывается такая ситуация, что для решения этих уравнений даже соответствующих математических методов-то не создано, и приходится придумывать всё на лету. Ёбаный стыд. Только этот стыд, собсно, не к самой теории струн, а к нынешнему состоянию математики. Уж пару веков старая добрая ньютоновская небесная механика никаких вам струн поставила общую задачу трех тел , а фиг ли толку? Или вот уравнения Навье — Стокса для турбулентных потоков — старая добрая классическая гидродинамика, двести лет отроду. За доказательство существования и гладкости решения даже не за само решение! Что символизирует. Практически везде, где физика уперлась в тупик, на самом деле в тупик уперлась математика. И в теории струн — тем более, ибо она там сложнее, чем где бы то ни было. И эта проблема служит источником двух других. Экспериментальный вакуум. Главный косяк теории — то, что она описывает явления на таких малых масштабах, что напрямую экспериментально подтвердить её основные утверждения невозможно. И никогда не будет возможно — для этого нужен не страшный ужасный адронный коллайдер длиной 27 километров, а ускоритель размером примерно с видимую Вселенную. Само по себе это не приговор — нужно только вывести косвенные наблюдаемые следствия. Вот теория великого объединения , например, предсказывает распад протона с ненулевой вероятностью — и физики надеются, загоняя в подземные резервуары туеву хучу тонн воды, что какой-нибудь протон, на глазах у их детекторов, таки распадется. Физика питается косвенными свидетельствами — в конце концов, как электроны движутся вокруг ядра, тоже никто до недавнего времени ни в какой микроскоп не видел, и ускорителей тогда тоже не было. Проблема в том, что выводить наблюдаемые следствия из уравнений теории струн при их нынешнем математическом состоянии — задача для волшебников. А без математического прорыва и прямого эксперимента в теории струн иногда в ход идут такие хитровыебанные аргументации, что любой продажный адвокат пожал бы физикам руку. Элементарные частицы, дополнительные измерения и некто Карл Поппер. Десятимерная теория струн на более привычных масштабах должна, естественно, сводиться к известной и ОЧЕНЬ хорошо проверенной физике элементарных частиц. Но, как выясняется, способов такого сведения существует по меньшей мере 10100 , хотя не исключено, что и 100500 , а то и вовсе бесконечность. При этом каждая из получившихся четырёхмерных теорий описывает свой собственный мир, который может быть похож на реальность, а может и принципиально отличаться от нее. Проблема здесь в том, что свойства частиц считаются способом колебания струн, а возможные способы колебания струн зависят от точной геометрии дополнительных измерений. Но существующим приближенным уравнениям удовлетворяет туева хуча разных геометрий. То есть эти уравнения были бы справедливы не только в нашем мире, но и в туевой хуче других миров, а возможно — в любом мире. Будь эти приближенные уравнения окончательными, это был бы тотальный экстерминатус в связи с нефальсифицируемостью по Попперу, то есть признаком ненаучности теории. А так — хвост пистолетом и искать точные уравнения. Квантовая гравитация[ править ] Основным результатом теории струн ну или М-теории, всем похуй принято считать возможность проквантовать гравитацию. Ясно дело , что кроме теории струн есть ещё и другие способы эту вашу гравитацию квантовать, которые убоги каждый в чем-то. Поэтому надо тут остановиться подробнее. Квантовая теория поля учит нас, что все взаимодействия между частицами можно представить в виде картинок, диаграмм Фейнмана. Например взаимодействие электрона и позитрона можно нарисовать в виде диаграммы справа, как обмен одним фотоном. Электрон и позитрон взаимодействуют, обмениваясь фотоном Но это только так называемое древесное приближение — на деле эта диаграмма даёт лишь классическую теорию, а квантовые эффекты появятся, если мы будем рисовать петли. Петлевые поправки к взаимодействию между электронами На этих диаграммах волнистая линия — фотон, прямые линии — электрон и позитрон. Но все это можно рисовать для любого взаимодействия. Ты, анон, уже догадался, что этих петель можно рисовать чуть более, чем дохуя. А именно, бесконечно.
Теория струн и квантовая механика 06. В своей работе , опубликованной в журнале PhysicsLetters B, они показали, что один из фундаментальных принципов квантовой механики — принцип неопределенности Гейзенберга — можно вывести из теории струн. Об этом пишет портал e ScienceNews. Ученые решили развернуть последовательность рассуждений.
При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе. Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий. Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной. Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны сокращение от мембраны , фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт: 11-мерность 10 пространственных плюс 1 временное измерение ; двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность; браны — струны, с более чем 1 измерением. Следствия В результате вместо одного возникло 10 500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн. Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей. Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров. Возможен даже переход между вселенными с разными законами физики. Однако вероятен вариант, когда квантовая теория гравитации сделает их существование невозможным. Многие физики считают, что голографический принцип, когда вся информация, содержащаяся в объеме пространства, соответствует информации, записанной на его поверхности, позволит глубже понять концепцию энергетических нитей. Некоторые полагают, что теория суперструн позволяет множественность измерений времени, следствием чего может быть путешествие через них. Кроме того, в рамках гипотезы существует альтернатива модели большого взрыва, согласно которой наша вселенная появилась в результате столкновения двух бран и проходит через повторяющиеся циклы создания и разрушения. Конечная судьба мироздания всегда занимала физиков, и окончательная версия теории струн поможет определить плотность материи и космологическую константу. Зная эти значения, космологи смогут установить, будет ли вселенная сжиматься до тех пор, пока не взорвется, чтобы все началось снова. Никто не знает, к чему может привести научная теория, пока она не будет разработана и проверена. Создатели квантовой физики не знали, что она станет основой для создания лазера и транзистора. И хотя сейчас еще не известно, к чему приведет такая сугубо теоретическая концепция, история свидетельствует о том, что наверняка получится что-то выдающееся. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Каждый колебательный паттерн соответствует разным частицам. Электрон - это не что иное, как струна, вибрирующая по одному шаблону, а протон - это струна, вибрирующая по другому шаблону. Это просто математическая концепция, нет никаких экспериментальных доказательств теории струн. В природе существуют четыре фундаментальные силы: гравитация, электромагнетизм и слабые и сильные ядерные силы. Одна из главных целей физиков - разработать теорию, которая может описать все эти силы. За последние 6 десятилетий, пытаясь объединить все силы, физики-теоретики выдвинули много разных интересных идей и новых теорий. Одна из самых многообещающих из этих теорий - теория струн. Теория струн в настоящее время стала самой противоречивой концепцией в физике, целью которой является объединение двух столпов физики 20-го века: теории относительности Эйнштейна и квантовой механики. Проще говоря, это всеобъемлющая структура, которая может объяснить всю физическую реальность если она доказана. Основная идея теории струн Выбери что-нибудь вокруг себя. Допустим, вы взяли яблоко со стола. Из чего сделано яблоко?