абиогенез и биогенез сборник картинок | Биогенез возник из экспериментов ученого Луи Пастера, которому удалось доказать, что самопроизвольное поколение абиогенеза не существовало.
Теория биогенеза объясняет возникновение жизни на земле - 90 фото
В то время как абиогенез является достоверной теорией, которая не была опровергнута, самопроизвольная генерация является устаревшей верой, которая, как было показано, неверна. Эти две теории отличаются тремя основными способами. Теория абиогенеза утверждает, что: Теория самопроизвольной генерации утверждает, что: Раньше ученые верили в самозарождение, но сегодня даже широкая публика больше не верит, что мухи происходят из гнилого мяса, а мыши - из мусора. Некоторые ученые также задаются вопросом, является ли абиогенез действительной теорией, но они не смогли предложить лучшую альтернативу. Теоретические основы абиогенеза Как могла зародиться жизнь, впервые предложил русский ученый Александр Опарин в 1924 году, а затем - британский биолог Дж. Холдейн в 1929 году. Оба предположили, что на ранней Земле была среда, богатая аммиаком, углекислым газом, водородом и углеродом, строительными блоками органических молекул.
Ультрафиолетовые лучи и молнии обеспечили энергию для химических реакций, которые позволили бы этим молекулам соединиться. Типичная цепочка реакций будет проходить следующим образом: Хотя теория представляла непротиворечивые и заслуживающие доверия концепции, некоторые из этапов оказались трудными для выполнения в лабораторных условиях, которые пытались имитировать те, что на ранней Земле. Материалы по теме: Элементы нуклеиновых кислот Экспериментальная основа абиогенеза В начале 1950-х годов американский аспирант Стэнли Миллер и его советник по выпуску Гарольд Юри решили проверить теорию абиогенеза Опарина-Холдейна, воссоздав раннюю земную среду. Они смешали простые соединения и элементы из теории в воздухе и выпустили искры через смесь. Когда они проанализировали полученные химические продукты реакции, они смогли обнаружить аминокислоты, созданные во время моделирования, Это доказательство того, что первая часть теории была правильной, подтверждается последующими экспериментами, в которых пытались создать реплицирующиеся молекулы из аминокислот.
Одной из проблем при разработке научных моделей абиогенеза является объяснение того, как молекулы превращаются в клетки, которые стали самовоспроизводящимися. Одна теория включает протоклетки, которые представляют собой организованные коллекции липидов, которые образуют сферическую форму. Ссылки Биогенез.
В википедии. Получено 23 мая 2017 г. В энциклопедии Британика онлайн. Навигация по записям.
В таких условиях термодиффузии РНК и белки накапливаются в одной локации, например — в вышеупомянутых порах, где происходит концентрация в миллиарды раз [7]. Теория условий: синтез в грязевых котлах Важным веществом клетки является фосфор, содержащийся в фосфорилированных органических молекулах, входящих в состав нуклеиновых кислот, аденозинтрифосфатов и др. Источниками достаточного количества этого вещества являются вулканы и горячие геотермальные источники. Они содержат фосфиты, пирофосфаты или оксиды фосфора. При растворении эти соединения дают молекулы в пригодной для сахарофосфатов и нуклеотидов форме. При кипении минеральных вод растворенные соединения разделяются, поэтому часть испаряется с водой и выходит в грязевых котлах.
При подобной сепарации металлов поднимающийся пар магмы содержит бораты, калий, натрий и соли молибдена в концентрации, такой же как в органической клетке. При добавлении гидроксиапатита в такую смесь на его поверхности откладывается рибоза [8] , [9] , а соли молибдена превращают разветвленные сахара в линейные, увеличивая синтез. Почувствуйте, как густые и горячие знания стекают вам на шею, ведь грязевые котлы обогащены всеми вышеописанными ранее элементами [10] , потому и представляются одними из самых вероятных мест появления жизни, имея несколько преимуществ сразу: Условия, богатые необходимыми микроэлементами. Источник тепла с постоянными условиями. Пористые минеральные осадки, работающие в качестве катализаторов, и локации для репликации органических соединений. Испарение на местах при концентрации веществ, солей и кислот, где происходит образование цепочек РНК. Несколько путей получения органических молекул. Фотохимические реакции и расположенные рядом защищенные поры. Нагрев пор, где накапливаются нуклеотиды и РНК в высоких концентрациях. Теория условий: роль метана и лаборатория Манчестера В 2008 году вышло исследование об обнаруженных на дне океана колонн из светлого известняка высотой до 60 метров.
Нагрев происходил за счет реакций в глубине твердых пород, поэтому метан и кислоты этих вод образуются абиогенно, а изотопный состав углерода в них такой же, как в углекислом газе [11]. В атмосфере древнего мира метан реагировал с азотом, водой и углекислым газом, образуя формальдегид. Соединения фотолиза метана не накапливались, а выпадали с дождем рис. Синильная кислота и формальдегид растворимы в воде, поэтому они вымывались и на поверхность поступали формальдегид, цианамид и цианид — являющиеся прекурсорами для азотистых оснований и РНК [12]. Рисунок 2. Источники и превращения метана CH4 иллюстрация автора статьи на основе [1] Это была бы вкусная шутка, но реакция получения нуклеотидов с помощью таких соединений была получена в 2009 году в Манчестере во время работы Д. Сазерленда и его коллег [13]. Они синтезировали пиримидиновые нуклеотиды путем смешения в одной установке предшественников сахаров и нуклеотидов с фосфатами рис. Приготовьтесь, сейчас придется немного похрустеть коркой головного мозга. Чтобы было проще, обратимся к рисунку 3 ниже, который будет иллюстрировать ход реакций.
Как можем видеть, первоначальные соединения представлены: цианоацетиленом, цианамидом, глицеральдегидом и гликольальдегидом. Рисунок 3. Описание синтеза пиримидиновых нуклеотидов иллюстрация автора статьи на основе [1] Фосфат в реакции не только облегчает синтез нуклеотидов, подавляя побочные реакции, но и направляет соединение цианамида с гликольальдегидом в сторону аминооксазола. А уже его соединение с глицеральдегидом образует арабинозо-аминооксазолин. В реакции же аминооксазолина с цианоацетиленом снова фосфат помогает реакции — он поддерживает кислотность и создает условия для получения арабинозо-ангидронуклеозида. После достаточно подогреть реакционную смесь для получения циклического цитидин-монофосфата. Такой раствор освещается ультрафиолетом, чтобы превратить часть цитозина в урацил и избавиться от побочных продуктов. Аналогичным способом получены пуриновые нуклеотиды при добавлении синильной кислоты, вместо цианоацетилена. Всего из четырех простых соединений, получаются все нуклеотиды и десять из двадцати белковых аминокислот! Но главное, в реакциях почти не образуется соединений, не встречающихся в клетках.
Пусть этот момент станет сюжетной пружиной моего повествования. До того времени РНК считалась только связующим элементом ДНК и белков, но последующие исследования показали способность РНК заменять белки в качестве катализаторов реакций, а также их ключевое значение в организации синтеза белка. Появилась гипотеза «РНК мира». Согласно этой теории, реплицирующиеся рибозимы стали первыми органическими соединениями начавшими эволюцию.
Группа абиогенез. Абиогенез картинки. Теория биогенеза имена ученых. Абиогенез ученые. Франческо реди абиогенез.
Теория абиогенеза иллюстрация. Возникновение жизни на земле абиогенез. Гипотеза абиогенеза доказательства. Абиогенез теории происхождения жизни. Ван Гельмонт теория самозарождения. Гипотеза абиогенеза сущность гипотезы. Гипотеза биохимической эволюции Опарина Холдейна гипотеза. Биохимическая Эволюция Опарина Холдейна. Этапы биохимической эволюции Опарина-Холдейна.
Этапы возникновения жизни согласно теории биохимической эволюции. Гипотеза биохимической эволюции абиогенез. Гипотеза биохимической эволюции презентация. Биохимическая гипотеза возникновения жизни. Идеи абиогенеза гипотезы. Биогенез ученые. Теория биогенеза картинки. Возникновение живого из неживого. Абиогенез это в биологии.
Происхождение жизни. Теории происхождения живого. Биогенез гипотеза происхождения жизни. Основные концепции возникновения жизни. Абиогенез живое из неживого. Теория абиогенеза Опарина. Гипотезы происхождения жизни на земле абиогенез. Идея абиогенеза. Сторонниками концепции абиогенеза были.
Гипотезы биохимической эволюции Миллера. Гипотеза биохимической эволюции Стэнли Миллер. Биохимическая Эволюция абиогенез. Миллер биохимическая Эволюция.
Проблема возникновения жизни (рассказывает профессор Улдис Калениекс)
- 1. Происхождение жизни на Земле
- Определены вероятные условия абиогенного синтеза полипептидов на ранней Земле
- Смотрите также
- Содержание
- Как появилась жизнь или абиогенез простыми словами | Пикабу
- Раздел 2: Абиогенез
Происхождение жизни и развитие органического мира. Эволюция
Работа Опарина с коацерватами подтвердила, что ферменты, лежащие в основе биохимических реакций метаболизма, функционируют более эффективно, когда они содержатся в мембраносвязанных сферах, чем когда они свободны в водных растворах. Холдейн, незнакомый с коацерватами Опарина, полагал, что сначала образуются простые органические молекулы, а в присутствии ультрафиолетового света они становятся все более сложными, в конечном итоге формируя клетки. Идеи Холдейна и Опарина легли в основу многих исследований абиогенеза, проводившихся в последующие десятилетия. В своем эксперименте они использовали аппарат с колбой, наполненной водой и химическими веществами, которые, как считалось, существовали на ранней Земле. Ученые обнаружили, что эти химические вещества при определенных условиях спонтанно образуют органические молекулы.
Эксперимент предполагает, что органические молекулы могли самопроизвольно образоваться на молодой Земле, став фундаментом для появления первых живых существ. Некоторые ученые считают, что условия эксперимента Миллера — Юри не соответствовали реальным, но последующие эксперименты с измененной атмосферой показали аналогичные результаты спонтанного образования аминокислот, липидов и нуклеотидов. ДНК служит основным средством хранения генетической информации. РНК — это рибонуклеиновая кислота, которая может выступать в качестве генетической библиотеки и катализировать реакции.
Эта способность делает РНК идеальным кандидатом для зарождения первой жизни на Земле. Так откуда же взялась РНК? Может ли РНК самопроизвольно образовываться? Если они могут быть синтезированы самопроизвольно в условиях ранней Земли, тогда можно будет решить большую часть головоломки о том, как зародилась жизнь.
И вот, недавно было обнаружено, что некоторые молекулы действительно могут образовывать все четыре нуклеотида в присутствии ультрафиолетового излучения или солнечного света. Первые клетки Итак, если органические молекулы и РНК могут спонтанно образовываться, то как насчет клеток?
Существуют различные гипотезы о том, каким образом могла возникнуть первая живая клетка.
Некоторые ученые предполагают, что первая клетка могла возникнуть из протоклеток, которые образовались при слиянии органических молекул. Другие считают, что первая клетка могла возникнуть через процессы самоорганизации молекул в примитивных мембранах. Независимо от того, какая именно теория образования первой клетки окажется верной, изучение этой темы имеет большое значение для понимания происхождения жизни на Земле и возможности ее существования в других частях Вселенной.
Раздел 3: Основные различия между биогенезом и абиогенезом Основное различие между биогенезом и абиогенезом заключается в идеях, которые определяют процесс возникновения жизни и организмов. Биогенез — это теория, согласно которой жизнь возникает только из предшествующей жизни. Она подразумевает, что все организмы имеют общего предка и происходят от него посредством размножения.
Однако, биогенез не объясняет, каким образом жизнь возникла впервые. Абиогенез, напротив, предлагает идею, что жизнь может возникнуть из неживой материи. Эта теория предполагает, что простые органические соединения могут сформироваться самопроизвольно из неорганических веществ под влиянием различных факторов, таких как энергия и химические реакции.
Абиогенез не исключает возможности существования других механизмов возникновения жизни, однако подразумевает, что они менее вероятны. Таким образом, основное различие между биогенезом и абиогенезом заключается в идеях о том, откуда происходит жизнь. В то время как биогенез подразумевает, что жизнь возникает только из предшествующей жизни, абиогенез считает возможным появление жизни из неживой материи.
Происхождение жизни из существующего живого организма Идея происхождения жизни из существующего живого организма была подтверждена большим количеством экспериментов и наблюдений. Наиболее известным и значимым из них является эксперимент Стэнли Миллера, проведенный в 1952 году. Миллер смешал в пробирке аммиак, метан, воду и молнию.
В результате имитации условий древней атмосферы Земли, он получил большое количество органических соединений, включая аминокислоты — основные строительные блоки белков, которые считаются важнейшими элементами жизни. Это открытие свидетельствовало в пользу идеи биогенеза и опровергало абиогенез. Хотя идея абиогенеза все еще обсуждается и некоторые люди придерживаются этой теории, научное сообщество считает, что биогенез является более вероятной идеей, объясняющей происхождение жизни из существующего живого организма.
Спонтанное возникновение жизни из неживой материи Различие между биогенезом и абиогенезом Основное различие между биогенезом и абиогенезом заключается в понимании того, откуда появилась жизнь на Земле. Биогенез утверждает, что жизнь возникла из живой материи, то есть из предшествующих организмов. Такая идея подтверждается современными научными открытиями и экспериментами, которые показывают, что жизнь может возникнуть только из жизни.
Попытки опровергнуть самозарождение жизни из неживого продолжались в начале 19 века наблюдениями и экспериментами Франц Шульце и Теодор Шванн. Джон Нидхэм добавила в фляжку куриный бульон и вскипятила. Затем он дал ему остыть и стал ждать. Микробы выросли, и он предложил это как пример самозарождения. В 1768 г. Лаззаро Спалланцани повторил эксперимент Нидхема, но удалил из колбы весь воздух.
Сто лет спустя, в 1770 г. Спалланцани установил, что в прокипяченных бульонах микроорганизмы не развиваются. Окончательно это доказал в 1861 году французский учёный Л.
Пастер , опыты которого не отрицают, однако, возможности абиогенного зарождения жизни в прежние геологические эпохи. Опыт Пастера В 1860 году проблемой происхождения жизни занялся Луи Пастер. К этому времени он уже многое сделал в области микробиологии и сумел разрешить проблемы, угрожавшие шелководству и виноделию. Он показал также, что бактерии вездесущи и что неживые материалы легко могут быть заражены живыми существами, если их не стерилизовать должным образом. В результате ряда экспериментов, в основе которых лежали методы Спалланцани, Пастер доказал справедливость теории биогенеза и окончательно опроверг гипотезы спонтанного зарождения. Пастер придал своим заключениям исключительную убедительность благодаря прекрасно задуманным и осуществлённым им экспериментам. Эти эксперименты имели целью не только доказать правильность положений автора, но и выявить ошибки его противников и вскрыть причины отдельных неудач его предшественников. Пастер заполнял баллон питательной средой, а шейке колбы придавал S-образную форму. Кипячением из баллона выгонялся воздух, который при остывании жидкости возвращался обратно.
Абиогенез и биогенез: основные различия
К 1861 году ему, наконец, удалось утвердить биогенез как твердую теорию, а не спорную гипотезу. Он решил эту проблему, поставив свои собственные эксперименты для проверки. Биогенез Теория биогенеза утверждает, что новые живые организмы могут возникнуть только из других ранее существовавших живых организмов в результате размножения. В основном размножение может происходить половым или бесполым путем, поэтому жизнь может возникнуть только из живых клеток. Пример В основном половое и бесполое размножение являются примерами биогенеза. Организмы, которые получают половину своего генетического материала от двух родительских клеток, относятся к половому размножению. С другой стороны, бесполое размножение относится к организмам, которые получают весь свой биогенетический материал от одной-единственной родительской клетки.
Спонтанное зарождение против биогенеза В то время разными учеными проводились эксперименты по опровержению теории самозарождения. Процедура Выбрали два больших и чистых стеклянных стакана. В стакан помещали такое же количество мяса. Держите открытым первый стакан. Второй стакан был накрыт или закрыт крышкой. Отложил два стакана в сторону и оставил их в покое на несколько дней.
Наблюдение Через несколько дней он заметил, что: В первом стакане без крышки на мясе развилось много личинок, а внутри и вокруг него присутствовали мухи. Во второй мензурке с крышкой не было ни опарышей, ни мух. Конечный результат Весь эксперимент опроверг идею самозарождения всех живых организмов, от мельчайших микробов до гигантских животных.
Что, в свою очередь, привело к самоорганизации первых примитивных форм жизни.
Об этом процессе многое известно. Но то, как именно информация кодируется в нуклеиновых кислотах ДНК и РНК , чтобы сформировать систему генетического наследования, и как все это трансформируется непосредственно в жизнь, остается загадкой. Другой, слегка неудобный для сторонников абиогенеза аспект заключается в том, что процесс этот, по-видимому, произошел в удивительно короткий промежуток времени. Эта теория требует, чтобы «первичный суп», из которого возникла самовоспроизводящаяся РНК, сформировался в течение 800 миллионов лет после стабилизации земной коры.
Этот интервал времени, по мнению некоторых исследователей, слишком короткий. Несмотря на свои недостатки и нехватку конкретных данных, абиогенез — это компромисс. И единственная признанная наукой на сегодня гипотеза о происхождении жизни. Гипотеза панспермии, однако, оспаривает почти все аспекты этой теории.
Гипотеза панспермии Авторы работы утверждают, что «жизнь попала на Землю с метеоритами и кометами. Как только условия на планете позволили бы ей выжить и развиваться. Это произошло около 4,1 миллиарда лет назад. Живые организмы, такие как устойчивые к космическим условиям бактерии, вирусы, более сложные эукариотические клетки и, возможно, даже оплодотворенные яйцеклетки и семена растений непрерывно падали на Землю.
До тех пор, пока условия на ней не позволили запуститься процессу биологической эволюции». Другими словами исследователи предполагают, что абиогенез происходил не на Земле. А основной источник генетического разнообразия не обусловлен выбором естественных полезных мутаций. И, скорее всего, жизнь появилась из-за «дождя» из внеземного живого вещества.
Который способствовал горизонтальному переносу генов. Помимо этого, исследование также утверждает, что различные массовые эпидемии связаны с появлением вирусов из космоса и что внеземные ретровирусы спровоцировали кембрийский взрыв. В работе также высказывается предположение, что осьминог может быть инопланетным существом.
Их структура показана на рис. Строение молекул, которые были использованы в экспериментах. А — аминокислоты, которые имеют положительный заряд и входят в состав белковых молекул живых клеток. Б — аминокислоты, также имеющие положительный заряд и встречающиеся в живых клетках, но не входящие в состав белков. В — альфа-гидроксикислоты, способные образовывать полимеры, соединяясь с аминокислотами в линейные или разветвленные цепочки при определенных условиях. Рисунок из обсуждаемой статьи в PNAS Наличие положительного заряда всех этих аминокислот определяется наличием более одного атома азота в их составе.
Один атом азота есть у любой аминокислоты в составе альфа-аминогруппы —NH2 , участвующей в формировании пептидной связи в белках. Эта группа связана в аминокислоте с тем же атомом углерода, к которому присоединена кислотная группа —COOH на рис. У положительно заряженных аминокислот имеется дополнительный атом азота в составе бокового радикала. Примечательно, что лишь первые три из перечисленных аминокислот входят в состав белков. Три другие аминокислоты встречаются только в свободном виде и в гораздо меньших количествах, чем аминокислоты белков. Отсюда следует логичный вопрос: почему же катионными аминокислотами в составе белков стали именно Lys, His и Arg? Это тем более удивительно, что в силу более простой химической структуры, в реакциях бесферментного синтеза выход Orn, Dab и Dpr значительно выше, чем Lys, His и Arg. А значит, они, вероятнее всего, преобладали на ранней Земле. McKee et al.
В реакционную смесь кроме аминокислот добавляли одну из двух органических кислот: гликолевую или молочную в пропорции 5:1 к аминокислотам. Эти два достаточно простых соединения являются альфа-гидрокси кислотами. То есть у них имеется при одном из атомов углерода альфа кислотная группа —COOH , а также гидрокси-группа —OH — в отличие от аминокислот, в которых на этом месте находится аминогруппа. В сущности, гликолевая кислота является гидрокси-замещенным аналогом аминокислоты глицина, а молочная — аланина. По представлениям химиков, эти соединения вполне могли формироваться на ранней Земле в тех же условиях, что и аминокислоты. В публикации 2016 года группа Кришнамурти показала, что в водных растворах, содержащих смеси аминокислот и гидроксикислот, эфирные связи с участием гидрокси- и карбоксигрупп образуются более эффективно, чем амидные связи S. Yu et al. Kinetics of prebiotic depsipeptide formation from the ester-amide exchange reaction. При последующем нагревании и высушивании эфирные связи могут замещаться на амидные, благодаря чему и формируются депсипептиды полимеры, содержащие как эфирные, так и амидные связи.
Доля амидных связей может расти со временем, теоретически, вплоть до формирования чистых полипептидов рис. Кстати, как отмечают авторы, та же реакция образования сначала эфирной связи с последующим замещением ее на амидную происходит и при наращивании цепочки полипептида в ходе трансляции в P-сайте рибосомы. Слева — варианты цепочек, образуемых при полимеризации органических молекул с участием карбокси-, гидрокси- и аминогрупп. В полипептидах есть только пептидные связи амидные через азот альфа-аминогруппы , в эфирах — только эфирные связи через кислород , депсипептиды сочетают в себе эфирные и амидные связи. Справа — предполагаемый переход от эфиров или депсипептидов к пептидам, обусловленный замещением эфирных связей на амидные. Рисунок из обсуждаемой статьи в PNAS Итак, проведя реакцию полимеризации в смеси аминокислот и гидроксикислот, авторы приступили к изучению полученных продуктов. Для этого использовали метод масс-спектрометрии. Однако в экспериментальной реакции формировались и нелинейные продукты полимеризации, обусловленной участием в реакциях атомов азота боковых радикалов. И вот тут-то и выяснилось то, что, вероятно, дает ответ на поставленный вопрос: частота формирования «нежелательных» связей через боковые радикалы оказалась весьма низкой для стандартных белковых аминокислот, но гораздо более высокой для трех небелковых.
А кроме того, стандартные белковые аминокислоты в отличие от Orn и Dab отличились и отсутствием склонности к формированию лактамов — зацикленных соединений, возникающих в результате реакции кислотной и аминогруппы внутри одной и той же молекулы аминокислоты. Полученные данные приведены на рис. Результаты анализа продуктов реакции в разных смесях. ND — соединение не определялось в ходе исследование его выход был ниже порога чувствительности методики Таким образом, среди шести проанализированных катионных аминокислот, именно три стандартных белковых аминокислоты оказываются наиболее «удачными» кирпичиками для синтеза «правильных» полипептидов в условиях абиогенного синтеза. Интересно, что разница еще более увеличивалась, если в смесь добавляли сразу две аминокислоты, одна из которых — типично белковая, другая — небелковая. Белковые аминокислоты еще чаще формировали пептидные связи, а небелковые еще чаще давали «неправильные» продукты с участием боковых радикалов. В заключение авторы говорят о том, что в последующем они рассчитывают проверить способность депсипептидов формировать «мутуалистические» ансамбли с другими молекулами — РНК и жирными кислотами. Согласно нынешним моделям, формирование таких ансамблей стало ключевым этапом на пути к возникновению полноценной живой клетки, способной размножаться и поддерживать гомеостаз внутренней среды благодаря наличию отграничивающей мембраны, молекулы нуклеиновой кислоты, от которой зависит передача наследственных свойств и белков, стабилизирующих структуру всех компонентов клетки, а также участвующих в метаболических реакциях в качестве высокоэффективных катализаторов.
При охлаждении водяные пары конденсировались на изгибах воздушного шара «лебединая шея», препятствуя проникновению пыли и микробов. Позже он обнаружил, что воздушные шары не отображают жизни. Затем он сломал трубки некоторых воздушных шаров и обнаружил, что через 24 часа питательный бульон был покрыт микробами, в то время как в целых шариках все еще не было жизни. Пастер показал, что воздух является источником микроорганизмов. Благодаря этому опыту теория биогенеза была окончательно «навязана», а критика, которую сделали защитники абиогенеза, заявив, что кипячение питательного бульона разрушило его действующее начало, была брошена на землю ». Биогенез - Концепции Раньше популярным было понятие самозарождения. Люди, в том числе выдающиеся научные мыслители, такие как Аристотель, считали, что крысы могут появиться из хранимого зерна и в отсутствие каких-либо биологических родителей. Аристотель писал в своей книге «История животных», что некоторые животные могут возникнуть от своих родителей, а другие могут вырасти спонтанно, а не одного типа. Следовательно, животное может происходить из разлагающейся земли или растительного вещества. Принцип самозарождения утверждает, что неодушевленные предметы могут производить живые существа. Иногда это называют абиогенезом. Эта теория больше не пользуется широкой поддержкой по сей день. С появлением лабораторных инструментов и микробиологических методов научные эксперименты, подобные эксперименту Луи Пастера, доказали, что живые существа не могут возникать спонтанно из неодушевленных предметов. Только живые существа способны воспроизвести другую жизнь. Таким образом, теория спонтанного зарождения устарела, а теория биогенеза получила более широкое признание. Однако устаревший абиогенез, по-видимому, имеет тот же основополагающий принцип, что и современная гипотеза абиогенеза происхождения жизни. Они отличаются тем, что современная гипотеза абиогенеза остается принятой и сегодня. Фактически, это одна из широко распространенных теорий, описывающих историю жизни. Следовательно, изначальная Земля была убежищем для первых форм жизни, возникших из неживой материи, например, органических соединений. Эти примитивные живые существа не были такими сложными, как те живые существа, которые мы знаем сегодня. Они менее продуманы по форме, структуре и функциям. Появление живых существ из неживых существ происходило постепенно и медленно, на протяжении миллионов лет.
Разница между биогенезом и абиогенезом
Он сделал вывод, что эволюция может произойти при фазовообособленном состоянии из раствора коацерватов. Однако такая система не может сама себя воспроизводить. Теория была обоснована, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путём случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул например, эффективные катализаторы , обеспечивающие преимущество данному коацервату в росте и размножении , то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам? Теория оказалась неспособной предложить решение проблемы точного воспроизведения — внутри коацервата и в поколениях — единичных, случайно появившихся эффективных белковых структур. Однако было показано, что первые коацерваты могли образоваться самопроизвольно из липидов, синтезированных абиогенным путём, и они могли вступить в симбиоз с «живыми растворами» — колониями самовоспроизводящихся молекул РНК , среди которых были и рибозимы, катализирующие синтез липидов, а такое сообщество уже можно назвать организмом [12]. Однако Ричард Докинз в своём « Эгоистичном гене », где он излагает геноцентрический взгляд на эволюцию [en] , предположил, что в первичном бульоне возникли не коацерватные капли, а первые молекулы- репликаторы , способные создавать копии самих себя.
Такой молекуле было достаточно возникнуть единожды и копировать себя в дальнейшем, используя органические соединения из окружающей среды насыщенного органикой «бульона». Сразу после появления репликатора он стал распространять свои копии по всем морям, пока более мелкие молекулы, которые стали «строительными блоками», не стали дефицитными, что вынудило первичные репликаторы бороться за выживание друг с другом и эволюционировать. Зарождение жизни в горячей воде[ править править код ] Гипотезу о возникновении жизни вблизи подводных вулканов высказал Л. Мухин в начале 1970-х [13]. Научные исследования показывают, что зарождение жизни в минеральной воде и, в особенности, гейзерах, наиболее вероятно [14]. В 2009 г.
Армен Мулкиджанян [d] и Михаил Гальперин на основе анализа содержания элементов в клетке также пришли к выводу, что, вероятно, жизнь зародилась не в океане [16]. Дейвид Уард доказал, что в горячей минеральной воде появились и сейчас образуются строматолиты [17]. Самые древние строматолиты были обнаружены в Гренландии. Их возраст насчитывает 3,5 миллиарда лет. В 2011 г. Тадаси Сугавара создал протоклетку в горячей воде [18].
Лауреат Нобелевской премии биолог Джек Шостак отметил, что мы можем легче представить себе накопление органических соединений в первичных озёрах, чем в океане. Такого же мнения — группа учёных под руководством Евгения Кунина [20]. Основная статья: Химическая эволюция Химическая эволюция или пребиотическая эволюция — первый этап эволюции жизни, в ходе которого органические , пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развёртывания процессов самоорганизации, свойственных всем относительно сложным системам, к которым относится большинство углеродосодержащих молекул. Также этими терминами обозначается теория возникновения и развития тех молекул , которые имеют принципиальное значение для возникновения и развития живого вещества. Генобиоз и голобиоз[ править править код ] В зависимости от того, что считается первичным, различают два методологических подхода к вопросу возникновения жизни: Генобиоз — методологический подход в вопросе происхождения жизни, основанный на убеждении в первичности молекулярной системы со свойствами первичного генетического кода. Голобиоз — методологический подход в вопросе происхождения жизни, основанный на идее первичности структур, наделённых способностью к элементарному обмену веществ при участии ферментного механизма.
Если наличие в природе эволюции живой материи можно считать доказанным, так как были вскрыты ее механизмы, археологами обнаружены древние более просто устроенные организмы, то ни одна гипотеза возникновения жизни не имеет такой обширной доказательной базы. Эволюцию мы можем наблюдать воочию хотя бы в селекции. Создать же живое из неживого никому не удавалось.
Несмотря на большое количество гипотез о происхождении жизни, лишь одна из них имеет приемлемое научное объяснение. Это гипотеза абиогенеза — длительной химической эволюции, которая протекала в особых условиях древней Земли и предшествовала биологической эволюции. При этом из неорганических веществ сначала были синтезированы простые органические, из них более сложные, далее появились биополимеры, следующие этапы более умозрительны и малодоказуемы.
Гипотеза абиогенеза имеет много нерешенных проблем, различных взглядов на определенные этапы химической эволюции. Однако некоторые ее моменты были подтверждены опытным путем. Другие гипотезы происхождения жизни — панспермия занесение жизни из космоса , креационизм сотворение творцом , самопроизвольное зарождение в неживой материи вдруг появляются живые организмы , стационарное состояние жизнь существовала всегда.
Реди — XVII в. Гипотеза панспермии не решает проблему возникновения жизни, а переносит ее с Земли в космическое пространство или на другие планеты. Однако и опровергнуть эту гипотезу сложно, особенно тех ее представителей, которые утверждают, что жизнь была занесена на Землю не метеоритами в этом случае живое могло сгореть в слоях атмосферы, подвергнуться разрушительному действию космической радиации и т.
Только вот как они долетели до Земли? С точки зрения физики огромных размеров Вселенной и невозможности преодолеть скорость света это вряд ли возможно. Впервые возможный абиогенез был обоснован А.
Опариным 1923-1924 г. Холдейн 1928 г. Однако мысль, что жизни на Земле могло предшествовать абиогенное образование органических соединений, высказывал еще Дарвин.
Теория абиогенеза была доработана и дорабатывается другими учеными и по сей день. Главная ее нерешенная проблема — это подробности перехода от сложных неживых систем к простым живым организмам. В 1947 г.
Бернал, на основе разработок Опарина и Холдейна, сформулировал теорию биопоэза, выделив в абиогенезе три стадии: 1 абиогенное возникновение биологических мономеров; 2 образование биополимеров; 3 образование мембран и формирование первичных организмов протобионтов. Абиогенез Ниже в общих чертах описан предположительный сценарий происхождения жизни согласно теории абиогенеза. Возраст Земли составляет около 4,5 млрд.
Жидкая вода на планете, так необходимая для жизни, по оценкам ученых появилась не ранее 4 млрд.
Подобные взгляды также высказывал британский биолог Джон Холдейн. Проверил теорию Стэнли Миллер в 1953 году в эксперименте Миллера — Юри. Оказалось, что образуются аминокислоты [11]. Позднее в разных условиях были получены также сахара и нуклеотиды [9]. Он сделал вывод, что эволюция может произойти при фазовообособленном состоянии из раствора коацерватов. Однако такая система не может сама себя воспроизводить. Теория была обоснована, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путём случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул например, эффективные катализаторы , обеспечивающие преимущество данному коацервату в росте и размножении , то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам?
Теория оказалась неспособной предложить решение проблемы точного воспроизведения — внутри коацервата и в поколениях — единичных, случайно появившихся эффективных белковых структур. Однако было показано, что первые коацерваты могли образоваться самопроизвольно из липидов, синтезированных абиогенным путём, и они могли вступить в симбиоз с «живыми растворами» — колониями самовоспроизводящихся молекул РНК , среди которых были и рибозимы, катализирующие синтез липидов, а такое сообщество уже можно назвать организмом [12]. Однако Ричард Докинз в своём « Эгоистичном гене », где он излагает геноцентрический взгляд на эволюцию [en] , предположил, что в первичном бульоне возникли не коацерватные капли, а первые молекулы- репликаторы , способные создавать копии самих себя. Такой молекуле было достаточно возникнуть единожды и копировать себя в дальнейшем, используя органические соединения из окружающей среды насыщенного органикой «бульона». Сразу после появления репликатора он стал распространять свои копии по всем морям, пока более мелкие молекулы, которые стали «строительными блоками», не стали дефицитными, что вынудило первичные репликаторы бороться за выживание друг с другом и эволюционировать. Зарождение жизни в горячей воде[ править править код ] Гипотезу о возникновении жизни вблизи подводных вулканов высказал Л. Мухин в начале 1970-х [13]. Научные исследования показывают, что зарождение жизни в минеральной воде и, в особенности, гейзерах, наиболее вероятно [14]. В 2009 г.
Армен Мулкиджанян [d] и Михаил Гальперин на основе анализа содержания элементов в клетке также пришли к выводу, что, вероятно, жизнь зародилась не в океане [16]. Дейвид Уард доказал, что в горячей минеральной воде появились и сейчас образуются строматолиты [17]. Самые древние строматолиты были обнаружены в Гренландии. Их возраст насчитывает 3,5 миллиарда лет. В 2011 г. Тадаси Сугавара создал протоклетку в горячей воде [18]. Лауреат Нобелевской премии биолог Джек Шостак отметил, что мы можем легче представить себе накопление органических соединений в первичных озёрах, чем в океане. Такого же мнения — группа учёных под руководством Евгения Кунина [20].
Правда состоит в том, что вокруг невероятно много вирусов. Вирусолог Кертис Саттл из Университета Британской Колумбии в Канаде и его коллеги в прошлом году опубликовали исследование о количестве вирусов, осаждаемых на Землю из атмосферы. Цифра колеблется около миллиарда в день на каждый квадратный метр Земли. Вирусы являются вездесущими. В 2017 году Пакорн Айессакун и Арис Кацууракис из Оксфордского университета в Великобритании опубликовали статью в Nature Communications, в которой пришли к выводу, что «ретровирусы возникли вместе со своими позвоночными хозяевами в океане» по меньшей мере 460 миллионов лет назад. Они также установили, что связанные объекты демонстрируют интересные модели. Когда организмы-хозяева превращаются в новые виды, их вирусные аналоги трансформируются аналогичным образом. Массовые вымирания и Кембрийский взрыв Появление таких ретровирусов, вероятно предшествует Кембрийскому взрыву, периоду, когда на Земле внезапно и беспрецедентно быстро возникло биологическое разнообразие сложных форм жиз н и. Они также появляются на сцене вскоре после массового вымирания в конце периода Эдиакарий, случившемуся 542 миллиона лет назад. Авторы объясняют эти процессы таким образом: массовое вымирание Эдиакария было скорее всего вызвано кометами, которые принесли с собой сложные ретровирусы. Также именно ретровирусы были основным фактором, спровоцировавшим Кембрийский взрыв. Они интегрировались в геномы бесчисленных наземных видов, вводя в них новый генетический материал, что привело к взрыву разнообразия живых форм. Ретровирусы интегрировались быстро и легко, в очень короткое время , потому что они прибыли на Землю уже готовые для этого. Это связано с тем, что гипотеза панспермии подразумевает космическую биологию, при которой, как пишут исследователи, «вся галактика и, возможно, локальная группа галактик представляет собой одну связанную биосферу». Согласно этой точке зрения, вся жизнь, как наземная, так и внеземная, связана общей биосферой. Существует базовое биохимическое единство всей жизни, отличающееся только тем, что в ее основе могут использовать разные изотопы важных элементов для жизни в разных частях Вселенной. Мысль о том, что абиогенез произошел на ничем не примечательной Земле в крайне короткий промежуток времени, в лучшем случае делает его маловероятным событием. Жизнь на других планетах Солнечной системы Ученых спросили, если их теория верна, почему мы не обнаружили явных признаков микробной жизни в других местах в Солнечной системе? Они ответили, что такие доказательства фактически найдены. Они ссылаются на работу Гилберта Левина, главного исследователя миссии «Викинг» 1976 года, работавшей на Марсе.
Происхождение жизни
Рисунок 3. Описание синтеза пиримидиновых нуклеотидов иллюстрация автора статьи на основе [1] Фосфат в реакции не только облегчает синтез нуклеотидов, подавляя побочные реакции, но и направляет соединение цианамида с гликольальдегидом в сторону аминооксазола. А уже его соединение с глицеральдегидом образует арабинозо-аминооксазолин. В реакции же аминооксазолина с цианоацетиленом снова фосфат помогает реакции — он поддерживает кислотность и создает условия для получения арабинозо-ангидронуклеозида. После достаточно подогреть реакционную смесь для получения циклического цитидин-монофосфата. Такой раствор освещается ультрафиолетом, чтобы превратить часть цитозина в урацил и избавиться от побочных продуктов. Аналогичным способом получены пуриновые нуклеотиды при добавлении синильной кислоты, вместо цианоацетилена. Всего из четырех простых соединений, получаются все нуклеотиды и десять из двадцати белковых аминокислот! Но главное, в реакциях почти не образуется соединений, не встречающихся в клетках. Пусть этот момент станет сюжетной пружиной моего повествования. До того времени РНК считалась только связующим элементом ДНК и белков, но последующие исследования показали способность РНК заменять белки в качестве катализаторов реакций, а также их ключевое значение в организации синтеза белка.
Появилась гипотеза «РНК мира». Согласно этой теории, реплицирующиеся рибозимы стали первыми органическими соединениями начавшими эволюцию. Спустя поколения, репликаторы предоставили каталитические функции белкам, а хранение генома практически полностью — ДНК [14]. Это стало величайшим прыжком мысли через синаптическую щель, однако без клеточных систем получение полноценных белков в водной среде невозможно. Вопрос решается нахождением условий, где участие воды в реакции снижено или у нее отсутствуют химически свободные молекулы — благо, примеры таких локаций мы уже с вами рассмотрели в предыдущих главах. РНК: естественный отбор палиндромов Двигаемся дальше. В условиях липидно-нуклеотидного раствора уже рассмотренных грязевых котлов, образуются последовательности РНК в 50—100 нуклеотидов. Липиды , к которым мы вернемся позже, при высыхании образуют слои и длинные цилиндры, где последовательности РНК упорядоченно накапливаются и сохраняют подвижность. При естественном отборе преимущество получают те последовательности, которые служат фрагментами для создания собственных копий — палиндромные цепи РНК [15]. Эта идея А.
Маркова превращает необходимость фрагментов в фактор естественного отбора, который может привести к образованию рибозима среди длинных палиндромных молекул. Киньте в грудь мне раскаленных углей, если это не подтверждает геноцентричный взгляд на эволюцию Ричарда Докинза [16] , ведь палиндромный способ упаковки молекул наблюдается и в последовательностях соединений нынешних транспортных РНК. Устойчивость к ультрафиолету тоже может быть признаком отбора, при котором выживали более длинные цепи. В таких молекулах защита соседних соединений осуществлялась за счет параллельных связей азотистых оснований — стэкинг-взаимодействия , похожего на «слоеный пирог» [17]. Важно то, что увеличение количества собственных копий способствует не только копированию, но и превращению простых органических веществ в нуклеотиды. В совокупности это знаменует появление обмена веществ, где реакции происходят при контроле ферментов. РНК: вещественный обмен Обмен веществ у первых органических структур развивался гетеротрофно, от сложных исходных соединений, как рибоза и азотистые основания, к более простым [1]. На начальных этапах РНК были доступны многие активные одноуглеродные соединения: Муравьиная кислота образуется при фотосинтезе на сульфиде цинка и выносится геотермальными источниками после реакций воды с базальтами. Формальдегид опадает с дождями, возникая при фотолизе метана. Угарный газ выделяется в составе газов вулкана.
Все три случая рассмотрены ранее и внимательный читатель вспомнит их, но именно диоксид углерода стал конечным нужным соединением. Хотя его восстановление без качественных катализаторов медленное, мы помним, что при абиогенном восстановлении реакция происходит под действием ультрафиолета или температуры. Выбор между способами использования углерода в обмене веществ зависит от среды. Рибулозо-монофосфатный цикл, питаемый формальдегидом [18] похож на древнейший синтез сахаров, а участие муравьиной кислоты в синтезе пуринов табл. РНК: энергия липидной мембраны Возвратимся к теме липидов. Электроны связей молекулы воды смещены из-за большей электроотрицательности кислорода. Вследствие этого одна сторона молекулы несет положительный заряд, а другая — отрицательный. Поэтому вещества с полярными молекулами гидрофильные притягиваются и смешиваются с водой, а неполярные молекулы гидрофобные — нет [19]. В живых организмах клетки окружены мембраной из двух слоев липидов, при смешивании их молекул в воде получается эмульсионная взвесь, а не растворение.
Первобытная атмосфера Земли сильно отличалась от того, что есть сейчас. Концентрация кислорода была чрезвычайно низкой, наблюдалась молния, вулканическая активность, постоянные бомбардировки метеоритов и приход ультрафиолетового излучения был более интенсивным. В этих условиях может произойти химическая эволюция, которая через значительный период времени привела к появлению первых форм жизни.. Почему абиогенез невозможен. Творческое исследовательское общество ежеквартально, 36 4. Pross, A. Происхождение жизни: что мы знаем, что мы знаем и что мы никогда не узнаем. Открытая биология, 3 3 , 120190. Садава, Д. Жизнь: наука биологии. Panamericana Medical. Саган, C. На терминах «биогенез» и «абиогенез». Истоки жизни и эволюция биосфер, 5 3 , 529-529. Шмидт М. Ксенобиология: новая форма жизни как основной инструмент биобезопасности. Bioessays, 32 4 , 322-331. Серафино Л. Абиогенез как теоретическая проблема: некоторые размышления. JourНал теоретической биологии, 402, 18-20.
На этом этапе видно, что задача хранения генетической информации осуществляется разными вариациями соединений, но естественным отбором избраны содержащиеся в нынешних клетках. К слову, синтетическая биология достигла больших результатов, создавая альтернативные нуклеотиды. В 2014 году, «нуклеотидный алфавит» был расширен до шести букв за счет включения нескольких синтетических пар гидрофобных нуклеиновых оснований [23]. При этом, смена геномного материала сопровождается преобразованием фермента отвечающего за копирование — полимеразы. Согласно идее П. Фортера, эти реакции происходили в вирусах, а выгодой стало прохождение защитных систем клетки [24]. Эволюция РНК: увеличение масштаба генома С появлением белкового синтеза в результате отбора, РНК-полимераза сняла с рибозимов обязанность репликации и позволила увеличить количество генетической информации. Белки стали промежуточным звеном построения липидной оболочки, а эволюция плоских структур РНК превратила их в трехмерные скопления, покрытые мембраной [25]. Независимость от сульфида цинка была еще невозможна, но появились пузыревидные структуры напоминающие вирусы не только механизмами репликации, но и размерами геномов. Эти кислоты использовали протоклетки , позволяющие увеличивать размер и стабильность генома. Изобретение ДНК и совершенствование ее копирования во множестве линий вирусов привело к обильному разнообразию ферментов, работающих с ней. Углубляясь в опыт прошлых глав, можно подытожить — надежная репликация ДНК знаменует скорое объединение генетических элементов в большие геномы, и последующий исход из источников возникновения не заставит себя ждать. Дальнейшая эволюция: происхождение эукариот Остался неразрешенный вопрос перехода количества в качество — о структуре клетки. Форму эукариота поддерживает цитоскелет из тонких и толстых белковых трубочек, а моторные белки перемещают компоненты клетки и обеспечивают ее подвижность. Деление и слияние мембран регулируется специальными белками. Благодаря этому большинство эукариот способны к фагоцитозу — поглощению частиц внешней среды. Еще одними важными органеллами являются митохондрии, которые имеют собственную генетическую систему. Их сходство с аэробными бактериями и пластидами стало первым этапом понимания происхождения эукариот. Пластиды и митохондрии образуются только в процессе деления, указывающего на происхождение от бактериальных симбионтов , попавших в цитоплазму [26]. В 2015 году найдены археи, близкие к эукариотам во множестве компонентов рис. Экспедиция, изучавшая геотермальные поля в Северной Атлантике, после сбора осадков, населенных бактериями и археями, провела анализ их ДНК. Он показал преобладание в той локации вида архей, относящегося к некультивируемой группе глубоководных архей deep-sea Archaea group [27]. После сбора и прочтения генома средствами вычислительной биологии установленный вид оказался ближе к эукариотам, чем все известные ранее. Вид обладает большим набором сигнальных белков, которые в эукариотах регулируют: перестроение цитоскелета, сигналы между мембраной, цитоплазмой и ядром, деление клеток и другие функции. Рисунок 4. Происхождение функций белковых доменов в клетках эукариот иллюстрация автора статьи на основе [1] В ходе эволюции эукариотам пришлось подчинить себе внутриклеточные симбиотические бактерии, вслед за тем появился новый биохимический путь. После симбиоза с митохондриями аэробное дыхание повысило эффективность использования пищи. Десятки кластеров глубоководных организмов независимо друг от друга приручили бактерии, окисляющие сероводород или метан [1]. Благодаря этому эукариоты приобрели функции фиксации азота, разложения целлюлозы, синтеза витаминов и пр. Но не надо захлебываться серотониновой пеной, ведь такой вектор эволюции кажется эгоистичным. Сложно сказать, существуют ли живые организмы только для пользы репликации генома или нет. Но в сравнении с короткой жизнью всего организма, часть информации нуклеиновых кислот существует невероятно продолжительное время, передаваясь при размножении и создавая новую структуру носителя [16]. Заключение Нами были описаны места возможного возникновения абиогенного синтеза органических соединений с содержанием нужных для этого веществ. А также на молекулярном уровне разобраны реакции получения органических соединений из простых микроэлементов на примерах работ А. Опарина и Д. Дальнейшую же эволюцию полученных биомолекул объясняют рассмотренные теории А. Маркова и П. Фортера, которые позже подтверждаются исследованиями в геотермальных полях Северной Атлантики. На протяжении всего текста можно было наблюдать уникальную биохимическую эволюцию, закономерности которой описываются лишь свойствами химических веществ. Закончу статью словами эволюционного биолога Ричарда Докинза: «Все живое эволюционирует в результате дифференциального выживания реплицирующихся единиц».
Как можно видеть, часть солей проявили нужное свойство — при достижении определенного уровня влажности в атмосфере сухая соль превращалась в насыщенный раствор. Проверка способности различных солей переходить в раствор во влажной атмосфере. Красными рамками выделены лунки, в которых наблюдался данный процесс лунки с жидким раствором выглядят темными, а сухие соли светлые. Рисунок из обсуждаемой статьи в Nature Communications Во всех экспериментах в смесь добавляли аминокислоту глицин — это наиболее простая по структуре аминокислота, и реакции спонтанной полимеризации с ней проходят более эффективно, чем с другими аминокислотами. Надо отметить, что здесь в реакционную смесь не добавлялись какие-либо дополнительные органические соединения вроде гидроксикислот, как это было в работе, которая обсуждалась выше. Пожалуй, наиболее заметным отличием этой работы от всех предшествующих является то, что эксперимент длился достаточно продолжительное время 10 суток и предусматривал многократные ежедневные повторения циклов смачивания и высушивания. Каждый цикл длился 24 часа. Авторы отмечают, что, хотя в условиях ранней Земли 4 миллиарда лет назад смена дня и ночи происходила в несколько раз чаще по расчетам астрофизиков, сутки тогда длились около 6 часов , 24-часовой цикл позволил исследователям обеспечить необходимый контроль хода эксперимента и регулярно забирать пробы для анализа. Результаты одной из серий экспериментов по полимеризации аминокислоты показаны на рис. Здесь глицин смешивали с четырьмя компонентами: хлоридами натрия и калия, а также гидроксидами калия и натрия. Оценка эффективности полимеризации глицина при разных условиях реакции. Во всех случаях глицин находился в смеси из хлорида натрия, хлорида калия, гидроксида натрия и гидроксида калия. Циклы режимов влажности RH — relative humidity указаны на левом графике. На правом графике черная линия повторяет голубую линию левого графика. По горизонтальной оси отложено число циклов и дней реакции, по вертикальной оси — доля молекул глицина, которые вошли в состав полипептидных цепочек. График справа наглядно демонстрирует, насколько эффективнее идет реакция в такого рода системе по сравнению с простым приливанием внушительного объема воды здесь — 20 мл. При таком подходе, имитирующем «дождь», эффективность реакции, фактически, приближается к нулю. На каждом цикле после этапа высушивания экспериментаторы отбирали пробы для анализа полученных продуктов, который проводили с использованием методов жидкостной хроматографии и МАЛДИ масс-спектрометрии. Их интересовало, во-первых, насколько большая доля аминокислоты войдет в состав полипептидов, а во-вторых, насколько длинные цепочки будут получены при тех или иных условиях. В следующей серии экспериментов результаты которых показаны на рис. Первая соль образует раствор во влажной атмосфере, а вторая — нет. График слева отчетливо показывает, что этот фактор критически сказывается на результате: полипептиды образуются почти исключительно в смеси с гидрофосфатом калия. Это, в общем-то, вполне ожидаемый результат, но в науке принято проверять все теоретические ожидания, даже достаточно очевидные. График справа отображает наращивание цепочек полипептида по мере добавления циклов высушивания-увлажнения в присутствии гидрофосфата калия. И хотя преобладающими оставались всегда дипептиды, можно заметить, что после десяти циклов реакции формировались также цепочки длиной вплоть до 11 аминокислотных остатков. На сегодняшний день это действительно рекорд! Формирование полипептидных цепочек из глицина в циклах высушивания-увлажнения смесей аминокислоты с солью. Слева — сравнение эффективности реакции в смеси с гидрофосфатом натрия и калия только вторая соль обладает свойством переходить в раствор во влажной атмосфере. Справа — результаты реакции полимеризации глицина в смеси с гидрофосфатом калия. Столбики отражают долю молекул глицина, вошедших в цепочки разной длины на разных циклах реакции. Из графика видно, что самые длинные цепочки включали 5 аминокислотных остатков после одного и двух циклов, 6 — после трех, девять — после пяти, и 11 — после десяти циклов. RH — относительная влажность. Рисунок из обсуждаемой статьи в Nature Communications Фосфаты здесь решили взять неспроста: фосфатные группы играют особую роль в клеточной биохимии и, вероятно, в той среде, где начиналась предыстория клеточной жизни, этих солей должно было присутствовать достаточно много. Тот факт, что именно калийная соль дает желаемый результат тоже примечателен, поскольку во всех современных клетках в цитоплазме стабильно поддерживается высокая концентрация ионов калия и низкая концентрация ионов натрия — клетка постоянно тратит большое количество энергии в виде АТФ, чтобы поддерживать именно такой баланс. Есть сильный соблазн предположить, что результаты эксперимента и указанные факты из клеточной физиологии — не просто совпадение! Но, конечно, чтобы утверждать что-то действительно уверенно, потребуется получить больше доказательств. Пока остается лишь строить догадки, что все это значит на самом деле. Интересно, как соотносятся представленные здесь результаты с другими работами, посвященными теме пребиотической эволюции. Предполагается следующее объяснение: в растворах с низкой активностью воды то есть с высокой концентрацией соли полипептиды, образованные аминокислотами с одинаковой хиральностью, оказываются значительно более устойчивыми, так как в них могут формироваться спирали, стабилизированные большим количеством водородных связей между аминокислотами. Этот фактор «отбора» на химическом уровне перестает работать при высокой активности воды. В своей недавно опубликованной статье A Prerequisite for Life ученый приводит эти соображения в качестве дополнительного аргумента в пользу все более популярной версии наземных гидротермальных источников как наиболее вероятных «колыбелей» пребиотической эволюции эта гипотеза активно разрабатывается в настоящее время международным российско-американским коллективом авторов, в котором большую роль играет российский ученый Армен Мулкиджанян, см.
Биогенез и абиогенез презентация
Возникновение жизни из неживого материала называется абиогенезом, и (согласно сторонникам абиогенеза) происходило в результате ступенчатой химической и молекулярной эволюции на протяжении миллионов лет. «Ответ пользователю @unawareof #христианскийтикток #вера #65доказательств #наукаибог #библия #биогенез #креационизм» от автора счастье в голове с композицией «Drivin» (исполнитель Willow Avalon). это процесс, который позволил неживой материи стать живыми клетками в источнике всех других форм жизни. Сторонники теории биогенеза (от греч. bios — «жизнь» и genesis — «происхождение») считают, что все живое происходит от живого, тогда как сторонники абиогенеза (греч. a — частица отрицания и «биогенез») считают возможным происхождение живого из неживой материи. Теория абиогенеза была подтверждена ещё в 1955 году американским учёным Мюллером-Юри. Теория биогенеза Биогенез возник после абиогенеза и объяснил возникновение живых существ противоположным образом.
БИОГЕНЕЗ: ХАРАКТЕРИСТИКА И ТЕОРИЯ - БИОЛОГИЯ - 2024
Креационизм, абиогенез и биогенез — основные концепции, которые по-разному трактуют начало жизни на планете. Основное различие между абиогенезом и биогенезом состоит в том, что абиогенез не был доказан научными экспериментами, тогда как биогенез был доказан научными экспериментами. Если поставить на одну чашу весов "абиогенез" и "биогенез", то вероятнее всего жизнь пришла на Землю из космоса, что упорно доказывает теория панспермии. Узнайте больше о значении абиогенеза и разнице между абиогенезом и биогенезом. Главная» Новости» Оценка доказательности доводов креационизм абиогенез биогенез.
Последние вопросы
- Этапы абиогенеза и происхождение жизни на Земле
- Особенности и теория биогенеза / биология
- Последние вопросы
- Биогенез и Абиогенез. — Религия и вера (Лёха Тканев) — NewsLand
Разница между абиогенезом и биогенезом
АБИОГЕНЕЗ — (от а и биогенез), термин относится к теории происхождения жизни на Земле: процесс образования органических соединений в условиях первичной бескислородной атмосферы в результате неорганических (абиологич.) реакций, т. е. без участия живых. В 1870 году Хаксли, как новый президент Британской ассоциации развития науки, выступил с речью, озаглавленной «Биогенез и абиогенез». Креационизм, абиогенез и биогенез — основные концепции, которые по-разному трактуют начало жизни на планете. Согласно гипотезе абиогенеза, жизнь возникла из неживой материи, и тем самым объясняет вечное существование Земли и жизни на ней, а все живые существа появились только от живых (биогенез). Таким образом, проблема биогенеза или абиогенеза, активно обсуждавшаяся и предшественниками, и современниками Дарвина, вряд ли может войти в круг тех направлений, синтез которых привел к становлению дарвинизма. Discover the magic of the internet at Imgur, a community powered entertainment destination. Lift your spirits with funny jokes, trending memes, entertaining gifs, inspiring stories, viral videos, and so much more from users like culoeajhzl.