Новости термоядерная физика

Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки.

Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака

Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия. В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии.

ядерная физика

За время меньшее 100 триллионных долей секунды шарик принял на себя 2,05 МДж энергии и выдал поток нейтронов, порождённых синтезом, унесших с собой 3 МДж энергии — в полтора раза больше, чем было потрачено. В результате был преодолён порог «зажигания», как называют его учёные — когда энергия, произведённая синтезом, превысила энергию запустивших реакцию лазеров. О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории.

И там, в момент наибольшего сжатия, возникали бы условия для «зажигания» небольшой части смеси дейтерия и трития в центре мишени — от 2 до 5 процентов общей массы, которые разогревали бы оставшееся тело мишени. Но достичь успеха удалось не сразу. Любые неравномерности в обжатии мишени разрушали ее задолго до момента схлопывания к нужному размеру и достижения нужной плотности и температуры. Ученые подыскивали способы эффективнее обжимать топливные капсулы. Изначальная концепция нагрева и сжатия капсулы лазерами потребовала бы порядка 100 мегаджоулей, но физики придумали вариант, где разгоняющиеся внешние плотные слои из топливного льда сжимают газовую топливную смесь, разогревая ее ударной волной сжатия — такая концепция требовала уже 2-3 мегаджоуля, в 30 раз меньше! Параллельно ученые в попытке добиться инерциального конфайнмента пробовали и увеличить «массу молотка», то есть энергии, которая «вкачивалась» в мишень за один выстрел начав с единиц килоджоулей, физики к 1980-м пришли к энергиям в десятки, а то и сотню килоджоулей за выстрел , так и поменять саму схему эксперимента.

В середине 1970-х годов физики решили поставить между лазерным излучением и мишенью посредника, то есть попробовать метод «непрямого воздействия». В этом варианте топливная капсула размером в миллиметр подвешивалась в центре небольшого золотого или свинцового сосуда, который получил название хольраум от немецкого Hohlraum, «пустое пространство, полость», термин взят из работ Макса Планка , посвященных излучению абсолютно черного тела. Детали их производства оставались в секрете до 1994 года. Под действием излучения лазера внутренняя поверхность сосуда становилась источником рентгеновского излучения, которое и попадало в мишень, запуская термоядерную реакцию. В рентген должно было превращаться от 70 до 80 процентов энергии лазерного излучения. В этом варианте поток излучения гораздо более равномерен и капсула, в теории, должна была сжиматься ровно, без искажения формы. Впрочем, на практике путь к этому оказался долгим. Рождения героя После нескольких промежуточных установок поменьше, в 1997 году США запустили строительство гигантской лазерной установки NIF стоимостью около 2 миллиардов долларов, которая должна была продемонстрировать работоспособность концепции и так называемый breakeven — равенство или превышение выхода термоядерной энергии над энергией лазеров, которая по проекту должна была составить 1,8 мегаджоуля. Проблемы NIF, как прототипа термоядерной электростанции, были видны еще до начала строительства — даже если бы 1,8 мегаджоуля термоядерной энергии получалось бы в каждом выстреле, затраты энергии «из розетки» все равно составляли бы скорее 500 мегаджоулей, а количество выстрелов не превышало бы 2-3 в сутки.

Кроме того, мишени для NIF представляли собой произведение криогенного ювелирного искусства: капсула миллиметрового размера и сверхточной формы наполняется топливом при температуре 15 кельвин и поддерживается при этой температуре в процессе помещения в установку и до момента эксперимента. Ну и разумеется, никакой энергоустановки в проекте предусмотрено не было, термоядерное тепло просто рассеивалось через градирни. В реальности все оказалось еще скромнее. Установка произвела первые полноценные выстрелы в 2010 году и вместо мегаджоулей термоядерной энергии ученые увидели сотни джоулей. Три года непрерывных усилий по совершенствованию установки привели к первому breakeven — выходу около 15 килоджоулей термоядерной энергии, что было больше, чем сообщали рентгеновского тепла стенки сосуда с капсулой. Однако это было далеко от того, что обещали до начала строительства NIF. Впрочем, основного заказчика этой установки все устраивало. Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования.

Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы.

Эти аппараты обеспечивают защиту сверхпроводниковых катушек магнитной системы в случае перехода сверхпроводника в резистивное близкое к критическому состояние и являются важными компонентами защиты. Четыре уже доставлены на стройплощадку.

Проблемы и решения На самой масштабной инновационной стройке мира не обходится без проблем. Продолжительность ремонта термоэкранов оценивается примерно в два года». Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия.

Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала.

Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду. С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом.

Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики

Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию. Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых.

Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов. Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко. Плюс нужно будет придумать, как превратить термоядерную энергию, например, в электричество.

Этот филиал возглавлял академик М. Миллионщиков, к которому пришел работать Е. Это ученый мирового уровня с очень широким диапазоном интересов. Но главная его активность состояла в развитии термоядерных исследований в нашей стране. Первые работы института были связаны с низкотемпературной плазмой.

Были выполнены замечательные исследования по лазерной физике, по созданию мощных газоразрядных лазеров. Эта работа продолжается до сих пор. Поскольку было необходимо создать площадку для крупномасштабных плазменных работ в области термоядерных исследований, здесь было решено создать два крупных комплекса. Один — «Ангара-5-1», а другой — токамак с сильным полем ТСП. Комплекс ТСП еще больше, он просто громаден, занимает целое здание в семь этажей. К нему примыкают четыре здания с ударными генераторами с общим энергозапасом в 4 ГДж. Строительство таких огромных комплексов, таких термоядерных устройств было начато в 1978 г. В настоящее время этот институт, переживший переименование из Филиала Института атомной энергии им.

Исследования по управляемому термоядерному синтезу первоначально начались в середине 50-х гг. У нас же первый термоядерный проект был запущен в начале 1970-х гг. Куртмуллаев, и у него была очень интересная идея магнитной ловушки. Она была пионерской, лучшей по тем временам, но не смогла стать кардинальным решением термоядерных проблем. Самое интересное, что в настоящее время эта часть работы остановлена, а в США с использованием той физики, которая здесь была наработана, строится термоядерная установка, в которой обещают получать энергию синтеза в безнейтронном цикле. Это реакция «протон — бор-11». Это была трудная работа? Надо сказать, что одновременно с большим токамаком, который здесь строился, был привезен из Курчатовского института небольшой токамак.

И на этом токамаке начались и идут по сей день очень важные исследования и по физике, и по технологиям. В термояде существуют два направления. Одно из них, называемое магнитным удержанием, связано с созданием реактора, в котором в плазме, удерживаемой магнитным полем, постоянно выделяется энергия синтеза, как в непрерывно работающей топке. А второе направление — так называемое инерционное удержание, которое предполагает организацию повторяемых взрывов небольшой порции смеси дейтерия и трития и высвобождение энергии. И если вы делаете такие последовательные взрывы, то это подобно двигателю внутреннего сгорания. Сегодня, спустя очень большое время, по мере развития работ по термоядерной энергетике абсолютное первенство принадлежит системам с магнитным удержанием. В первую очередь это токамаки, изобретенные в Курчатовском институте. Другие магнитные ловушки бесконечно отстали.

Системы с инерционным удержанием, может быть, в будущем найдут применение в энергетических реакторах. Но на основе сегодняшних знаний очевидно: энергия взрыва мишени настолько велика, что ее будет трудно удержать в камере разумных размеров. Кроме того, сами средства, способные инициировать этот взрыв, очень большие. Это прежде всего лазеры, в которых мы преуспели. На них трудилась и трудится замечательная команда, созданная под руководством М. Пергамента и Н. Другое направление в инерционном удержании — использование мощных электрофизических генераторов для инициации взрыва термоядерной мишени. Помимо исследований в интересах идеи импульсно-периодического термоядерного реактора, электрофизические установки могут создавать сверхмощные пучки заряженных частиц — электронов или ионов, токи с величиной в десятки мегаампер.

С их помощью изучают физику высоких плотностей энергии. Например, с помощью такого устройства, как «Ангара-5-1», вы можете сжимать вещество до очень больших давлений и температур. И здесь возникают новые процессы физики, которые очень важны для понимания многих явлений в природе. Например, они имеют отношение к астрофизике, к созданию новых веществ. Другая сторона этих импульсных систем — многочисленные возможности применения в плазменных технологиях, в частности в медицине. Но, получив некоторые фундаментальные знания, можно создавать машины небольшого размера практического назначения на основе новых принципов и технологий. Сейчас начинается новый цикл фундаментального исследования в области онкологии.

Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems. Предполагалось, что её агрегат обеспечит скорость в 1,8 миллиона километров в час за счет создания в рабочей камере особых плазмоидов. Эти сгустки, образованные замкнутым магнитным полем, вылетая наружу, и добавят скорости.

По данным Space. Это крупнейший в мире действующий экспериментальный термоядерный реактор. Его используют для удержания физической плазмы магнитным полем. Он находится в Калхэмском центре термоядерной энергии в Великобритании.

Термоядерный синтез вышел на новый уровень: подробности

Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития.

Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте

Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Американцы совершили прорыв в изучении термоядерной энергии. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые.

Ракетчики начали строить термоядерный двигатель

С учетом него сейчас проектируется установка ТРТ токамак с реакторными технологиями », — рассказал специалист. По его словам, помимо уже полученных навыков там будут отрабатываться новые технологии, необходимые для создания реактора, которых еще нет в ITER. Например, там будут использоваться высокотемпературные сверхпроводники, которые пока нигде не применялись. Они используются при изготовлении катушек. Аналогичные разработки ведутся в США и в Великобритании.

В природе термоядерные реакции постоянно происходят на Солнце, но там плазму удерживает огромная гравитация звезды. Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле.

Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития. Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им. Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него. Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму.

Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду. Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии. В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов.

Похожие новости:

Оцените статью
Добавить комментарий