Прокариотические клетки присущи древним одноклеточным организмам. Древнейшие на Земле организмы, не имеющие клеточного ядра, появившиеся около четырех миллиардов лет тому. Студариум химия егэ. Химия реальные варианты 2021. Клеточный центр. Рибосомы». Мы рассмотрим строение клетки, познакомимся с органеллами клетки, особенностями их строения и функциями.
Биология ЕГЭ 2024 | Studarium
Клеточный центр состоит из двух центриолей и центросферы. Студариум биосинтез белков. ЕГЭ биология 2022 задачи на Синтез белка. По словам команды, клетки используют мультимодальное восприятие, чтобы учесть внешние сигналы и информацию изнутри клетки, например, количество клеточных органелл. Любопытный пионер ищет вампиров среди советских школьников. Стильная мистическая драма с молодыми звездами. Митоз и мейоз за час. Набор хромосом и ДНК клетки.
В России стволовые клетки превратили в курьеров с лекарством
Давайте рассмотрим их основные структуры на примере клетки Инфузории-туфельки — одного из представителей царства Простейшие, типа Инфузории, класса Ресничные инфузории. это проект ранней профессиональной ориентации обучающихся 6–11 классов школ, который реализуется при поддержке государства в рамках национального проекта. это проект ранней профессиональной ориентации обучающихся 6–11 классов школ, который реализуется при поддержке государства в рамках национального проекта. Ученые Университета ИТМО буквально превратили стволовые клетки в почтальонов, несущих микроскопические капсулы с лекарством к опухолям. Впервые удалось выделить отдельные стволовые клетки плоских червей, наделяющие их уникальными способностями отращивать потерянные ткани и части тела.
Банк заданий ЕГЭ-2024: Биология
В результате при инфекции большая часть циркулирующих клеток была представлена вирусоспецифичным клоном P14, а его присутствие в тканях можно было выявить с помощью флуоресцирующих антител к TCR P14. Мышам в кровь вводили антитело анти-CD8 к маркеру Т-киллерных клеток, оно быстро распространялось по кровотоку и связывалось со всеми Т-киллерами в крови но не в тканях. При микроскопии срезов органов легко было отличить резидентные киллерные TRM от только недавно вышедших из крови в орган клеток, помеченных анти-CD8 антителом [9]. Численность резидентных клеток, подсчитанная этим методом, в 70 раз превышала количество, определенное методом проточной цитометрии; разница меньше чем в два раза наблюдалась только для резидентных клеток лимфоузлов и селезенки. Получается, стандартные методики выделения лимфоцитов из органов плохо подходят для анализа киллерных резидентных клеток и существенно занижают размеры популяции. Работа резидентных Т-клеток: не стоит путать туризм с эмиграцией Мышиные резидентные клетки тканей в нормальной ситуации почти не перемещаются внутри нелимфоидной ткани и достаточно прочно прикреплены молекулами адгезии к строме органа. Когда резидентные макрофаги той же ткани секрецией цитокинов инициируют реакцию воспаления, ТRM приобретают большую подвижность и патрулируют близлежащий эпителий в поисках зараженных клеток. Если воспалительная реакция усиливается, то клетки понимают это как сигнал о подкреплении: к работе патрульных TRM подключаются вновь прибывающие из крови TCM- и TEM-клетки.
Эти клетки крови куда более подвижны и лучше перемещаются в эпителии. С одной стороны, Т-хелперы по спектру Т-клеточных рецепторов более тканеспецифичны, то есть пересечений между репертуарами TCR клеток, взятых из разных тканей, совсем мало, тогда как клетки одного клона Т-киллера встречаются в разных тканях среди TEM [6]. Спектр функций и репертуар антигенной специфичности TRM еще предстоит исследовать, но способности к уничтожению зараженных клеток тканей у TRM-киллеров точно есть. Более того, в модели мышиной инфекции полиомавирусом, протекающей в ткани головного мозга, аффинность вирусоспецифичных Т-клеточных рецепторов резидентных киллерных клеток выше, чем у вирусоспецифичных клеток центральной памяти [10]. Однако размер популяции Т-клеток зависит не только от специфичности TCR к инфекциям, которые раньше протекали в данном органе, но и от гомеостатической пролиферации Т-клеток - размножения более удачливых клеток для заполнения емкости органа по числу Т-лимфоцитов. По маркерам CD28 и CD127 на поверхности клеток можно отличить недавно и давно активированные через TCR клетки от тех, которые получили только гомеостатический сигнал к пролиферации от фактора роста IL-7. При старении ткани гомеостатическое размножение клеток начинает преобладать над пролиферацией активированных через TCR клеток.
Независимо от Т-клеточных рецепторов часто функционируют NKT-клетки, тип резидентных клеток печени, встречающихся и в других тканях. Они могут быть активированы NK-клеточными рецепторами через распознавание не индивидуальных антигенов, а общих молекулярных паттернов опасности и тканевого стресса. При старении тенденция TRM к активации без Т-клеточного рецептора, через NK-клеточные рецепторы или цитокиновые сигналы, может приводить к ошибочному лизису клеток ткани, недостаточному контролю над хронически зараженными или перерождающимися участками эпителия. Патологические проявления, связанные с работой резидентных Т-клеток, включают органоспецифичные аутоиммунные синдромы и синдромы хронического воспаления в ткани. Примеры хронического воспаления, поддерживаемого резидентными Т-лимфоцитами, — контактный дерматит и псориаз, а механизмом служит выделение воспалительных факторов IL-17 резидентными Т-киллерами и IL-22 резидентными Т-хелперами дермы. Неясно, однако, есть ли в норме в головном мозге популяция TRM или же это Т-лимфоциты, оставшиеся в ткани после нейротропной вирусной инфекции [8]. Функции резидентных клеток памяти в норме — при отсутствии инфекции или хронического воспаления - могут включать cross-talk взаимную регуляцию преимущественно через секрецию цитокинов и костимуляторные молекулы с неклассическими малоизученными лимфоидными клетками.
Предполагаемые функции резидентных Т-лимфоцитов тканей. Часть функций может выполняться во взаимодействии с резидентными макрофагами Прим. Подобно естественным киллерам они являются «врожденными» цитотоксическими эффекторными клетками и не требуют сенсибилизации антигеном для активирования. Они являются первой линией защиты при бактериальных инфекциях, в частности микобактериальных, и играют важную роль в иммунной защите слизистых оболочек. TRM клетки контактируют с антигенпрезентирующими клетками тканей — дендритными клетками кожи и резидентными макрофагами тканей. Резидентные миелоидные клетки в разных тканях дифференцированы и слабо похожи друг на друга. К примеру, макрофаги маргинальной зоны селезенки, макрофаги печени и микроглия макрофаги мозга будут сильно отличаться и по морфологии, и по спектру функций.
Кроме обнаружения антигенов в ткани, резидентные макрофаги заняты регуляцией процессов старения и самообновления тканей, в частности, выделяют факторы роста и цитокины, стимулирующие деление стволовых клеток тканей. В жировой ткани, к примеру, макрофаги стимулируют дифференцировку новых жировых клеток, но при переходе в активированное M1-состояние запускают воспаление и вместо дифференцировки заставляют увеличиваться и набухать имеющиеся жировые клетки. Сопутствующие изменения метаболизма жировой ткани приводят к накоплению жировой массы и в последние годы связываются с механизмами развития ожирения и диабета II типа. Можно предположить, что хелперные TRM-клетки при патрулировании эпителия и образовании контактов с тканевыми макрофагами могут модулировать спектр и объем выделяемых последними факторов роста для стволовых клеток, воспалительных цитокинов и факторов ремоделирования эпителия — и тем самым участвовать в обновлении тканей.
Эндоплазматическая сеть Рис. Эндоплазматическая сеть Внутри эукариотической клетки мы видим сложные мембранные системы, образующие клеточные органеллы. Прежде всего, это эндоплазматическая сеть, или эндоплазматический ретикулум. Он представляет собой систему мембран, образующих соединенные между собой цистерны, полость которых не сообщается с окружающей цитоплазмой. Различают два вида эндоплазматического ретикулума: гладкий и шероховатый. На шероховатом расположены многочисленные гранулы, представляющие собой рибосомы.
Они находятся снаружи полости, с цитоплазматической стороны, и синтезируют белки, которые по специальному каналу сразу направляются в полость ретикулума или встраиваются в его мембрану. На гладком ретикулуме расположены ферменты, синтезирующие мембранные липиды. Таким образом, эндоплазматический ретикулум образует все компоненты, нужные для образования мембран то есть роста их площади. От эндоплазматического ретикулума отделяются мембранные пузырьки, внутри которых белки, синтезированные на шероховатом ретикулуме, переносятся в следующую органеллу — аппарат, или комплекс, Гольджи. Аппарат Гольджи Аппарат, или комплекс, Гольджи — система уплощенных мембранных цистерн, основная функция которых — сортировка и модификация прежде всего гликозилирование белков, направляемых на экспорт из клетки или встроенных в мембрану. Каждая группа белков, синтезированных на шероховатом ретикулуме, собирается в определенном участке на периферии аппарата Гольджи. В этих участках от него отделяются мембранные пузырьки, часть из которых дает начало клеточным органеллам, таким как лизосомы. Другая направляется к цитоплазматической мембране, сливается с ней и выделяет свое содержимое наружу. Таким образом осуществляется секреция из клетки таких белков, как пищеварительные ферменты, гормоны, белки межклеточного матрикса и гликокаликса. Аппарат Гольджи Лизосомы Лизосомы представляют собой мембранные пузырьки, внутри которых находятся гидролитические ферменты, расщепляющие белки, жиры, полисахариды.
В лизосомах кислая среда рН 4,5—5,0 , что отличает их от других органелл клетки. Лизосомы выполняют функцию клеточного пищеварения, расщепляя отработавшие компоненты клетки или вещества, поглощенные в результате фагоцитоза и пиноцитоза. Лизосома Пероксисомы Пероксисомы среди одномембранных органелл стоят особняком, т. В них находятся ферменты, катализирующие некоторые окислительно-восстановительные реакции, в которых участвуют перекиси. Они также играют важную роль в обезвреживании многих токсичных веществ. Белки, которые находятся в пероксисомах, поступают туда из ЭПС и кодируются в геноме ядра. На электронных микрофотографиях пероксисом часто можно видеть в них кристаллы ферментов.
По словам команды, клетки используют мультимодальное восприятие, чтобы учесть внешние сигналы и информацию изнутри клетки, например, количество клеточных органелл. В определенных ситуациях внутренние сигналы могут подавлять внешние стимулы: например, в опухолях, где клетки устойчивы к разным методам лечения Такая устойчивость к лекарствам — это серьезная проблема в борьбе с раком. Решить ее можно, если учесть контекстуальные сигналы, которые испытывают отдельные клетки. А дальше изменить их. Чтобы проверить, принимают ли клетки решения в соответствии с контекстуальным, мультимодальным восприятием, как это делают люди, исследователям пришлось одновременно измерять активность нескольких сигнальных узлов — это внешние датчики клеток — а также нескольких потенциальных сигналов изнутри клетки, таких как местная среда и количество клеточных органелл.
Мы - чудо, настоящее чудо природы, созданное из одной единственной клетки. Микроскопия Микроскопия - важнейший метод цитологии, в ходе которого объекты рассматриваются при помощи микроскопа. Его оптическая система состоит из двух основных элементов: объектива и окуляра, закрепленных в тубусе. Микропрепарат срез тканей располагается на предметном столике, расстояние от которого до объектива регулируется с помощью винта винтов. Чтобы посчитать увеличительную способность микроскопа следует умножить увеличение окуляра на увеличение объектива. К примеру, если окуляр увеличивает объект в 20 раз, а объектив - в 10, то суммарное увеличение будет в 200 раз. Некоторое внимание уделим направлениям в биологии, которые необходимо знать на современном этапе технического прогресса. Биоинженерия Биоинженерия - направление науки и техники, развивающее применение инженерных принципов в биологии и медицине. В рамках биоинженерии происходят попытки и довольно успешные выращивания тканей и создание искусственных органов, протезов. То есть биоинженерия занимается преимущественно технической частью. Медицинское направление в биоинженерии ищет замену органам и тканям человека, которые утратили свою функциональную активность и требуют "замены". Биотехнология Биотехнология - направление биологии, изучающее возможность применения живых организмов или продуктов их жизнедеятельности для решения технологических задач. В биотехнологии путем генной инженерии создают организмы с заданным набором свойств. В рамках биотехнологии происходит получение антибиотиков - продуктов жизнедеятельности бактерий, очищение водоемов с помощью моллюсков, увеличение плодородия почвы с помощью дождевых червей, клонирование организмов. Это разительно отличается от задач биоинженерии, хотя безусловно, эти дисциплины смежные.
Студариум биология клетки - фото сборник
Эндоплазматический ретикулум самая крупная органелла эукариотических клеток, комплекс мембран которой, составляет не менее половины всех мембран клетки. Ученым из Университета Северной Каролины-Чапел-Хилл удалось создать клетки, которые выглядят и функционируют как клетки живого организма, манипулируя ДНК и пептидами. Определение набора хромосом растительных клеток, имеющих различное происхождение Для решения задач необходимо знать процессы, которые происходят с хромосомами при. Ткани человека студариум. Какие основные виды тканей присутствуют в организме человека. Ученые Университета Северной Каролины в Чапел-Хилле создали искусственные клетки, которые выглядят и действуют как живые клетки организма. Как правило, дочерние клетки — это клоны, полные копии клетки исходной.
Студариум химия егэ - 83 фото
Как объясняет один из авторов статьи, магистрант физико-технического факультета Университета ИТМО Олексий Пельтек: «в качестве аналогии можно сказать, что мы сделали почтальона и конверт». Препарат винкристин поместили в полиэлектролитные капсулы размером менее микрометра, разрушающиеся под действием инфракрасного излучения. Они выполнены из полимеров, которые специальным образом осаждаются на матрицу из оксида кремния. Что самое важное, пока стволовые клетки с этими капсулами не будут облучены лазером, препарат не будет высвобожден. Эффективность разработки была проверена на первичных клетках меланомы, выделенных из тканей реальных онкобольных.
Стоит вспомнить, что клетки взрослеющего организма специализируются и уже не могут превращаться из одного типа в другой, хотя по-прежнему содержат тот же общий на всех геном. Даже стволовые клетки ограничены определенной группой порождаемых ими клеток. Плюрипотентных клеток, способных развиться в клетку любой ткани, насколько известно, в организме взрослых людей не сохраняется. А вот у плоских червей они есть — и эти «необласты» могут открыть нам главные секреты регенерации. Их существование известно уже больше века, однако до сих пор идентифицировать эту немногочисленную популяцию клеток не удавалось.
Альварадо и его соавторы использовали для этого piwi-1 — белковый маркер стволовых клеток.
Этапы деления клетки митоз. Фазы деления клетки митоз таблица. Таблица по биологии 9 класс фазы митоза. Митоз 5 класс биология. Опишите процесс митоза 10 класс. Митоз мейоз ЕГЭ биология шпаргалка. Фазы деления митоза таблица. Шпаргалка по фазам митоза и мейоза. Митотическое деление клетки таблица.
Митоз и мейоз таблица по фазам с рисунками ЕГЭ. Таблица деления митоза фазы митоза. Митоз мейоз шпаргалка фаз. Митоз и мейоз кратко и понятно схема. Митоз фазы мейоза стадии. Митоз фазы и процессы таблица. Характеристика фаз митоза кратко. Характеристика каждой фазы митоза. Фазы митоза кратко. Деление клетки таблица.
Деление клетки митоз и мейоз кратко. Сравнительная характеристика процессов амитоза митоза мейоза. Сравните два типа деления клетки: митоз и мейоз. Деление клетки мейоз 6 класс. Деление клеток 9 класс биология митоз. Деление растительной клетки мейозом. Деление клетки митоз схема. Фазы деления клетки митоз рисунок. Процесс митоза схема. Размножение клеток митоз и мейоз.
Цикл митоза и мейоза. Митоз интерфаза профаза. Фазы митоза интерфаза. Митоз подробная схема. Изображение фаз митоза. Сравнение фаз митоза и мейоза. Сравнить фазы митоза и мейоза. Фазы митоза и мейоза кратко. Схема мейоз митоз схема. Митоз мейоз ЕГЭ биология схема.
Таблица митоз мейоз 1 мейоз 2. Митоз и мейоз 2. Мейоз 1 фазы и набор хромосом. Мейоз схема 2n2c. Мейоз фазы и процессы таблица. Характеристика фаз мейоза 1. Профаза 2 деления мейоза. Схема деления митоза и мейоза. Деление клетки мейоз таблица. Фазы митоза хромосомный набор.
Митоз фазы и набор. Генетический набор профазы митоза. Ход митоза фазы процессы. Фазы деления митоза кратко. Стадии митоза схема. Плоидность клеток мейоз. Анафаза первого деления мейоза набор хромосом. Материнские клетки мейоз 1. Профаза метафаза анафаза телофаза таблица митоз. Основные различия митоза и мейоза.
Фазы деления митоза и мейоза таблица. Сравните деление клеток митоз и мейоз. Профаза анафаза телофаза метафаза интерфаза. Митоз профаза метафаза телофаза. Фазы мейоза метафаза 2.
В некоторых местах этого «поля» возникали внезапные изменения направления — так называемые «топологические дефекты». Это места, где физические силы, действующие на клетки, либо слабы, либо наоборот огромны. Чтобы понять, как эти дефекты сказываются на формах ткани, ученые ограничили пространство клеток формой круга и обнаружили, что они быстро самоорганизовались и выстроились в одном направлении.
Клетки начали быстро вращаться вместе, образуя упорядоченную спираль. При таком движении в центре круга остается только один топологический дефект. Таким образом, спираль будет постепенно превращаться в вихрь, создавая выступ или выпячивание ткани в середине диска.
Студариум биология клетки - фото сборник
Уже известно, что клеточная сенесценция особенно кратковременная участвует в пластичности клеток и регенерации, в том числе у млекопитающих. Это навело исследователей на мысль, что появившиеся у гидрактинии сенесцентные клетки запускают репрограммирование своих соматических соседок. Чтобы это изучить, исследователи провели транскриптомный анализ регенерирующих фрагментов на 0, 1, 3 и 6 сутки после ампутации. В транскриптомах они выявили 229 генов гидрактинии, которые были гомологами 279 генов-маркеров сенесценции, известных по базе данных CellAge. В частности, они обнаружили три гена, близких CDKN1A этот ген кодирует один из ключевых регуляторов клеточного цикла — p21 , которые, по-видимому, являются его паралогами. При этом у полипа нет ни одного гена, схожего со специфичным для позвоночных CDKN2A кодирующего другой важный регулятор — p16. In situ флуоресцентная гибридизация мРНК показала, что все три гена экспрессируются в отдельных клетках основной части тела полипа. Однако лишь один из них — Cdki1 — активен рядом с раной на первые сутки и не работает до и после этого.
Затем встал вопрос, куда исчезают «сделавшие свое дело» сенесцентные клетки. Действительно, ко 2—3 дню после ампутации соответствующие маркеры уже не заметны. При помощи трансгенных гидрактиний, экспрессировавших GFP под контролем промотора к гену Cdki1, ученые выяснили, что сенесцентные клетки перемещаются в гастродерму стенку кишечной полости полипа, после чего, по-видимому, просто оказываются выброшены через рот. Это происходило на вторые сутки после ампутации.
Диаграмма образуется, если вокруг каждой точки из некоторого заданного набора на плоскости построить область так, что для любой точки внутри этой области расстояние до заданной точки меньше, чем до любой другой точки набора. Пример диаграммы Вороного Специалисты решили применить этот метод, и оказалось, что по мере того, как ткань «закручивается», появляются не только «столбики» и «бутылки», но и новые геометрические формы, названий которых не существует. Ранее считалось, что в процессе развития некоторых органов эпителий формирует структуры, похожие на столбики или бутылки с толстым горлышком Получившаяся фигура напомнила нам щиток — пластинку треугольной формы на спинной части среднегруди некоторых насекомых.
Его латинское название —scutellum — и стало прообразом для скутоида, — рассказали авторы исследования.
Исследователи предположили, что градиенты представляют собой огромный резервуар информации, который позволяет клеткам постоянно контролировать окружающую среду. Когда информация поступает в какой-то момент клеточной мембраны, она взаимодействует со специализированными воротами в ион-специфичных каналах, которые затем открываются, позволяя этим ионам течь по ранее существовавшим градиентам, образуя канал связи. Потоки ионов запускают каскад событий вблизи мембраны, позволяя клетке анализировать информацию и быстро реагировать на нее. Когда потоки ионов велики или продолжительны, они могут вызвать самосборку микротрубочек и микрофиламентов цитоскелета. Обычно сеть цитоскелета обеспечивает механическую поддержку клетки и отвечает за ее форму и движение. Однако исследователи отметили, что белки цитоскелета также являются отличными проводниками ионов.
Клетки эукариот содержат множество внутренних структур, выполняющих определенные функции рис. Эти структуры называются органеллами органоидами. Цитоплазма заполнена взвесью частиц и органелл. Цитозоль гиалоплазма — свободная часть цитоплазмы, в которой взвешены органеллы. По химическому составу цитозоль представляет из себя густой раствор белков, углеводов глюкозы и ионов, заполняющий все внутреннее пространство клетки. Концентрации ионов натрия и калия внутри клетки и во внеклеточном пространстве различна, что играет важную роль в осморегуляции и передаче сигнала. У прокариот большинство реакций метаболизма протекает в цитозоле, т.
У эукариот часть химических реакций протекает в цитозоле, а часть — внутри органоидов. В животных клетках различают два слоя цитоплазмы: эктоплазма — наружный слой цитоплазмы мало органоидов, высокая вязкость ; эндоплазма — внутренний слой цитоплазмы содержит основные органоиды. Цитоплазма, как правило, не способна к длительному автономному существованию. Ядро Это крупная органелла около 6—7 мкм диаметром. Оно окружено ядерной оболочкой, которая образована двумя параллельно расположенными мембранами. Ядерная оболочка пронизана ядерными порами, где мембраны смыкаются, и полость ядра сообщается с цитоплазмой. В порах находятся сложные белковые комплексы.
Они переносят через оболочку из ядра в цитоплазму крупные молекулы и молекулярные комплексы, такие как мРНК и рибосомы, а из цитоплазмы в ядро — ядерные белки, которые синтезируются в цитоплазме. Внутри ядра находится одно или несколько ядрышек — плотных образований, где происходит синтез рибосомных РНК и сборка субъединиц рибосом. Остальное пространство ядра заполнено полужидкой кариоплазмой, в которой находятся молекулы ДНК, соединенные со специфическими белками, — хроматин. Строение хромосомы В процессе клеточного деления нити хроматина укорачиваются и утолщаются, превращаясь в хромосомы Перед делением хромосомы имеют Х-образную форму. Центральная часть, в которой соединяются две половины хромосомы, носит название центромеры, или первичной перетяжки. Кроме того, в хромосоме выделяются более плотные концевые участки, называемые теломерами. Различные хромосомы отличаются размерами и положением центромер.
Для каждого вида живых организмов характерен определенный набор хромосом, который отличается от наборов других видов. Видоспецифичный набор хромосом со всеми их характеристиками называется кариотипом.
Сенесцентные клетки помогают гидрактинии регенерировать
Результаты опубликованы в журнале «Природные материалы». Для эксперимента взяли мышечные клетки человека, способные сокращаться. Когда клетки помещали на плоскую поверхность, они выстраивались в линии и образовывали структуры, похожие на «пшеничное поле, по которому прошел ветер». В некоторых местах этого «поля» возникали внезапные изменения направления — так называемые «топологические дефекты». Это места, где физические силы, действующие на клетки, либо слабы, либо наоборот огромны. Чтобы понять, как эти дефекты сказываются на формах ткани, ученые ограничили пространство клеток формой круга и обнаружили, что они быстро самоорганизовались и выстроились в одном направлении.
Это и есть не что иное, как процесс оплодотворения, после которого конъюганты расходятся.
В дальнейшем сложное ядро делится, и часть продуктов этого деления путем преобразований превращается в макронуклеус, другие образуют микронуклеус. При этом не происходит увеличения числа особей, но обеспечивается рекомбинация обновление, перераспределение генетического материала. Перераспределение генетической информации несет огромный смысл для организма и вида в целом. Так создаются новые признаки организма, которые могут пригодиться ему в борьбе за выживание. Поэтому половой процесс представители простейших используют чаще в неблагоприятных условиях, пытаясь приспособиться к ним путем получения новых свойств. Еще один интересный вариант полового процесса встречается у жгутиковых и споровиков.
Копуляция — слияние двух клеток, с объединением их генетической информации. Дело в том, что на определенном этапе своей жизни клетка некоторых одноклеточных делится с образованием двух не обычных клеток, а аналогов половых — с половинкой набора генетической информации. Такие клетки называются гаметами. При их слиянии копуляции получающаяся новая особь будет иметь половину наследственных свойств от одного, половину от другого «родителя». Это повышает возможности животного приспосабливаться к условиям окружающей среды. Почему половой процесс наступает только при неблагоприятных условиях?
В трудной жизненной ситуации мы зачастую начинаем менять стратегию поведения, понимая, что наши прошлые привычки уже не работают. Точно так же ведет себя и любое одноклеточное животное: если условия стали неблагоприятными, значит, нужно попробовать приспособиться к ним. Но почему бы не использовать такую стратегию всегда, даже при неменяющихся условиях? Во-первых, вновь приобретенные признаки могут оказаться и вредными… Не стоит рисковать и перетруждаться, если вы и так хорошо приспособлены. А во-вторых, копуляции предшествует процесс образования гамет, который является очень энергозатратным. Подробнее об особенностях полового процесса и видах гамет вы можете прочитать в статье «Размножение и развитие организмов.
Поэтому нет никаких веских причин для полового процесса при нормальных условиях окружающей среды. Вот мы и разобрали общую характеристику всех простейших. Но некоторые виды имеют свои отличительные черты. Самое время познакомиться с некоторыми из них поближе. Особенность животного в том, что оно перемещается в пространстве с помощью псевдоподий ложноножек , о чем мы уже упоминали выше. Как работают ложноножки?
Помните цикл фильмов о трансформерах? Эти существа могли сначала быть машинами, а потом собираться в большого робота, который передвигался уже совсем по-другому. По такому же принципу происходит движение амёбы. Помогает в этом цитоскелет — каркас клетки, который находится в цитоплазме. Он включает в себя тонкие нитевидные белковые структуры — актиновые филаменты, с помощью которых амёба способна передвигаться. Как это происходит?
При необходимости передвижения актиновые филаменты цитоскелета разбираются на части и с током цитоплазмы движутся в нужном направлении, образуя своеобразное выпячивание клетки. Затем части снова собираются в цитоскелет, который поддерживает форму клетки. По типу питания эвглена является миксотрофом. Она может питаться автотрофно благодаря наличию в клетке хлоропластов , а также гетеротрофно, за счет поглощения готовых органических веществ. Малярийный плазмодий Малярийный плазмодий — представитель типа Апикомплексы, вызывающий малярию. Это заболевание человека, при котором происходит разрушение эритроцитов.
Малярия сопровождается лихорадочными приступами, анемией снижением уровня гемоглобина в крови , слабостью и может привести к летальному исходу. Такие простейшие называются паразитами, потому что при их попадании в организм человека они начинают приносить ему вред, при этом используя ресурсы организма для жизнедеятельности. У многих паразитов есть основной хозяин и промежуточный хозяин. Малярийный плазмодий не является исключением. Основной хозяин — это организм, в котором происходит половой процесс паразита. Цель этого процесса, как мы уже упоминали выше, — появление новых признаков, перераспределение генетической информации, и, как следствие, повышение приспособленности к условиям среды.
Промежуточный хозяин — это организм, в котором происходит бесполое размножение паразита. Цель данного размножения — увеличение численности особей и площади их расселения. Это позволяет паразитам избегать внутривидовой конкуренции: стадии питаются разной пищей и живут в разных организмах. Такая особенность позволяет паразитам быть практически неуловимыми. Так, основным хозяином Малярийного плазмодия является комар рода Anopheles, проживающий в тропиках. Давайте рассмотрим жизненный цикл Малярийного плазмодия.
Когда комар кусает человека, в ток крови попадает спорозоит, образовавшийся в организме самки комара. Спорозоит — это стадия в жизненном цикле Малярийного плазмодия — маленькая веретеновидная по форме похожая на веретено клетка, длиной 10—15 микрометров. Спорозоиты вместе с током крови распространяются по организму человека и попадают в клетки печени, где начинается шизогония. В результате образуются мерозоиты — подвижные клетки, которые способствуют распространению инфекции по организму.
В цитоплазме прокариот беспорядочно располагаются мелкие рибосомы. Цитоскелета в прокариотических клетках тоже нет, но иногда встречаются жгутики, которые способствуют передвижению бактерий. На поверхности бактериальной клетки находятся пили — белковые нити, с помощью которых бактерии присоединяются к субстрату или поверхности. Половые пили служат для обмена генетического материала между различными бактериями.
Фотосинтезирующие бактерии — цианобактерии, имеют в клетках фотосинтезирующие мембраны или тилакоиды, в которых содержатся пигменты, участвующие в процессе фотосинтеза, такие как хлорофилл. В неблагоприятных условиях холод, жара, засуха многие бактерии образуют споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из нее снова прорастает активная бактерия. Размножение прокариот. Чаще всего прокариоты размножаются бесполым путем: ДНК удваивается, и далее клетка делится в поперечной плоскости пополам. В благоприятных условиях бактерии способны делиться каждые 20 минут; при этом потомство от одной клетки через трое суток теоретически имело бы массу 7500 тонн! К счастью, таких условий в принципе быть не может.
Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям например, к лекарствам. При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК — плазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают. Роль бактерий в природе. Важнейшая роль бактерий в природе — это поедание отмерших организмов.
Новое исследование показало, как клетка «решает», какой ей стать 15.
Любой многоклеточный организм состоит из разных типов клеток, которые играют определенные роли, и все они работают вместе, чтобы поддерживать организм. При этом все эти разнообразные типы клеток развились из почти одинаковых стволовых. В то же время некоторые клетки могут выполнять разные функции. Хорошим примером являются фибробласты кожи, которые образуют слой дермы между слоями эпидермиса вверху и подкожного жира снизу. Фибробласты могут иметь различную специализацию, помогая восстанавливать раны, реконструировать внеклеточное пространство или даже вызывать фиброз.
Вирусолог Лосев рассказал, как клетки иммунной системы борются с угрозами
CD-ландшафт клеток | Студариум химия егэ. Химия реальные варианты 2021. |
Клеточные торнадо: ученые подсмотрели, как клетки создают наши органы (видео) | Вокруг Света | Французские ученые построили модель старения одноклеточных, согласно которой каждое их деление асимметрично — даже если внешне обе клетки-потомка одинаковы. |
Вирусолог Лосев рассказал, как клетки иммунной системы борются с угрозами — РТ на русском | 2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия. |
Ученые изолировали клетки — источник регенерации | Наиболее распространенными PAMPs являются липополисахариды, которые находятся в составе клеточной стенки грамотрицательных бактерий, липотейхоевые кислоты. |
Предложена универсальная модель старения одноклеточных организмов
В платном — доступ к заданиям и сертификации 32 лекции с заданиями для самопроверки Чат в Telegram с автором курса Свободное расписание Сертификат Присоединяйтесь к курсу в любое время! У курса два режима прохождения: в бесплатном режиме всем пользователям доступны видеоуроки курса. В платном — доступ к оцениваемым заданиям и сертификации. Записаться Оставьте свою почту, и мы напишем, когда курс откроется Отправить Все организмы состоят из клеток, и иногда мы можем увидеть их даже невооруженным глазом: например, обычное куриное яйцо — это тоже клетка, только экстремально крупная.
Были отброшены клетки, ДНК которых указала на то, что они уже вступили на путь специализации. В итоге ученые сузили поиск для двух групп клеток, различающихся активностью генов, — Nb1 и Nb2. Nb2-клетки отличались активным синтезом мембранного белка тетраспанина, функции которого пока малопонятны. Однако именно эти клетки, пересаженные плоским червям, едва не убитым мощной дозой радиации, позволили им полностью восстановиться. В результате ученые впервые получили сравнительно простой и ясный путь к выделению взрослых плюрипотентных стволовых клеток, необластов. Дело за малым — выведать у них секреты регенерации тканей, органов, а возможно, и целых конечностей.
Это открытие может углубить наши представления о коммуникации между нейронами и открыть новые пути для изучения нейродегенеративных заболеваний. Исследование опубликовано в журнале. Методика Для того чтобы сделать это открытие, исследователи использовали метод, называемый scRNA-seq. Этот метод представляет собой усовершенствованный способ изучения экспрессии генов на уровне отдельной клетки. В отличие от традиционных подходов, когда анализируются образцы тканей, содержащие множество клеток, scRNA-seq обеспечивает беспрецедентное разрешение, позволяя выявить детали, которые в противном случае оказались бы затерянными в общем объеме данных. Объектом исследования стал гиппокамп — область мозга, связанная с памятью и обучением. Используя scRNA-seq, они смогли выделить 15 различных групп или кластеров клеток на основе профилей экспрессии их генов. Каждый кластер представляет собой набор клеток со сходными функциями или характеристиками. Среди этих кластеров особенно выделялся один. Его генный профиль указывал на активность, связанную с глутаматом — важнейшим нейротрансмиттером в мозге.
Транспортная Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку. Выделяется два вида транспорта: Пассивный - часто идет по градиенту концентрации, без затрат АТФ энергии. Возможен путем осмоса, простой диффузии или облегченной с участием белка-переносчика диффузии. Внутрь клетки с помощью осмоса поступает вода. Облегченная диффузия характерна для транспорта глюкозы, аминокислот. Активный Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии АТФ не обойтись. Внутрь клетки крупные молекулы попадают путем эндоцитоза греч. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами T-лимфоцитами , которые переваривают их. В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула пузырек , который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение. Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза от др. Таким образом, процессы экзоцитоза и эндоцитоза противоположны. Клеточная стенка Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов - из хитина, у растений - из целлюлозы. Цитоплазма Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты - удалить из клетки. Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность. Прокариоты и эукариоты Прокариоты греч. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК - нуклеоида нуклеоид - ДНК—содержащая зона клетки прокариот. К прокариотам относятся бактерии, в их числе цианобактерии цианобактерий по-другому называют - сине-зеленые водоросли. Эукариоты греч. Растения, животные, грибы - относятся к эукариотам. Немембранные органоиды Рибосома Очень мелкая органелла около 20 нм , которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК рибосомальная РНК , синтезируемая в ядрышке. Запомните ассоциацию: "Рибосома - фабрика белка". Именно здесь в ходе матричного биосинтеза - трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК информационной РНК синтезируется белок - последовательность соединенных аминокислот в заданном иРНК порядке. Микротрубочки и микрофиламенты Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков у бактерий жгутик состоит из сократительного белка - флагеллина и ресничек. Микрофиламенты - тонкие длинные нитевидные структуры, состоящие из белка актина.