В процессе кодирования звукового сигнала производится его временная дискретизация – непрерывная волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина амплитуды. Звуковая волна. Амплитуду звуковых колебаний называют звуковым давлением или силой звука. Слайд 9Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки Частота. Подобно звуковым волнам, они распространяются в среде (воде), но свойства их гораздо сложнее, потому что скорость их зависит от длины волны.
Звук. Звуковая информация презентация
Для этого звуковая волна разбивается на отдельные временные участки. Разложение непрерывной звуковой волны является важным инструментом в области аудиоанализа и синтеза звука. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды.
Физика 9 класс. §33 Отражение звука. Звуковой резонанс
Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. Дискретизация — это преобразование аналоговой информации непрерывнго звука в набор дискретных значений, каждому из которых присваивается значение его кода. На графике показана зависимость амплитуды звукового сигнала от времени.
Они позволяют изменять качество звука и объем звукового файла. Оцифрованный звук можно сохранять без сжатия в универсальном формате wav или в формате со сжатием mp 3. Гц Звук «живой» и оцифрованный Задачи 1. Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 к. Задачи 2. Рассчитайте время звучания моноаудиофайла, если при 16 -битном кодировании и частоте дискретизации 32 к.
Программы растровой графики работают с точками экрана пикселями. Это называется пространственной дискретизацией. Компьютер запоминает цвет каждой точки, а пользователь из таких точек собирает рисунок. При этом зная количество пикселей по вертикале и горизонтали, мы сможем найти — разрешающую способность изображения. В процессе дискретизации каждый пиксель может принимать различные цвета из палитры цветов. При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета. Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет. В экспериментах по производству цветных стекол М.
Акустическая волна в разных средах Распространение звука в среде зависит от ее строения и характеристик. Жидкости, воздух, твердые тела — все эти вещества устроены по-разному, поэтому проводят звук неодинаково. Частицы воды и твердых тел удерживает между собой кристаллическая решетка. Атомы связаны электрическими силами, поэтому вода не может полностью растечься, а твердые объекты сохраняют форму. Как только звуковое давление смещает одну частицу, за ней следуют и другие. Это свойство называется упругостью и означает способность среды, тела противостоять деформации. Чем более упругая среда, тем быстрее она проводит звук. В сравнении с твердыми телами и жидкостями воздух наименее упругий. Это объясняется его строением. Частицы не удерживают между собой никакие связи, поэтому воздух все время стремится рассеяться. Этому препятствует сила тяжести и постоянные столкновения атомов между собой. В твердых телах, особенно металлах, звук проходит намного быстрее до 5-6 тыс. Что препятствует распространению звука От тела звук расходится во все стороны одинаково, но только в том случае, если на его пути нет преград. Не все препятствия мешают распространению звука.
Дифракция и дисперсия света. Не путать!
Данный показатель меняется в зависимости от среды. Преодоление скорости звука Как же происходит преодоление звукового барьера? Самолет взлетает и постепенно разгоняется все сильнее. Его обтекает сверхзвуковой воздушный поток, в результате чего в носовой части образуется ударная волна. Их может быть и несколько — в зависимости от формы летательного аппарата. Схема образования ударной волны В данной области давление и плотность воздушной среды резко повышается. В момент, когда самолет превышает скорость звука, он проходит через эту область и возникает звук громкого хлопка, который похож на выстрел.
Пилот в кабине никаких звуков не слышит — о преодолении звукового барьера он узнает только по специальным датчикам. Также ощутимы изменения в плане управления самолетом. Интересно: Как и почему летают самолеты? Описание, фото и видео Громкий взрывоподобный хлопок — это звуковой удар. Его можно услышать, стоя на поверхности земли, когда самолет летит на сверхзвуковой скорости неподалеку. Ударные волны, которые он образует, визуально можно представить в виде конуса, сопровождающего летательный аппарат.
Вершина конуса располагается в носовой части. Волны распространяются от нее на большие расстояния.
Поскольку звуковые волны передают энергию колебаний — эту энергию можно преобразовать обратно в те же самые колебания.
Лабораторный пример: есть два камертона. Ударим по одному из них. Он начнёт издавать звук.
Если поставить рядом такой же камертон — он будет улавливать звуковые волны, и поскольку он настроен на такую же частоту — второй камертон также начнёт колебаться с такой же частотой и звучать. Это явление показывает, что как колебания могут превращаться в звуковую волну, таки и звуковая волна может превращаться в колебания. Станьте спонсором канала, и вы получите доступ к эксклюзивным бонусам.
Микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Аналого-цифровой преобразователь АЦП, англ. Analog-to-digital converter, ADC — устройство, преобразующее входной аналоговый сигнал в дискретный код цифровой сигнал. Аудиоадаптер звуковая плата - устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код и наоборот.
Производится одноканальная моно звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Производится двухканальная стерео звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. При 16-битном кодировании, частоте дискретизации 32 кГц и объёме моноаудиофайла 700 Кбайт время звучания равно: 1 20 с 2 10 с 3 1,5 мин 4 1,5 с 6. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук? Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала качество звучания радиотрансляции , а затем 65 536 уровней качество звучания аудио-CD. Во сколько раз различаются информационные объёмы оцифрованного звука?
Популярно: Информатика
- Разложение непрерывной звуковой волны: основные составляющие и их свойства
- Звук - теория, часть 1
- Частота дискретизации и теорема котельникова - audio geek
- Разложение непрерывной звуковой волны: основные составляющие и их свойства
Кодирование звуковой информации дискретизация
Подробнее рассмотрим эти процессы. Каждой «ступеньке» присваивается значение громкости звука 1, 2, 3 и т. Характеристики оцифрованного звука. Качество звука зависит от двух характеристик — глубины кодирования звука и частоты дискретизации. Рассмотрим эти характеристики.
Какое количество информации необходимо для кодирования каждого из 65536 возможных уровней интенсивности сигнала? Слайд 21 Описание слайда: Задание 2 Оценить информационный объём цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука. Слайд 23 Описание слайда: Информационные ресурсы Угринович Н. Информатика и ИКТ. Базовый курс: Учебник для 9 класса. Лаборатория знаний, 2007.
Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов двоичных нулей и единиц. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды. Непрерывная зависимость амплитуды сигнала от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек». Глубина кодирования. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука. Глубина кодирования звука — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.
Более высокие скорости иногда выражаются в числах Маха и соответствуют сверхзвуковым скоростям. При движении в среде со сверхзвуковой скоростью тело обязательно создаёт за собой звуковую волну. При равномерном прямолинейном движении фронт звуковой волны имеет конусообразную форму, с вершиной в движущемся теле. Излучение звуковой волны обуславливает дополнительную потерю энергии движущимся телом помимо потери энергии вследствие трения и прочих сил. Аналогичные эффекты испускания волн движущимися телами характерны для всех физических явлений волновой природы, например: черенковское излучение, волна, создаваемая судами на поверхности воды.
Акція для всіх передплатників кейс-уроків 7W!
Каждому значению амплитуды звукового сигнала присваивается 16-битный код. Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-СD. Следует также учитывать, что возможны как моно-, так и стерео-режимы. Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука 16 битов, 48 кГц.
Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.
Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат. На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение. Мы рассмотрим поверхностно основные принципы.
Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал. Мультибитные ЦАП Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле. На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока напряжения на соответствующий уровень до следующего изменения. Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации — это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла. Альтернативный вариант — искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения.
При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне. Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу. Когда вы видите функцию повышения частоты с 44. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук как например это сделано в Hidizs AP100.
С помощью специальных программных средств редакторов аудиофайлов открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и появляется возможность управления компьютером при помощи голоса. Волны с частотой меньше 16 Гц называют инфразвуковыми, а с частотой больше 20 000 Гц - ультразвуковыми. Источники звука колебаний Частота 16 Гц 22000 Гц Спектр частот, которые способно воспринимать человеческое ухо Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Звуки различной громкости Громкий звук Тихий звук Звуки различной высоты Низкий звук Высокий звук Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов двоичных нулей и единиц.
Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями АЦП. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки режим "моно". Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек режим "стерео". Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.
Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука 16 битов, 24 000 измерений в секунду. Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления: метод FM и метод Wave-Table. Метод FM Frequency Modulation основан на том. При таких преобразованиях неизбежны потери информации, поэтому качество звукозаписи обычно получается не вполне удовлетворительным. В то же время данный метод кодирования обеспечивает весьма компактный код, и поэтому он нашел применение еще в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
Звук - теория, часть 1
Фазовое разложение является одним из важных процессов в изучении и анализе звуковой волны. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.
Информатика. 10 класс
Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды. Звуковая волна Амплитуду звуковых колебаний называют звуковым давлением или силой звука.
Акція для всіх передплатників кейс-уроків 7W!
Подобно звуковым волнам, они распространяются в среде (воде), но свойства их гораздо сложнее, потому что скорость их зависит от длины волны. Пилот в кабине никаких звуков не слышит – о преодолении звукового барьера он узнает только по специальным датчикам. это чередование уплотнений и разряжений воздуха, т. е. волна, отделяющаяся от непрерывно от самолета.
Что препятствует распространению звука? Распространение звука в среде
Уровни цифрового сигнала рассчитываются относительно сигнала полной шкалы, соответствующего единичным значениям цифр всех разрядов. При данном количестве разрядов большего числа быть не может. Например сигнал с уровнем — 20 дБР8 на 20 дБ ниже сигнала полной шкалы. Амплитудное вибрато англ. Характеризуется пульсирующим звучанием.
Эффект тембрового вибрато также предназначен для изменения спектра звуковых колебаний. Физическая сущность этого эффекта состоит в том, что исходное колебание с богатым тембром пропускается через полосовой частотный фильтр, у которого периодически изменяется либо частота настройки, либо полоса пропускания, либо по различным законам изменяются оба параметра. Так как полоса пропускания изменяется по ширине и перемещается по частоте, то тембр сигала периодически изменяется. Delay - задержка — эффект задержки звука, задержка происходит с помощью записи входного сигнала с последующим проигрыванием его через определённый период времени.
Задержанный сигнал может воспроизводится либо один раз, либо несколько раз для создания повторяющегося звука похожего на распадающейся эхо. Флэнжер англ. Это приводит к эффекту движущегося гребенчатого фильтра: пики и провалы суммируются в результирующий частотный спектр, где они связанны друг с другом в линейный гармонический ряд. Изменение времени задержки служит причиной движения вверх и вниз по частотному спектру.
Часть выходного сигнала, как правило, подается обратно на вход обратная связь , "рециркулирующие задержки" , это производит эффект резонанса, что еще больше усиливает интенсивность пиков и провалов в спектре. Фаза подаваемого обратно сигнала иногда перевернута, это порождает еще одну вариацию фленжер эффекта. Благодаря встроенному LFO, эта картина движется вверх-вниз, максимумы воспринимаются как обертона, в результате чего кажется, что звук тоже становится то выше, то ниже, хотя в то же время слушатель слышит все те же ноты без изменений. Фэйзер англ.
Положение этих максимумов и минимумов варьируется протяжении звучания, что создает специфический круговой англ. Также фэйзером называют соответствующее устройство. По принципу работы схож с хорусом и отличается от него временем задержки 1-5 мс. Помимо этого задержка сигнала у фэйзера на разных частотах неодинакова и меняется по определённому закону.
Хорус англ. Эффект хора возникает, когда отдельные звуки с примерно одинаковым тембром и почти с небольшим отличием одинаковой высотой тона питч , смешиваются и воспринимаются как единое целое. Похожие звуки, исходящие из различных источников могут происходить естественным путём как в случае хора или струнного оркестра , он этот эффект также может моделировать с помощью электронных блок эффектов или другими устройствами обработки. Также может переводиться как «модуль».
Плагины обычно выполняются в виде разделяемых библиотек. Плагин - это маленькая программка, которая встраивается в основную большую программу и расширяет её возможности. Можно сделать так, что звук будет восприниматься исходящим из левой или правой колонки, а также из звукового поля между ними. Этот эффект называется панорамированием.
Выделите в вашем файле данные, которые вы хотите нормализовать. Установите в раскрывающемся списке Process mode одноименный параметр. Выберите пункт Pan preserve stereo separation , чтобы выполнить панорамирование без сведения левого и правого каналов. Это может быть полезно, если у вас есть стереофоническая запись например, сопровождающей вокальной группы и вы не собираетесь изменять сам сигнал, но хотите панорамировать группу голосов в определенную область стереопо-ля.
Если вы выберете пункт Pan mix channels before panning , панорамирование будет проведено совместно со сведением левого и правого каналов стереофонической записи. Эта возможность может пригодиться, если необходимо изменить все стереополе, а не отдельный сигнал. Попробуйте воспользоваться обоими пунктами, чтобы уловить разницу на слух. Его левая шкала отображает позиционирование стереофонического сигнала — он может быть в центре стереополя, а также в левой или правой его части.
На графике изображена линия, отображающая характеристики панорамирования, которое вы хотите применить к вашим звуковым данным. Левый край линии представляет начало выделенной области, а правый край — ее конец.
В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Таким образом, непрерывная зависимость амплитуды сигнала от времени A t заменяется на дискретную последовательность уровней громкости. Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание. Временная дискретизация звука Таким образом, непрерывная зависимость амплитуды сигнала от времени A t заменяется на дискретную последовательность уровней громкости.
Процесс разбиения сигнала на отдельные составляющие, взятые в определенные тактовые моменты времени t0, t1, t2, …, tn через четко определенные тактовые интервалы времени, называется дискретизацией. Частота дискретизации — количества измерений уровня громкости звука в единицу времени. Частоту дискретизации принято измерять в кГц килогерцах : 1 кГц — это 1000 измерений в секунду. Чем большее количество измерений производится за I секунду чем больше частота дискретизации , тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала. Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.
Такая ситуация не могла не вызывать недовольства среди разработчиков и появились независимые разработки в области сжатия звука, например форматы AAC и OGG. Формат MIDI. Это довольно старый 1983 г. MIDI базируется на пакетах данных, каждый из которых соответствует некоторому событию, в частности, нажатию клавиши или установке режима звучания. Любое событие может одновременно управлять несколькими каналами, каждый из которых относится к определенному оборудованию. Несмотря на свое изначальное предназначение, формат файла стал стандартным для музыкальных данных, которые при желании можно проигрывать с помощью звуковой карты компьютера безо всякого внешнего MIDI-оборудования. Главным преимуществом файлов MIDI является их очень небольшой размер, поскольку это не детальная запись звука, а фактически некоторый расширенный электронный эквивалент традиционной нотной записи. Но это же свойство одновременно является и недостатком: поскольку звук не детализирован, то разное оборудование будет воспроизводить его по-разному, что в принципе может даже заметно исказить авторский музыкальный замысел. Формат MOD. Представляет собой дальнейшее развитие идеологии MIDI-файлов. Таким способом достигается однозначность воспроизведения звука. К недостаткам формата следует отнести большие затраты времени при наложении друг на друга шаблонов одновременно звучащих нот. Получающееся качество в лучшем случае соответствует посредственной аудиокассете. Вы можете открыть свой мини-сайт на портале Pandia для коммерческого проекта. Зарегистрировать Заказать написание учебной работы.
Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Такой процесс называется оцифровкой звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек". Рис 2. Временная дискретизация звука Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного звука зависит от количества измерений уровня громкости звука в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду, тем выше качество записанного звука.
Что препятствует распространению звука? Распространение звука в среде
На что разбивается непрерывная звуковая волна? Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Подобно звуковым волнам, они распространяются в среде (воде), но свойства их гораздо сложнее, потому что скорость их зависит от длины волны. Мы постоянно обновляем базу тестов, чтобы вы могли получить наиболее актуальную информацию и проверить свои знания. это наибольшая величина звукового давления при сгущениях и разряжениях. Подобно звуковым волнам, они распространяются в среде (воде), но свойства их гораздо сложнее, потому что скорость их зависит от длины волны.