Различия в равенстве доходов в разных странах по коэффициенту Джини.
Gini Coefficient
GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой. Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. В итоге после учета всех трансфертов и всех налогов коэффициент Джини для США сокращается вдвое – с 0,45 до 0,23 и из страны с самым высоким они становятся страной с самым низким неравенством среди всех развитых стран! На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года): Коэффициент Джини карта. Коэффициент Джини (индекс Джини) — это статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку (к примеру, по уровню годового дохода — наиболее частое применение.
Россия – чемпион мира по расслоению богатства населения
Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. Get Free Economic Indicators Charts, Historical Data and Forecasts for 196 Countries. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года). В стране растет коэффициент Джини, характеризующий степень неравенства Фото: Екатерина Сычкова © Европейский союз коэффициенты Джини государств-членов, согласно Евростат.
Коэффициент Джини |
Ни один не демонстрировал признаков роста: все дружно катились вниз. Более того, я бы даже рискнул утверждать, что за последние десятилетия глобальное неравенство не просто несколько сократилось, но сократилось абсолютно радикально. Мы бы наверняка увидели это, будь у нас данные по неравенству в пожизненных доходах. Потому что развивающиеся страны резко уменьшили отставание от развитых по ожидаемой продолжительности жизни. С 1970 по 2010 г.
Нет сомнений, что это должно было драматически сократить разрыв в доходах, получаемых на протяжении всей жизни, между их жителями. Но даже если ограничиться только официальными оценками, то оказывается, что выросло оно почти исключительно в англосаксонских странах, тогда как в большинстве остальных почти не изменилось. Но даже с англосаксонскими странами не так все просто. Откуда данные Существует два основных источника данных, откуда можно черпать сведения о неравенстве.
Оба имеют множество недостатков и ограничений каждый — свои. Первый — это выборочные обследования домохозяйств. Их «врожденные» дефекты давно и хорошо известны. Главный из них связан с тем, что они не схватывают «правого хвоста» распределения из-за невозможности для интервьюеров проникать в дома богатых людей.
Поэтому, чтобы реконструировать полную картину, к опросным данным приходится приклеивать «правый хвост» — исходя из каких-то априорных предположений либо используя какие-то альтернативные данные. Другой источник — административная налоговая статистика. Она успешно решает проблему «правого хвоста» поскольку богатые тоже платят налоги , но с ней другая беда. В этом случае не охваченным остается гигантский сегмент получателей нулевых, низких и средних доходов.
Это те, кто либо вообще ничего не зарабатывает на рынке, либо получает доходы, полностью или частично выведенные из-под налогообложения. В результате в довесок к любым оценкам неравенства мы всегда получаем огромный «мешок» с множеством вменений, досчетов, перерасчетов, корректировок, передатировок, взвешиваний, перевзвешиваний, экстраполяций, интерполяций и т. Поменяйте содержимое «мешка» — и большое неравенство превратится в маленькое или маленькое в большое.
Для оценки налоговой системы используются принципы эффективности и справедливости. Как мы уже знаем, понятие справедливости не является точно определённым для экономистов.
В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь. Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей.
Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления.
Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого. Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле.
Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода. Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка. У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю. Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России.
У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной. В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной. Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней. Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода.
Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным. Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины. Например, в РФ человек вынужден заплатить фиксированную пошлину в размере около 1000 рублей при регистрации номерного знака автомобиля. Данный вид налога является регрессивным, поскольку пошлина оставляет большую часть дохода для бедного человека, и меньшую часть дохода для богатого человека.
Какой из данных видов налогов является более справедливым?
Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму.
Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению.
Коэффициент Джини, статистический показатель степени расслоения общества страны или региона по какому-либо изучаемому признаку, где 0 указывает на полное равенство и 1 — на полное неравенство, был оценен в 0,410 с увеличением на 0,015 пункта по сравнению с предыдущим годом, говорится в исследовании. Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute.
Карта: Уровень экономического неравенства в мире
Различия в равенстве доходов в разных странах по коэффициенту Джини, согласно данным Всемирного банка. Европейский союз коэффициенты Джини государств-членов, согласно Евростат. Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством. По коэффициенту Джини (статистический показатель степени экономического неравенства в обществе) Россия уступает лишь Бразилии. Показатели коэффициента Джини в России за все время измерения (1991—2018).
Индекс Джини: новые горизонты применения
Click on Custom Indicators. Choose input indicators by clicking on the desired series in the panel and use the calculator functions to construct your custom indicator formula. For example, for a series that shows the percentage of female population, double-click on the series Population, Female. Then double click on the series Population, Total. After the formula is complete, you can verify its syntax by clicking the Validate button. Give a name to your custom indicator and click on Add. To have "not available" values in the database treated as zero within your formula, use the NA function. Later if you wish to see or change the formula for an indicator you have created, from the right side current selection panel click the Edit.
Use the DEL key to delete the last entry and step backwards to edit the formula. Click the Clear button to erase the custom indicator formula.
Распределение дохода может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства. Доходы от черного рынка экономической деятельности не включены и являются предметом текущих экономических исследований.
Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма.
Изначально данная модель оценки финансового неравенства между слоями населения была разработана и предложена итальянским статистиком и демографом Коррадо Джини в 1912 году в работе под названием «Вариативность и изменчивость признака» известна также как «Изменчивость и непостоянство» , в честь которого впоследствии и была названа. Данный коэффициент показывает отклонение фактического распределения доходов между разными социальными группами от абсолютно равного. Для его расчета, как правило, используется уровень годового дохода граждан, но иногда могут применяться дополнительные параметры например, сбережения, дорогостоящие активы, недвижимость и т. Индекс Джини: расчет и формула Коэффициент Джини рассчитывается по следующей формуле: В графическом отображении коэффициент Джини представляет собой соотношение площади фигуры, образованной линией абсолютно равномерного распределения доходов под 45 градусов и кривой Лоренца, отображающей неравномерность распределения, к общей площади треугольника, образованной линиями абсолютно равномерного и абсолютно неравномерного распределения доходов: В десятичном значении показатель выступает коэффициентом, также его могут отображать в процентах, тогда он становится индексом.
Список стран по показателям неравенства доходов
Опрос показал, что средний годовой располагаемый доход домохозяйства в 2020 году составил 69 тыс. Средний годовой эквивалентный располагаемый доход домохозяйства из нескольких человек без семьи составил 38 тыс.
Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют пять групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими. Кривая Лоренца строится в прямоугольной системе координат.
На оси абсцисс откладываются накопленные частоты объёма совокупности, а на оси ординат — накопленные частоты объёма признака. Полученная кривая и будет характеризовать степень концентрации.
Различия в равенстве доходов в разных странах по коэффициенту Джини , согласно данным Всемирного банка. Коэффициент Джини является числом между 0 и 1, где нулю соответствует полное равенство когда каждый имеет одинаковый доход , а единице — абсолютное неравенство когда один человек имеет все доходы, а все остальные — нулевой доход.
Чем ближе показатель к нулю, тем меньше доходное неравенство. Кандидат экономических наук, доцент кафедры корпоративных финансов и корпоративного управления Финансового университета при Правительстве РФ Ольга Борисова объяснила в беседе с «Новыми Известиями», что у усиления такого неравенства есть несколько причин.
Кратковременное сокращение доходов персонала, работающего на начало 2023 г. Значительное их количество закрывало свои точки в России, отправляя персонал в отпуск или переводя на выплаты МРОТ на неопределенный срок, пока не находили фирму-покупателя в стране. Неравномерность роста заработка по отраслям.
Карта: Уровень экономического неравенства в мире
По данным Росстата, в 2023-м году в стране коэффициент Джини вырос до 0,403 против 0,395 годом ранее. Другие недостатки коэффициента Джини включают такой уклон в сторону занижения неравенства для стран с небольшой численностью населения и для менее диверсифицированных экономик. Сравнение коэффициента Джини по странам, конечно, довольно условно, так как размер страны влияет на уровень неравенства: чем больше территория, население и ВВП, тем больше неравенство. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Европейский союз коэффициенты Джини государств-членов, согласно Евростат. (Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы.