Наукастинг (nowcasting) и сверхкраткосрочные прогнозы погоды очень важны. Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. высокоточным прогнозам на несколько часов - в зоне действия девяти радаров (Кострома, Нижний Новгород, Валдай, Внуково, Воейково, Тула, Смоленск, Брянск, Курск).
10 самых точных сервисов прогноза погоды
Регион: Центральный федеральный округ. Период испытаний: июнь — сентябрь 2020 г. Рисунок 1. Содержание файлов. Предварительная обработка файлов заключает в себя следующие этапы: Преобразование данных в виде матрицы в одномерные массивы длинной в 25 элементов Имена файлов преобразуются в формат ДД.
ММ Для файлов из папки output к дате прибавляется три часа Далее из папки input удаляются все файлы, имен которых нет в папке output так как некоторые прогнозы отсутствуют. Предыдущий шаг повторяется для output После этого создаются файлы в папке error, значения которых равны input — output. Значения берутся по модулю. Создание тестовой модели В качестве оптимизатора был использован Adamax Количество эпох: 200 В качестве функции потерь и валидации использовалась среднеквадратичная ошибка MSE В структуре сети применяется слой нормализации данных и Dropaut — слои [5].
Архитектура нейронной сети изображена на рисунке 2. Рисунок 2.
Как решать Если исходить из того, что наукастинг сводится к задаче экстраполяции рисунок 2 , то формальное определение будет выглядеть так: где — количество кадров, на основе которых делается предсказание, — количество предсказываемых кадров. При этом можно интерпретировать кадр как обычную картинку и свести задачу к работе с видеоизображением. Рисунок 2. Пример изображений с метеорологического радара. Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания. Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут.
Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1, 2, 3 , либо к нейросетевым методам 1, 2, 3, 4, 5, 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда. Рисунок 3. Только для изображений из будущего, которые мы пока не знаем. В качестве функции потерь использовали ставшую классической сумму кросс-энтропии и dice: где — предсказанное значение.
Радары сильно отличаются по частоте обновления. Бывают радары, которые обновляются раз в 10 минут, раз в 15 минут. Самое ужасное, что данные с радаров — в отличие от относительно чистых данных для соревнований — содержат артефакты. Радары работают на физических принципах, на отражении волны, так что у них бывают слепые зоны.
Причем когда маленькие фрагменты зоны видимости радиально закрыты зданиями — это еще далеко не самый тяжелый случай. Бывают и сделанные людьми артефакты. Например, в период бета-тестирования мы столкнулись с человеком, который купил себе Wi-Fi-точку, неправильно настроил на ней частоту и номер канала, после чего выставил ее в окно. В результате у нас над Иваново висел огромный лазерный меч в виде облака. Мы видели его на карте и ничего не могли с ним поделать, пока не вызвали Частотнадзор.
Пожалуйста, если покупаете Wi-Fi-точки где-то в Китае, настраивайте их на российские частоты. Кроме радарных данных, надо еще откуда-то взять векторное поле. Принципиально его можно взять всего из двух мест: либо проанализировав предыдущие радарные снимки и применив, скажем, алгоритмы оптического потока, либо из каких-то других источников. Например, можно воспользоваться метеомоделированием и результатом работы того же ОРФ или Метеума. Берем поле ветров и с его помощью переносим картинки, которые возвращает радар.
Оба способа получения векторных полей имеют недостатки. Оптический поток нельзя посчитать в местах, где не летит облако. Там не от чего отражаться радарному лучу, и нет никаких данных о скорости воздуха и направлении движения. Метеомоделирование может не совпадать с реальностью. Поэтому если бы мы использовали только данные метеомодели, могло бы так получиться, что в исторических данных радара облако летит в одну сторону, а потом в прогнозе ветров резко разворачивается и летит в другую сторону.
Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео.
Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие.
Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты.
Подписка на дайджест
- Система прогнозирования “Москва – Погода”
- Космическая гидрометеорология - прогноз погоды по данным со спутников | Пикабу
- Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп»
- осадки в Европе
Прогнозирование ошибок при помощи нейросетей как способ увеличения точности прогноза погоды
Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля. Совместная технология детерминистского наукастинга и сверхкраткосрочного прогноза осадков на основе экстраполяции данных. И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные.
АИИС «МетеоТрасса» для автодорог
График среднего IoU от дальности предсказанного кадра по времени Для расчёта optical flow мы использовали Dense Inverse Search с константным вектором переноса на графике показан лучший из полученных вариантов , который лучше всего себя показал среди других optical flow алгоритмов для задачи наукастинга и в наших экспериментах, и в экспериментах коллег. Из графика видно, что optical flow лучше нейросеток только на первой десятиминутке. Потом его предсказания начинают сильно деградировать, и на втором часе он проигрывает всем вариантам. Помимо этого, возвращение нейросетевой архитектуры даёт возможность и дальше улучшать качество прогноза осадков, так как позволяет дополнительно учитывать фичи, которые потенциально помогают прогнозировать внезапное возникновение или исчезновение зон с осадками, тогда как подход, основанный на optical flow, позволяет только передвигать их по вектору переноса. Склейка радарных и спутниковых снимков В прошлый раз мы рассказали, как расширили зону наукастинга за пределы мест установки метеорологических радаров за счёт использования спутниковых снимков. Напомним, что мы использовали нейронные сети для восстановления радарных полей по спутниковым снимкам. В этом случае наша модель по качеству была близка к самим радарам, но так как спутники и радары по факту различаются по способу измерения осадков, то возможно неполное совпадение областей дождя между ними. Поэтому нередко нам справедливо указывали на резкие границы между зоной радарного и спутникового наукаста.
Мы использовали нейросети для решения и этой задачи — аккуратного перехода из одной зоны в другую, чтобы карта осадков выглядела более реалистично, а границы были менее заметны для пользователей. Перед тем как показывать прогнозы на единой карте, необходимо согласовать изображения с метеорологических радаров и геостационарных спутников. Это необходимо, чтобы избежать границ вокруг зоны действия радаров и резких изменений областей осадков на стыках радаров и спутника. Наша идея заключается в том, что мы делаем хитрую нейросетевую склейку на стыках изображений. Рисунок 5. Пример работы алгоритма из оригинальной статьи «Image Inpainting for Irregular Holes Using Partial Convolutions» Наглядный пример работы алгоритма, который дорисовывает недостающие части, можно посмотреть на рисунке выше, а также на этом видео. Только вместо дорисовывания изображения на закрашенной области мы создаём маску на границе радар — спутник, где пробуем восстановить переход осадков между соседними зонами.
Решение этой задачи состоит из двух шагов: Выполняется альфа-смешивание радарных и спутниковых изображений — получается постепенный переход от спутника к радару.
Погоде Так выглядит карта ветров в Яндекс. Погоде В 2018 году мы прошли ещё один важный этап в развитии гиперлокального прогноза: добавили в алгоритм расчёта данные со спутниковых снимков, эта технология получила название спутникового наукастинга. Снимки со спутников позволили повысить точность прогноза в зонах со слабым радарным покрытием и снизили зависимость прогноза от радиолокаторов, которые иногда выходят из строя. Самым сложным оказалось вывести данные с радаров и спутников на одной карте, ведь нужно было согласовать их по времени и правильно склеить. С этой задачей помогла нейросеть — благодаря хитрой склейке на карте незаметны границы зон действия радаров и нет резких изменений областей осадков на стыках радаров и спутника.
Они позволяют строить точные прогнозы, но у каждого из них есть недостаток: станций не так много, у радаров есть погрешности из-за рельефа местности, зданий и птиц, а спутники висят над экватором, поэтому высокие широты, где и находится Россия, на снимках не очень хорошо видны. Выход есть: можно попросить людей рассказывать нам о погоде. Возможно, вы видели в Яндекс. Погоде вопрос типа «На улице дождь? С 2020 года мы используем данные пользователей для построения прогнозов, наравне с данными от метеостанций и локаторов. Особенно это помогает строить прогнозы в регионах со слабым спутниковым покрытием — например, на севере Красноярского края.
Также опыт специалиста помогает ему определить, какие из множества прогностических моделей лучше всего «работают» по его региону прогнозирования. К примеру, одна модель замечательно прогнозирует ход температуры, другая с высокой точностью «видит» туманы, третья хорошо просчитывает максимальные порывы ветра и т. Прогноз текущей погоды наукастинг является особой, совершенно самостоятельной ветвью прогностической метеорологии. Заблаговременность такого прогноза, как правило, не превышает 2 часа. Следовательно, синоптику приходится иметь дело с быстро протекающими атмосферными процессами. Чаще всего говорят о наукастинге развития конвективных кучево-дождевых облаков и связанных с ними опасных метеорологических явлений ОЯ — ливневых осадков, гроз, града, шквалов, смерчей. Основными потребителями прогнозов текущей погоды являются авиация, морской флот и противоградовые службы, но иногда такая информация доводится и до гражданского населения. Основная задача наукастинга — выявлять на картах погоды первые признаки развития опасных явлений, а затем отслеживать их перемещение.
Для этого используются данные плотной сети метеостанций, а также спутников, метеорологических радиолокаторов МРЛ и систем грозопеленгации. В настоящее время получили широкое применение доплеровские МРЛ, которые позволяют не только наблюдать за эволюцией облачности, но и мгновенно оценивать скорость и направление её перемещения на основании эффекта Доплера , быстро определять зоны конвективных ОЯ. Сведения обновляются каждые 5—15 мин, чего достаточно для своевременной выдачи штормового предупреждения. Термин «наукастинг» от англ. Браунингом при описании технологии экстраполирования последовательности радарных изображений для прогноза осадков. На рисунке приведена карта радиолокационной отражаемости сети МРЛ Германии в 13 ч 45 мин 19 августа 2013 г. Это наглядный пример полуавтоматического наукастинга опасных конвективных явлений для локальной территории. Составление долгосрочных прогнозов погоды является одной из важнейших задач метеорологии, которая, к сожалению, так и не получила окончательного разрешения на сегодняшний момент.
Общепринятой методики их подготовки до сих пор не существует, а уже созданные являются ненадёжными.
Экстази может стать лекарством Кейсы Наукастинг работает на основе данных сети метеорологических радиолокаторов Росгидромета в этом году Яндекс получил официальный доступ к измерениям, которые на них проводятся и позволяет описывать текущую погоду с точностью до небольшого микрорайона. Радиолокатор работает следующим образом: примерно раз в 10 минут он строит трехмерный снимок атмосферы в радиусе 200 километров от своего местоположения по горизонтали и до 10 километров по вертикали. По принципу действия радиолокатор очень похож на авиационный радар, только на снимке видны не самолеты, а области атмосферы, где есть капли воды размером более 50 микрометров. Если такие капли и правда есть, то, скорее всего, из облака, в котором они находятся, выпадают осадки.
В России радиолокаторы установлены в наиболее населенных и интересных с метеорологической точки зрения регионах.
meteoinfo ru [delete] [delete]
Usage[edit]. Data extrapolation, including development or dissipation, can be used to find the likely location of a moving weather system. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river. Точнее, ещё точнее: прогноз погоды на 2 часа, наукастинг и карты погоды. Прогноз осадков на ближайшие 2-6 часов / скриншот с сайта Гидрометцентра России. Ключевые слова: наукастинг, поля осадков, нейронные сети, прогнозирование ошибок, многослойный персептрон.
Метеорологический радар Россия
- Какая погода россиян ждет на этой неделе
- Синоптик Вильфанд: около 30% месячной нормы осадков выпало в Москве за час
- Свяжитесь с нами
- Предоставляем метео данные
- Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп» - Доступ
- Новая карта осадков в «Яндекс погоде» — с прогнозом на сутки вперед
Яндекс научился предсказывать осадки на ближайшие 2 часа
Есть такое понятие как наукастинг – текущий прогноз погоды на срок до трех часов. Решение задачи наукастинга осадков, как правило, сводится к прогнозированию следующе-го кадра видеопоследовательности, а входными данными становится серия из более чем двух последовательных изображений, что позволяет более точно моделировать нелинейные. Usage[edit]. Data extrapolation, including development or dissipation, can be used to find the likely location of a moving weather system. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river.
наукастинг осадков на 2 часа
наукастинг – сроком до двух часов. Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд. Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля. Прогноз осадков на 2 часа (наукастинг). По моим данным, он циклон балканского происхождения по имени «Бенедикт».
Какой сайт прогноза погоды лучше выбрать
- Погода сейчас
- АИИС «МетеоТрасса» для автодорог
- ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК
- Погода и подробный прогноз погоды от Гидрометцентра России
- Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп»
meteoinfo ru [delete] [delete]
По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. Наукастинг. Прогноз текущей погоды – детализированный прогноз погоды на ближайшие часы (до 2-6 часов).Продолжительность жизненного цикла некоторых погодных явлений (например, шквалов, ливней и т.д.) варьирует от минут до десятков минут. На карте метеорологического радара показывается место выпадения осадков, тип осадков (дождь, снег и изморозь), а также последние перемещения фронта, чтобы вы могли спланировать свой день.