Наибольшей наглядностью обладают следующие формы записи алгоритмов: Величины, значения которых меняются в процессе исполнения алгоритма, называются.
Контрольная работа по теме « Основы алгоритмизации»
- Домашний очаг
- Остались вопросы?
- Информатика
- Средства записи алгоритмов
- Задания итогового теста "Основы алгоритмизации" скачать
- Средства записи алгоритмов
Формы представления алгоритмов
Завершаемость конечность — в более узком понимании алгоритма как математической функции, при правильно заданных начальных данных алгоритм должен завершать работу и выдавать результат за определённое число шагов. Дональд Кнут называет процедуру, которая удовлетворяет всем свойствам алгоритма, кроме, возможно, конечности, методом вычисления англ. Однако довольно часто определение алгоритма не включает завершаемость за конечное время [5]. В этом случае алгоритм метод вычисления определяет частичную функцию [en]. Для вероятностных алгоритмов завершаемость как правило означает, что алгоритм выдаёт результат с вероятностью 1 для любых правильно заданных начальных данных то есть может в некоторых случаях не завершиться, но вероятность этого должна быть равна 0. Массовость универсальность. Алгоритм должен быть применим к разным наборам начальных данных. Результативность — завершение алгоритма определёнными результатами. Формальное определение[ править править код ] Разнообразные теоретические проблемы математики и ускорение развития физики и техники поставили на повестку дня точное определение понятия алгоритма. Марков , Алонзо Чёрч.
Было разработано несколько определений понятия алгоритма, но впоследствии было выяснено, что все они определяют одно и то же понятие см. Успенский считал, что понятие алгоритма впервые появилось у Эмиля Бореля в 1912 году, в статье об определённом интеграле. Там он написал о «вычислениях, которые можно реально осуществить», подчеркивая при этом: «Я намеренно оставляю в стороне большую или меньшую практическую деятельность; суть здесь та, что каждая из этих операций осуществима в конечное время при помощи достоверного и недвусмысленного метода» [7]. Основная статья: Машина Тьюринга Схематическая иллюстрация работы машины Тьюринга. Основная идея, лежащая в основе машины Тьюринга, очень проста. Машина Тьюринга — это абстрактная машина автомат , работающая с лентой отдельных ячеек, в которых записаны символы. Машина также имеет головку для записи и чтения символов из ячеек, которая может двигаться вдоль ленты. На каждом шаге машина считывает символ из ячейки, на которую указывает головка, и, на основе считанного символа и внутреннего состояния, делает следующий шаг. При этом машина может изменить своё состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево.
Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием. Основная статья: Рекурсивная функция теория вычислимости С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм? Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций [9]. Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом. Сначала были выбраны простейшие функции, вычисление которых очевидно. Затем были сформулированы правила операторы построения новых функций на основе уже существующих. Необходимый класс функций состоит из всех функций, которые можно получить из простейших применением операторов. Подобно тезису Тьюринга в теории вычислимых функций была выдвинута гипотеза, которая называется тезис Чёрча : Числовая функция тогда и только тогда алгоритмически исчисляется, когда она частично рекурсивна.
Доказательство того, что класс вычислимых функций совпадает с исчисляемыми по Тьюрингу, происходит в два шага: сначала доказывают вычисление простейших функций на машине Тьюринга, а затем — вычисление функций, полученных в результате применения операторов. Таким образом, неформально алгоритм можно определить как четкую систему инструкций, определяющих дискретный детерминированный процесс, который ведёт от начальных данных на входе к искомому результату на выходе , если он существует, за конечное число шагов; если искомого результата не существует, алгоритм или никогда не завершает работу, либо заходит в тупик. Основная статья: Нормальный алгоритм Нормальный алгоритм алгорифм в авторском написании Маркова — это система последовательных применений подстановок, которые реализуют определённые процедуры получения новых слов из базовых, построенных из символов некоторого алфавита. Как и машина Тьюринга, нормальные алгоритмы не выполняют самих вычислений: они лишь выполняют преобразование слов путём замены букв по заданным правилам [10]. Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть алгоритмом, который каждое слово из множества допустимых данных функции превращает в её начальные значения [11].. Создатель теории нормальных алгоритмов А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует некоторый алгоритм, когда функция нормально исчисляемая. Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами.
Стохастические алгоритмы[ править править код ] Однако приведённое выше формальное определение алгоритма в некоторых случаях может быть слишком строгим. Иногда возникает потребность в использовании случайных величин [12]. Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим или рандомизированным, от англ. Стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях — единственным способом решить задачу [12]. На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел. Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат.
Графическая форма записи блок-схема. Текстовая форма записи алгоритма Текстовая словесно-пошаговая форма обычно используется для алгоритмов, ориентированных на исполнителя - человека. Команды алгоритма нумеруют, чтобы иметь возможность на них ссылаться. Пример текстовой формы записи алгоритма — классический алгоритм Евклида для нахождения наибольшего общего делителя двух натуральных чисел: Если числа равны, то взять первое число в качестве ответа и закончить исполнение алгоритма, иначе перейти к п. Определить большее из двух чисел. Заменить большее число на разность большего и меньшего чисел. Перейти к п. Команды в этом алгоритма выполняются в естественной последовательности, если не оговорено противного. Так, после второй команды будет выполняться третья, после третьей - четвертая.
Фонарик у группы только один, и он обязательно нужен для перехода по мосту, который выдерживает только двоих человек. Когда два человека вместе идут по мосту, то идут они со скоростью более медлительного из них. Ребята смогли разработать алгоритм перехода на другой берег за минимально возможное время.
Алгоритм в словесной форме может оказаться очень объёмным и трудным для восприятия. Пример 1. Словесное описание алгоритма нахождения наибольшего общего делителя НОД пары натуральных чисел алгоритм Евклида. Запишите первое из заданных чисел в столбец X, а второе — в столбец У. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Повторяйте такие замены до тех пор, пока числа не окажутся равными, после чего число из столбца X считайте искомым результатом. Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y.
Результаты
- Формы записи алгоритмов
- Наибольшей наглядностью обладают … формы записи - id42252298 от karrr123 31.12.2021 02:35
- Формы записи алгоритмов
- Тест с ответами на тему: “Основы алгоритмизации” - Ответы класс!
! Способы записи алгоритмов:
2. Наибольшее распространение благодаря своей наглядности получил графический способ записи алгоритмов. Формы записи алгоритмов. 11. Наибольшей наглядностью обладает следующая форма записи алгоритмов. Пример текстовой формы записи алгоритма — классический алгоритм Евклида для нахождения наибольшего общего делителя двух натуральных чисел. 1наибольшей наглядностью обладает следущая форма записи алгоритмов а. словесная б. рекурсивная в. графическая г. построчная. Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема.
1наибольшей наглядностью обладает следущая форма записи алгоритмов а. словесная б. рекурсивная…
Полное название этого учебника — «Сия книга, глаголемая по-еллински и по-гречески арифметика, а по-немецки алгоризма, а по-русски цифирная счётная мудрость». Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе. Однако его не было ни в знаменитом словаре В. Даля , ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Ушакова 1935 г. Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат , и в первом издании Большой советской энциклопедии БСЭ , изданном в 1926 г. И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в. Алгоритмы становились предметом всё более пристального внимания учёных, и постепенно это понятие заняло одно из центральных мест в современной математике. Что же касается людей, от математики далёких, то к началу сороковых годов это слово они могли услышать разве что во время учёбы в школе, в сочетании «алгоритм Евклида».
Несмотря на это, алгоритм всё ещё воспринимался как термин сугубо специальный, что подтверждается отсутствием соответствующих статей в менее объёмных изданиях. В частности, его нет даже в десятитомной Малой советской энциклопедии 1957 г. Но зато спустя десять лет, в третьем издании Большой советской энциклопедии 1969 год алгоритм уже характеризуется как одна из основных категорий математики, «не обладающих формальным определением в терминах более простых понятий, и абстрагируемых непосредственно из опыта». Как мы видим, отличие даже от трактовки первым изданием БСЭ разительное! За сорок лет алгоритм превратился в одно из ключевых понятий математики, и признанием этого стало включение слова уже не в энциклопедии, а в словари. Например, оно присутствует в академическом «Словаре русского языка» 1981 г. Одновременно с развитием понятия алгоритма постепенно происходила и его экспансия из чистой математики в другие сферы. И начало ей положило появление компьютеров, благодаря которому слово «алгоритм» вошло в 1985 году во все школьные учебники информатики и обрело новую жизнь. Вообще можно сказать, что его сегодняшняя известность напрямую связана со степенью распространения компьютеров.
Например, в третьем томе «Детской энциклопедии» 1959 г. Соответственно и алгоритмы ни разу не упоминаются на её страницах. Но уже в начале 70-х гг. Это чутко фиксируют энциклопедические издания. В « Энциклопедии кибернетики » 1974 год в статье «Алгоритм» он уже связывается с реализацией на вычислительных машинах, а в «Советской военной энциклопедии» 1976 г. За последние полтора-два десятилетия компьютер стал неотъемлемым атрибутом нашей жизни, компьютерная лексика становится всё более привычной. Слово «алгоритм» в наши дни известно, вероятно, каждому. Оно уверенно шагнуло даже в разговорную речь, и сегодня мы нередко встречаем в газетах и слышим в выступлениях политиков выражения вроде «алгоритм поведения», «алгоритм успеха» или даже «алгоритм предательства». Академик Н.
Моисеев назвал свою книгу «Алгоритмы развития», а известный врач Н. Амосов — «Алгоритм здоровья» и «Алгоритмы разума». А это означает, что слово живёт, обогащаясь всё новыми значениями и смысловыми оттенками. Свойства алгоритмов[ править править код ] Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований: Дискретность — алгоритм должен представлять процесс решения задачи как упорядоченное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно. Детерминированность определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат ответ для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф.
С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа. Однако при включении метода генерации случайных чисел в список «исходных данных» вероятностный алгоритм становится подвидом обычного. Понятность — алгоритм должен включать только те команды, которые доступны исполнителю и входят в его систему команд. Завершаемость конечность — в более узком понимании алгоритма как математической функции, при правильно заданных начальных данных алгоритм должен завершать работу и выдавать результат за определённое число шагов. Дональд Кнут называет процедуру, которая удовлетворяет всем свойствам алгоритма, кроме, возможно, конечности, методом вычисления англ. Однако довольно часто определение алгоритма не включает завершаемость за конечное время [5].
Ответить Наиболее наглядной формой записи алгоритмов является псевдокод.
Псевдокод — это специальный язык, который используется для описания алгоритмов с использованием элементов из различных языков программирования.
Алгоритм представляется на языке человека. Алгоритм представляется на языке человека с использованием математической символики формул. Алгоритм представляется в виде графической схемы. Формальные языки. Для представления алгоритма используются различные псевдокоды и алгоритмические языки. Пошагово-словесная форма представляет собой пронумерованную последовательность строк, каждая из которых содержит описания конкретных действий на естественном языке. Данная форма применяется в том случае, если исполнителем является человек. Примерами данной формы представления могут служить алгоритмы математических вычислений над конечными числами.
Однако все разговорные языки обладают неоднозначностью, поэтому могут возникнуть различные толкования текста алгоритма, заданного таким образом. Алгоритм в словесной форме может оказаться очень объёмным и трудным для восприятия. Пример 1. Словесное описание алгоритма нахождения наибольшего общего делителя НОД пары натуральных чисел алгоритм Евклида. Запишите первое из заданных чисел в столбец X, а второе — в столбец У. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Повторяйте такие замены до тех пор, пока числа не окажутся равными, после чего число из столбца X считайте искомым результатом. Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида.
Формы записи алгоритмов
Составь и запиши слова с данными и их ь с ними и печь,ложь и рожь,брошь и тишь. Наибольшей наглядностью обладают алгоритмы, записанные в виде блок-схем. 11. Специальное средство, предназначенное для записи алгоритмов в аналитическом виде: а) алгоритмические языки + б) алгоритмические навыки в) алгоритмические эксперименты. Наибольшей наглядностью обладают алгоритмы. На рисунке представлен фрагмент алгоритма имеющий структуру. У такого способа есть недостаток: отсутствие наглядности выполнения процесса и чёткой формализации объектов алгоритма.
C++ для начинающих
11. Наибольшей наглядностью обладает следующая форма записи алгоритмов: а) словесная. Схемы алгоритмов обладают большей наглядностью, чем словесная запись алгоритма. Наибольшей наглядностью обладают следующие формы записи алгоритмов: а) словесные. Наибольшей наглядностью обладают фоомы записи алгоритмов? Ответы: 1)Построчные 2). Наибольшей наглядностью обладают следующие формы записи алгоритмов: а) словесные.
Средства записи алгоритмов
Какими свойствами обладает? Однозначны ли указания, поделены на элементарные шаги дискретность? Все этапы простые и понятные детерминированность? Можно ли по этой инструкции приготовить макароны-буковки и спагетти массовость? Число команд конечное конечность? Будет ли получен результат после выполнения алгоритма результативность? Как видим, все пункты совпадают, значит, эти рекомендации являются алгоритмом и обладают всеми необходимыми для этого свойствами. По названию понятно, какие величины бывают: постоянные — остаются в начале и конце выполнения задачи неизменными константы ; переменные — поддаются изменению во время исполнения команд. Для обозначения величин им присваивают идентификаторы. Это может как одна буква, так и целое имя из разных символов. По типу величины могут быть разными, в зависимости от условий задачи число, логическое выражение, текстовое значение.
Если у переменной не одно значение, а много, его выражают в виде таблицы или массива.
Словесно-формульная форма представления алгоритмов является логическим развитием пошагово-словесной формы. Такая форма записи предполагает использование различных математических соотношений, записанных в виде формул. Формула — строчная запись действий, обеспечивающих обработку числовых, символьных или логических данных. Формулы, предназначенные для исполнителя «человек», не обязательно могут быть строчными — это приводит к некоторой неоднозначности порядка действий, не сказывающейся, однако, на результате вычислений вследствие дистрибутивного и сочетательного законов. Графическая форма записи алгоритмаполучила наиболее широкое распространение в информатике. Графическое изображение алгоритма, предназначенного для выполнения на ЭВМ, называется схемой программы. Поэтому, другое распространенное название данной формы — блок-схема. В данной форме для представления отдельных блоков алгоритма используются определенный набор геометрических фигур.
Он позволяет описывать алгоритмы в более структурированной и понятной форме, используя ключевые слова, операторы и конструкции, которые знакомы программистам. Псевдокод обычно не зависит от конкретного языка программирования, поэтому его легко читать и понимать даже тем, кто не знаком с определенным языком программирования.
Какая последовательность символов не может служить именем в языке Паскаль? Какая клавиша нажимается после набора последнего данного в операторе read: 20.
Ответы к тесту Способы записи алгоритмов
Псевдокод — это специальный язык, который используется для описания алгоритмов с использованием элементов из различных языков программирования. Он позволяет описывать алгоритмы в более структурированной и понятной форме, используя ключевые слова, операторы и конструкции, которые знакомы программистам.
Алгоритм для технического средства называют также программой. Алгоритм состоит из отдельных команд. Команды выполняются последовательно одна за другой, если нет условия при котором меняется порядок выполнения команд. Массовость - возможность применения алгоритма для множества решений при различных исходных данных. При этом исходные данные вводятся в алгоритм во время решения, а не находятся в нем изначально. Понятность - доступность выполнения исполнителем любой команды алгоритма. Определенность - отсутствие неоднозначных толкований в алгоритме. Конечность - завершение алгоритма за конечное число шагов.
Под шагом понимают выполнение одной команды алгоритма. Результативность - обязательное получение результата после завершения исполнения алгоритма. Однозначность - получение одинаковых результатов при одинаковых исходных данных, независимо от числа решений этого алгоритма и его исполнителя. По виду алгоритмы бывают: линейными, разветвляющимися, циклическими и смешанными. Линейным называется алгоритм, команды которого выполняются последовательно обна за другой один раз.
Винера , А.
Само слово «алгоритм» происходит от имени персидского хорезмского и мавераннахрского учёного аль-Хорезми. Около 825 года он написал сочинение Китаб аль-джебр валь-мукабала «Книга о сложении и вычитании» , из оригинального названия которого происходит слово « алгебра » аль-джебр — восполнение. В этой книге впервые дал описание придуманной в Индии позиционной десятичной системы счисления. Персидский оригинал книги не сохранился. Аль-Хорезми сформулировал правила вычислений в новой системе и, вероятно, впервые использовал цифру 0 для обозначения пропущенной позиции в записи числа её индийское название арабы перевели как as-sifr или просто sifr, отсюда такие слова, как «цифра» и «шифр». Приблизительно в это же время индийские цифры начали применять и другие арабские учёные.
Переводчик, имя которого до нас не дошло, дал ей название Algoritmi de numero Indorum «Алгоритми о счёте индийском» — таким образом, латинизированное имя среднеазиатского учёного было вынесено в заглавие книги. Сегодня считается, что слово «алгоритм» попало в европейские языки именно благодаря этому переводу. В течение нескольких следующих столетий появилось множество других трудов, посвящённых всё тому же вопросу — обучению искусству счёта с помощью цифр, и все они имели в названии слово algoritmi или algorismi. Про аль-Хорезми позднейшие авторы ничего не знали, но поскольку первый перевод книги начинается словами: «Dixit algorizmi: …» «Аль-Хорезми говорил: …» , всё ещё связывали это слово с именем конкретного человека. Очень распространённой была версия о греческом происхождении книги. Это часть арифметики.
Придуман он был мастером по имени Алгоризм, который дал ему своё имя. И поскольку его звали Алгоризм, Он назвал свою книгу «Алгоризм». Около 1250 года английский астроном и математик Иоанн Сакробоско написал труд по арифметике Algorismus vulgaris, на столетия ставший основным учебником по вычислениям в десятичной позиционной системе счисления во многих европейских университетах. Во введении Сакробоско назвал автором науки о счёте мудреца по имени Алгус Algus. А в популярной средневековой поэме « Роман о Розе » 1275—1280 Жана де Мена «греческий философ Алгус» ставится в один ряд с Платоном , Аристотелем , Евклидом и Птолемеем! Встречался также вариант написания имени Аргус Argus.
И хотя, согласно древнегреческой мифологии, корабль « Арго » был построен Ясоном , именно этому Арго приписывалось строительство корабля. И в уже упоминавшейся «Романе о розе», и в известной итальянской поэме «Цветок», написанной Дуранте , имеются фрагменты, в которых говорится, что даже «mestre Argus» не сумеет подсчитать, сколько раз ссорятся и мирятся влюблённые. Английский поэт Джефри Чосер в поэме « Книга герцогини » 1369 г. Однако со временем такие объяснения всё менее занимали математиков, и слово algorism или algorismus , неизменно присутствовавшее в названиях математических сочинений, обрело значение способа выполнения арифметических действий посредством арабских цифр, то есть на бумаге, без использования абака. Именно в таком значении оно вошло во многие европейские языки. Например, с пометкой «устар.
Алгоритм — это искусство счёта с помощью цифр, но поначалу слово «цифра» относилось только к нулю. Знаменитый французский трувер Готье де Куанси Gautier de Coincy, 1177—1236 в одном из стихотворений использовал слова algorismus-cipher которые означали цифру 0 как метафору для характеристики абсолютно никчёмного человека. Очевидно, понимание такого образа требовало соответствующей подготовки слушателей, а это означает, что новая система счисления уже была им достаточно хорошо известна. Многие века абак был фактически единственным средством для практичных вычислений, им пользовались и купцы, и менялы, и учёные. Достоинства вычислений на счётной доске разъяснял в своих сочинениях такой выдающийся мыслитель, как Герберт Аврилакский 938—1003 , ставший в 999 году папой римским под именем Сильвестра II. Новое с огромным трудом пробивало себе дорогу, и в историю математики вошло упорное противостояние лагерей алгорисмиков и абацистов иногда называемых гербекистами , которые пропагандировали использование для вычислений абака вместо арабских цифр.
Интересно, что известный французский математик Николя Шюке Nicolas Chuquet, 1445—1488 в реестр налогоплательщиков города Лиона был вписан как алгорисмик algoriste. Но прошло не одно столетие, прежде чем новый способ счёта окончательно утвердился, столько времени потребовалось, чтобы выработать общепризнанные обозначения, усовершенствовать и приспособить к записи на бумаге методы вычислений. В Западной Европе учителей арифметики вплоть до XVII века продолжали называть «магистрами абака», как, например, математика Никколо Тарталью 1500—1557. Итак, сочинения по искусству счёта назывались Алгоритмами. Из многих сотен можно выделить и такие необычные, как написанный в стихах трактат Carmen de Algorismo латинское carmen и означает стихи Александра де Вилла Деи Alexander de Villa Dei, ум. Постепенно значение слова расширялось.
Учёные начинали применять его не только к сугубо вычислительным, но и к другим математическим процедурам. Например, около 1360 г. Когда же на смену абаку пришёл так называемый счёт на линиях, многочисленные руководства по нему стали называть Algorithmus linealis, то есть правила счёта на линиях. Можно обратить внимание на то, что первоначальная форма algorismi спустя какое-то время потеряла последнюю букву, и слово приобрело более удобное для европейского произношения вид algorism. Позднее и оно, в свою очередь, подверглось искажению, скорее всего, связанному со словом arithmetic. В 1684 году Готфрид Лейбниц в сочинении Nova Methodvs pro maximis et minimis, itemque tangentibus… впервые использовал слово «алгоритм» Algorithmo в ещё более широком смысле: как систематический способ решения проблем дифференциального исчисления.
Если есть еще сломанные карандаши, перейди к пункту 3. Блок-схема алгоритма Рис. Однако, эта наглядность быстро теряется при изображении очень большого алгоритма, т.
Тест с ответами: «Основы алгоритмизации»
Тест с ответами на тему: «Основы алгоритмизации» | Образовательный портал | 6) Наибольшей наглядностью обладают формы записи алгоритмов. построчные рекурсивные графические словесные Ответ: графические. |
Как называется свойство алгоритма. Основные свойства алгоритма | Наибольшей наглядностью обладают алгоритмы. На рисунке представлен фрагмент алгоритма имеющий структуру. |
Формы записи алгоритмов | Нарисовать блок схему алгоритма вывода сообщения на экран. Напишите программу, которая вычисляет сумму двух введённых чисел типа Integer и переводит. |
Наибольшей наглядностью обладают алгоритмы
Наибольшей наглядностью обладают следующие формы записи алгоритмов: а) словесные. Наибольшей наглядностью обладают алгоритмы. На рисунке представлен фрагмент алгоритма имеющий структуру. Наибольшей наглядностью обладают формы записи алгоритмов.
Тест Основы алгоритмизации 8 класс ФГОС
Повторяйте такие замены до тех пор, пока числа не окажутся равными, после чего число из столбца X считайте искомым результатом. Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y. Заменить X на X - Y. Перейти к п. Заменить Y на Y - X. Считать X искомым результатом. Построчная запись алгоритма позволяет избежать ряда неопределённостей; её восприятие не требует дополнительных знаний.
О важности и типах алгоритмических последовательностей сказано уже немало. В этой статье пойдёт речь о способах их представления при записи алгоритмов. Словесный способ Словесное описание алгоритма предполагает наличие некого словесного перечня действий. Полученное значение Z следует возвести в куб и вычислить корень». Можно представить ситуацию туристического посещения незнакомого города. Когда вы спрашиваете, как пройти в интересующее место, вам объясняют, что надо через 100 метров повернуть направо, потом пройти прямо, пока не увидите перед собой здание кинотеатра, далее потребуется перейти дорогу, повернуть налево и не сворачивая идти до нужного объекта. Все эти примеры можно назвать словесным способом представления. У такого способа есть недостаток: отсутствие наглядности выполнения процесса и чёткой формализации объектов алгоритма.
Формульно-словесный способ При использовании формульно-словесного способа инструкции задаются более чётко. Этот тот случай, когда словесные пояснения сопровождаются перечнем конкретных действий, плюс эти пояснения характеризуются наличием формальных символов и выражений формул.
Для ввода значений переменных в Паскале используется оператор Итоговая тестовая работа по информатике 8 класс 2 вариант на выполнение работы отводится 45 минут 1. Если количественный эквивалент цифры в числе не зависит от её положения в записи числа, то такая система счисления называется?
Какая фигура появится на экране? Между соседними клетками поля могут стоять стены. Если при выполнении очередного шага Робот сталкивается со стеной, то он разрушается.