Новости термоядерная физика

И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.

Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака

И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".

Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить

Однако точные данные о выходе энергии все еще уточняются, и мы не можем подтвердить, что в настоящее время она превышает пороговое значение, — говорится в сообщении Ливерморской лаборатории. Тем не менее, двое людей, знакомых с результатами эксперимента, сказали, что выход энергии был больше, чем ожидалось, что привело к повреждению некоторого измерительного оборудования, что усложнило анализ. Прорыв уже широко обсуждался учеными, добавили источники. Если результаты подтвердятся, это будет означать, что исследователями из Ливерморской лаборатории удалось добиться цели, недостижимой в течение десятилетий. Ранее в этом году, в ходе оглашения стратегии развития термоядерной энергии, один из американских конгрессменов заявил, что технология является «святым граалем» чистой энергетики и потенциально способна избавить большее число людей от бедности, чем открытие огня. Большинство исследований пока связаны с т.

Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им. Иоффе в группе лазерной диагностики плазмы.

Экспериментальная работа на термоядерной установке настолько меня увлекла, что после окончания института я решил связать свою жизнь с наукой! Впереди еще много планов! Хочу, чтобы первый термоядерный реактор запустили именно в России! И российская наука продолжала двигаться вперёд!

Плазма считается четвертым агрегатным состоянием вещества. Если нагреть твердое вещество, оно становится сначала жидким, затем газообразным и, наконец, — плазмой. При температуре в десятки тысяч градусов атомы газа теряют свои электроны и превращаются в ионы — свободные электрические заряды. Такой газ называется ионизованным и является средой, проводящей электрический ток. В естественных условиях Земли плазма встречается в виде разрядов молний или в магнитосфере планеты при полярном сиянии.

В космосе она буквально повсюду: материя в межгалактическом пространстве существует именно в плазменной форме. Солнце и звезды тоже являются сгустками сильно нагретой плазмы. Вещество в состоянии плазмы видел каждый, когда в небе сверкала молния , а вот удержать и сжать такое вещество — задачка не из легких, но ее необходимо решить для реализации управляемого термоядерного синтеза на Земле. Фото iStock Удержать плазму внутри построенных человеком установок тяжело — нагреваясь до миллионов градусов, она плавит даже самое прочное покрытие. Поэтому стенки камер реактора для управляемого синтеза не должны соприкасаться с плазмой. Другое важное условие использования плазмы — сжатие. Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся. Плазма подобна надутому воздушному шарику — как бы равномерно вы ни надавливали на него, шар всегда будет просачиваться через пространство между пальцами. Солнечная плазма не разлетается по всему космосу из-за огромной массы звезды — ее гравитационное давление постоянно сжимает ядра атомов вместе.

Масса Земли в 330 тысяч раз меньше, поэтому создать подобное давление на нашей планете невероятно трудно. Каждый раз, когда ученые пытались сжать плазму в реакторе, она выплескивалась наружу. Как причесать ежа, или попытки удержать плазму К решению задачи удержания плазмы вплотную подошли советские ученые Института им. Курчатова в 1950-х. В магнитной ловушке, созданной под руководством академиков Андрея Сахарова и Игоря Тамма, горячая смесь дейтерия и трития удерживалась с помощью магнитного поля и не касалась стенок реактора. Эта экспериментальная установка c вакуумной камерой в форме бублика тора стала известна во всем мире под именем Токамак — тороидальная камера с магнитными катушками. В ней впервые удалось достичь температуры термоядерной реакции в 100 миллионов градусов — почти в 10 раз больше, чем внутри Солнца! У любого термоядерного реактора типа токамака есть отверстие в центре. Объясняется это теоремой о причесывании ежа, согласно которой невозможно причесать свернувшегося клубком ежика так, чтобы ни одна его иголка не торчала наружу.

Если придать плазме форму шара, то ее магнитное поле всегда будет иметь минимум одну выпадающую точку.

Во-вторых, это достаточно очевидная проблема длительного поддержания тока. Униполярный электрический ток, наводимый в тороидальной плазме при помощи индуктора, не может существовать вечно с электротехнической точки зрения токамак представляет собой трансформатор с одновитковой вторичной обмоткой — плазмой. Сегодня предложено и экспериментально проверено несколько способов неиндукционного поддержания тока, среди которых уже упомянутая инжекция пучков быстрых нейтральных атомов. Можно использовать и ввод обладающих компонентой импульса в тороидальном направлении электромагнитных волн различного диапазона: электронного циклотронного, нижнегибридного, а также свистового волны-геликоны. Весьма интересен и крайне важен так называемый бутстрэп-эффект bootstrap , заключающийся в формировании анизотропной функции распределения заряженных частиц неоднородной плазмы в магнитной конфигурации токамака эффект связан с тороидальной геометрией токамака и в цилиндре отсутствует. Точно так же большинство физических вопросов, казавшихся непреодолимыми на начальном этапе работ по УТС, таких как управление равновесием, многочисленные неустойчивости, аномальные процессы переноса, сегодня решены на практическом уровне. В конечном счёте наиболее принципиальной сегодня можно считать задачу устранения негативного воздействия стенки, ограничивающей разряд, и других взаимодействующих с плазмой элементов. Проблема взаимодействия плазма—стенка для УТС двоякая.

С другой стороны, существует обратное влияние на плазму. Выбиваемые из стенки примесные атомы и молекулы поступают и могут накапливаться в плазме, приводя к дополнительным потерям на излучение, диссипации тока и даже деградации разряда. Накопление примесей вблизи стенки продуктов её эрозии увязывают с сокращением длительности разряда. Кроме того, стенка может довольно эффективно абсорбировать изотопы водорода, служащие термоядерным горючим. Отчётливо видно, что для сверхпроводящих систем повышение длительности разряда пока удаётся совмещать только со снижением нагрузки на стенку. Одна из них заключается в использовании жидкого лития как материала с низким зарядовым числом в промежуточном слое между плазмой и стенкой или пластинами дивертора. При этом возможные функции такого литиевого слоя могут несколько разниться. Литий должен собираться специальными литиесборниками и очищаться от абсорбированных продуктов — но уже вне камеры. Извлечённые изотопы водорода направляются в систему подачи топлива.

Кроме того, часть принимаемой литиевым слоем энергии может высвечиваться в виде ультрафиолетового излучения, снижая температуру пристеночной плазмы и способствуя более равномерному распределению тепловой нагрузки по стенке камеры [ 11 ]. Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода. Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга? Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры? Продуктивность этой концепции [ 12 ] и иных возможностей использования лития требует детальной экспериментальной проверки. Дальнейшая экстраполяция этой концепции заключается в полном отказе от стенки, ограждаю-щей плазменный объём.

Почему сложно построить реактор для синтеза

  • Прорыв в термоядерном синтезе | Канал Наука | Дзен
  • Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
  • Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
  • Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

Подписка на дайджест

  • «Я даже обрадуюсь»
  • Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
  • Читайте также:
  • Что такое термоядерный синтез и зачем он нужен?
  • ядерная физика, все новости – «ВЗГЛЯД.РУ»

Комментарии

  • Российские физики рассказали о приручении термоядерного синтеза
  • Учёным удалось получить полезную энергию в термоядерной реакции / Хабр
  • Успех российских ученых
  • Физика плазмы и инерциальный термоядерный синтез

Что такое термоядерный синтез и зачем он нужен?

Это уникальная нация, и они это сделают — создадут термоядерную энергетику. А мы, если всерьез не возьмемся за разработки в этой области, окажемся на задворках истории в решении столь серьезной проблемы. Известны две дорожные карты. Одна — с очень дорогими термоядерными электростанциями, огромными по размеру, до 9 метров большого радиуса тора токамака-реактора. Вторая — с дешевыми, всего 6 американских центов за 1 квт-час электроэнергии, и 1,6-2,0 метров большого радиуса, и это можно сделать на сферических токамаках, на одном из которых мы и работаем, разрабатывая для него системы управления плазмой.

Но можно говорить об их разнообразии? Да, существуют различные сферические токамаки. Они сферические в том плане, что у них аспектное отношение, то есть отношение большого радиуса токамака к малому, составляет, примерно, 1,5, а все другие, конвенциальные, имеют аспектное отношение, приблизительно, 3-4 и выше, и это, в отличие от сферических, не может дать дешевую электроэнергию. Можно строить небольшие установки модульного типа, а потом их наращивать, допустим, вместо одного модуля сделать 10.

Модуль — это небольшая часть всей термоядерной установки, это одна независимая небольшая термоядерная электростанция. Это приведет к снижению цены за электроэнергию по современным представлениям. Когда стали создаваться термоядерные установки, возникла большая наука — это физика высокотемпературной плазмы. Большая, серьезная наука, не все могут ее понимать и осваивать.

Тем более, что теория не всегда совпадает с экспериментом, и адекватное понимание эксперимента очень часто основывается на так называемых скейлингах, то есть экспериментальных формулах. В мире сейчас около 40 действующих установок типа токамак, три работающие установки находятся в России. Они никакой термоядерной энергии не производят, они экспериментальные, на них исследуют плазму, материалы, системы управления плазмой и т. На некоторых установках делали эксперименты с тритием.

На них было показано, что термоядерная реакция в принципе возможна, но коэффициент усиления был не больше единицы. Тем не менее, она возможна, потому что возникают нейтроны именно термоядерного происхождения, которые улавливались внешней оболочкой. Здесь сомнений нет. Вопрос только технологический — можно ли построить термоядерную электростанцию, так, чтобы она действительно давала термоядерную электроэнергию, и чтобы там реально функционировали все системы, которые туда входят.

Это сильная альтернатива. У атомных станций два серьезных недостатка. Первое: они производят отходы, у которых период полураспада сотни и тысячи лет, их нужно где-то хранить, и их много, они накапливаются. Второй недостаток — они могут взрываться.

Взрывы были сначала в Чернобыле, и затем на Фукусиме. В токамаках принципиально невозможен взрыв. Очень просто. Когда работает токамак, в его камеру постоянно поступает газообразное топливо, например, смесь трития и дейтерия.

Имеются специальные быстродействующие клапаны, через которые поступает топливо. Если на термоядерной электростанции образуется внештатная, аварийная ситуация, то мгновенно закрываются клапаны, топливо прекращает поступать, той энергии, которая накоплена, для взрыва недостаточно, она может только сломать установку, прожечь камеру. Токамаки, конечно, нельзя считать полностью безопасными. Опасность заключается в том, что, когда сливаются ядра легких элементов, в частности, дейтерия и трития, образуется ядро гелия и быстрый нейтрон.

Нейтроны поглощаются внешней оболочкой. Какая бы оболочка ни была, она становится радиоактивной. Эту радиоактивную оболочку через 20-30 лет надо менять. Но период полураспада там лет 15-20.

Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems.

Предполагалось, что её агрегат обеспечит скорость в 1,8 миллиона километров в час за счет создания в рабочей камере особых плазмоидов.

Рейган США и Ф. Миттеран Франция поддержали эту идею. Но прошло еще два десятилетия, прежде чем мир сделал очередной шаг к термоядерному будущему: было определено место для строительства экспериментального реактора. Выбор пал на область Прованс на юго-востоке Франции.

Это место соответствовало всем требованиям, включая комфортный климат и хорошую транспортную доступность, в том числе по морю. Последнее было важно, так как планировалась транспортировка громоздких деталей, вес которых мог достигать 100 т и более. Наконец, уже в середине первого десятилетия нового века, началось строительство токамака ИТЭР. Арцимович, внесший огромный вклад в реализацию советской программы по управляемому термоядерному синтезу, говорил, что термоядерная энергия будет освоена тогда, когда она действительно понадобится человечеству. Состоятельной и обоснованной критики проекта ИТЭР и термоядерной энергетики в целом на сегодня нет.

В сборнике, недавно изданном нашим центром, представлено свыше трех десятков подобных новых технологий, которые уже активно внедряют в своих лабораториях и на производствах российские организации, участвующие в реализации проекта. Но хотя проект ИТЭР сегодня является технологической платформой термоядерной энергетики, для создания самого термоядерного реактора необходимо развить еще ряд технологий, выходящих за рамки проекта. Например, нужно решить проблемы с генерацией стационарного неиндуктивного тока, созданием электромагнитной системы из высокотемпературного сверхпроводника и т. Эксперименты, которые в дальнейшем будут проводиться на ИТЭР, дополнят этот перечень. В программах термоядерных исследований всех технологически развитых стран в качестве горючего сегодня рассматривается дейтерий-тритиевая смесь.

Планируется, что полномасштабная реализация процессов горения термоядерной плазмы в ИТЭР будет достигнута во второй половине 2030-х гг. Но потребуется еще около 15 лет, чтобы построить термоядерный реактор ДЕМО , где будет генерироваться электрическая и тепловая энергия» Институт ядерной физики им. Порт-плаг одновременно служит и «окном» в горячую область, так как является носителем многочисленных диагностических устройств, и «пробкой» на пути потока нейтронов, генерируемых в плазме. В защитных модулях порт-плагов разместят диагностические системы, поставляющие информацию о состоянии вещества на центральный пульт. В 2019 г.

Интеграционная площадка для сборки порт-плагов уже готовится. Это будет «чистое» помещение, где содержание пыли, микроорганизмов, аэрозольных частиц и химических паров будет постоянно контролироваться и поддерживаться на определенном уровне. Поэтому все работы должны быть закончены уже к 2023 г.

Глеб Курскиев: — В детстве я мечтал стать мореплавателем или космонавтом, и еще — исследователем. И, в какой-то степени, мечту осуществил! Когда я был маленьким, главным примером для меня был мой дедушка, заведующий лабораторией в Ленинградском ЦКТИ. Когда мне еще не было 6 лет, он рассказывал мне все об устройстве окружающих вещей от двигателя внутреннего сгорания до ядерного реактора! К сожалению, деда рано не стало, и он многое не успел мне рассказать.

И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам!

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения.

Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики

«Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые.

ядерная физика

Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд.

Российский инженер рассказала о значении термоядерного прорыва американских ученых

Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него. Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму.

В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу. Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий.

Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час. К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток.

В два раза быстрее, чем поезд идущий от Москвы до Владивостока. Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3.

Данные будут объявлены после завершения анализа. Подпишитесь , чтобы быть в курсе.

С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. Для этих целей в рамках проекта ИТЭР на юге Франции с 2010 года строят самый большой в мире реактор типа токамак. В потенциале человечество может получить практически неисчерпаемый источник энергии, однако на сегодня уровень развития науки и техники не позволяет применять управляемый термоядерный синтез в промышленных масштабах. Что умеют программные роботы В прошлом году Ливерморская национальная лаборатория при Минэнерго США в ходе эксперимента по управляемому термоядерному синтезу облучила капсулу с изотопами водорода, дейтерия и трития, самым большим в мире лазером.

Выход превысил 1,3 мегаджоуля. Это серьезный шаг вперед. Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию. Установка, созданная Helion Energy — реактор Trenta — использует другой принцип. Плазма разогревается в двух источниках, и ее потоки сталкиваются в камере сгорания. В ней достигаются условия, при которых начинается термоядерный синтез и выделяется энергия.

Trenta создает те же 100 миллионов градусов, что и NIF. Но эти «градусы» много дешевле. Сейчас «перезарядка» реактора занимает 10 минут, но усовершенствованная установка должна «стрелять» каждую секунду. При такой «скорострельности» она может выдавать энергию непрерывно. Может так случиться, что небольшой коммерческий проект Helion Energy первым достигнет энергетической самоокупаемости термоядерной установки, опередив и государственные, и международные программы.

Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы

Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР.

Похожие новости:

Оцените статью
Добавить комментарий