Новости телескоп горизонта событий

Ученые из коллаборации Телескопа горизонта событий (EHT) показали первое в истории изображение тени сверхмассивной черной дыры, находящейся в самом центре. Важным результатом наземных наблюдений стало получение Телескопом горизонта событий (Event Horizon Telescope, или EHT) изображений сверхмассивных черных дыр в центре нашей Галактики и в галактике M87. Изображение: Event Horizon Telescope.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

«Впервые мы получили поляриметрические изображения в масштабе горизонта событий черной дыры в центре нашей Галактики, Sgr A*», — говорят исследователи. видимой границы черной дыры получено в рамках международного проекта Event Horizon Telescope (EHT) / «Телескоп горизонта событий». Event Horizon Telescope reveals magnetic fields around the. View a PDF of the paper titled First M87 Event Horizon Telescope Results. Телескоп Event Horizon Telescope (EHT) запечатлел квазар под названием NRAO 530. Целью этого международного сотрудничества радиотелескопов и обсерваторий телескопа "Горизонт событий" было получение первого изображения черной дыры.

Получен первый в истории снимок сверхмассивной черной дыры

Первая сверхмассивная черная дыра, изображение окрестностей которой было получено при помощи Телескопа горизонта событий, предоставила также и то, что исследователи называют «однозначным доказательством вращения черных дыр». Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. свежие новости - CT News.

Event Horizon Telescope

Sputnik International. EHT (Event Horizon Telescope) представляет собой глобальный радиоинтерферометр со сверхдлинной базой, работающий на длине волны 1,3 миллиметра. «Впервые мы получили поляриметрические изображения в масштабе горизонта событий черной дыры в центре нашей Галактики, Sgr A*», — говорят исследователи. Ученые коллаборации Телескопа горизонта событий EHT показали первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути.

Впервые представлено фото черной дыры и горизонта событий

Next Generation Event Horizon Telescope. В прямом эфире астрофизики из проекта Event Horizon Telescope («Телескоп горизонта событий») продемонстрировали изображения чёрной дыры в галактике Messier 87, удалённой от Земли на 50 млн световых лет. Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. и миллиметровых обсерваторий под названием Телескоп горизонта событий (Event Horizon Telescope, EHT) получила первое в истории изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь. Изображение: Event Horizon Telescope.

Впервые получено изображение тени черной дыры в центре Млечного Пути

Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Now that the Event Horizon Telescope collaboration has released its image of the Milky Way's black hole, the team is focusing on making movies of the two photographed black holes and finding other distant black holes large enough to study. в галактике Messier 87 (M87) в созвездии Девы. МОСКВА, 12 мая — РИА Новости, Владислав Стрекопытов. Ученые коллаборации "Телескопа горизонта событий" сообщили, что им удалось получить изображение сверхмассивной черной дыры в центре Млечного Пути. Event Horizon Telescope (EHT).

Опубликован первый снимок гигантской черной дыры в Млечном Пути

Изображение было получено международной исследовательской группой — Коллаборацией «Телескоп горизонта событий» EHT , которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов. Речь про объект, известный как «Стрелец A» или сокращенно Sgr A. Изображение сформировано световыми лучами, искривленными мощной гравитацией черной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца», — говорится на сайте Европейской южной обсерватории.

Достигнуть успеха удалось благодаря объединению восьми радиообсерваторий по всей планете в один виртуальный телескоп «размером с Землю». Хоть мы и не можем видеть чёрную дыру, так как она действительно абсолютно чёрная, её выдаёт окружающий её светящийся газ: мы наблюдаем тёмную центральную область называемую тенью , окружённую яркой кольцеобразной структурой.

Изображение сформировано световыми лучами, искривлёнными мощной гравитацией чёрной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца. Так как эта чёрная дыра находится от Земли на расстоянии около 27 000 световых лет, её видимые размеры на небе примерно соответствуют размерам пончика на Луне. Чтобы получить её изображение, группа создала сверхмощную антенную решётку EHT: восемь крупнейших радиообсерваторий всей планеты, объединившись, создали единый гигантский виртуальный телескоп размером с земной шар.

Хотя этот размер и может показаться большим, получающееся световое кольцо имеет видимый поперечник всего около 40 угловых микросекунд, что эквивалентно видимому размеру кредитной карты, лежащей на поверхности Луны. Хотя телескопы решетки не связаны друг с другом физически, получаемые ими наблюдательные данные можно точно синхронизировать при помощи атомных часов — водородных мазеров. Во время глобальной наблюдательной кампании 2017 года такие синхронные наблюдения были выполнены на длине волны 1. Каждый телескоп EHTв ходе кампании получал громадное количество данных: 350 терабайт в день.

Эти данные записывались на высокопроизводительные жесткие диски, наполненные гелием, а затем отсылались на высокоспециализированные суперкомпьютеры — так называемые корреляторы — в Институте радиоастрономии Макса Планка и обсерватории Хэйстек MIT для суммирования.

Когда отдельный луч проходит рядом с черной дырой, искривление пространства-времени вызывает существенное изменение направления, намного больше, чем если бы он проходил мимо звезды. Он может сделать поворот на 90 градусов или даже развернуться и направиться в обратную сторону. Чем ближе траектория луча к черной дыре, тем сильнее изменения.

Лучи света движутся мимо черной дыры со всех сторон, но мы видим только те, которые направлены на нас. Таким образом, черная дыра может служить очень мощной линзой. Следовательно, мы должны видеть тонкий круг света, или фотонное кольцо. Правая сторона кольца будет ярче из-за вращения черной дыры.

Размер кольца зависит от массы черной дыры, а яркость более ярких областей зависит от скорости вращения.

Блазар: цель телескопов, снявших силуэт черной дыры

Это стало одним из первых прямых подтверждений существования сверхмассивных черных дыр раньше ученые могли судить о них в основном по косвенным признакам. Тем не менее, даже получив этот снимок, ученые не нашли однозначного ответа на вопрос о том, какие физические процессы задействованы в формировании характерного огненного кольца и полумесяца, которые окружают черную сферу горизонта событий. Ученые пока не знают, как именно черные дыры поглощают материю и какую роль в этом процессе играют магнитные поля, которые, предположительно, возникают в так называемом диске аккреции. Он представляет собой огромное кольцо из пыли и газа, которое вращается вокруг черной дыры и подпитывает ее, разогреваясь при этом до очень высоких температур.

Другие исследователи сомневаются в этом и считают, что ведущую роль в этих процессах играют не только магнитные поля, но и другие физические явления.

Большим скачком вперед стал телескоп «Кеплер», с помощью которого удалось обнаружить около пяти тысяч планет. Впрочем, он не дает возможность подробно изучить многие планеты, которые напоминают Землю по размеру. Они вполне могут иметь атмосферу и даже жизнь, но распознать их поможет только телескоп «Джеймс Уэбб». Ученые смогут использовать встроенные в него инфракрасные спектрометры, которые помогут в обнаружении возможной жизни на планетах из потенциально обитаемой зоны ближайших звездных систем. Около 10 лет назад ученые мало что знали о планетах, расположенных за пределами Солнечной системы, но вскоре смогут проанализировать их на наличие жизни Look Как зарождаются новые звезды в нашем Млечном пути «Хаббл» не может рассмотреть то, что находится за облаками «Хаббл» способен делать достаточно интересные снимки как в видимом свете, так и в инфракрасном. Впрочем, известно, что звезды зарождаются в массивных облаках пыли и газа, которые называют туманностями. Данный телескоп вполне может увидеть, как они выглядят снаружи, но их внутренняя часть остается недостаточно подробной даже в инфракрасном спектре. Телескоп «Джеймс Уэбб» отличается повышенной эффективностью именно в этом частотном диапазоне, поэтому должен помочь получить еще более детализированные снимки подобных туманностей.

Вполне вероятно, что ученые смогут воочию наблюдать за рождением и начальным периодом в жизни звезд и молодых планет. Снимки телескопа «Хаббл»: «Столпы Творения» в видимом спектре на первом фото , а также в инфракрасном частотном диапазоне на втором фото Почему в центре галактик находятся массивные черные дыры Скорее всего, «Джеймс Уэбб» поможет разобраться и с этим Любопытно, что в центре каждой известной человечеству галактики находится сверхмассивная черная дыра, масса которой может быть в миллионы и даже миллиарды раз больше нашего Солнца.

By combining data from multiple telescopes, the research team was able to create two images. Both show brightness at the southern end of one jet, which the researchers believe is a radio core. The resolution of the images was high enough that two components of the core were visible. The group was also able to calculate the polarization of the light emitted from the different parts of the structures visible in the images they created and to map the magnetic fields in the jets. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission.

В дальнейшем были получены изображения джетов квазаров и тени черной дыры в центре Млечного Пути. Группа астрономов во главе с Светланой Йорстад Svetlana Jorstad из Института астрофизических исследований Бостонского университета представила результаты наблюдений Телескопом горизонта событий за квазаром NRAO 530 в апреле 2017 года, который выступал как калибровочная цель перед наблюдениями за центром Млечного Пути. NRAO 530 представляет собой квазар с плоским радиоспектром, который демонстрирует сильную переменность яркости в оптическом диапазоне и ярок в гама-диапазоне.

Объект относится к категории блазаров и обладает релятивистским джетом, красное смещение NRAO 530 составляет 0,902, что означает, что мы видим его таким, каким он был 7,5 миллиардов лет назад. Структура ядра оказалась сложнее, чем предполагалось ранее, в нем наблюдаются два ярких компонента.

Комментарии

  • Ученые Event Horizon Telescope опубликовали наиболее подробное изображение черной дыры
  • Впервые в истории опубликована фотография черной дыры галактики — 12.05.2022 — В мире на РЕН ТВ
  • Time variability of the Galactic Center black hole Sgr A*
  • Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А* • AB-NEWS
  • Телескоп горизонта событий получил изображения квазара в 7,5 млрд световых годах от Земли

Подписка на дайджест

  • Use saved searches to filter your results more quickly
  • Телескоп горизонта событий заметил колебание тени черной дыры
  • ESO показала первую в истории фотографию черной дыры в центре Млечного Пути
  • На фото показали магнитное поле вокруг сверхмассивной чёрной дыры нашей Галактики
  • Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры
  • Астроном показал на что способен телескоп горизонта событий - YouTube

Похожие новости:

Оцените статью
Добавить комментарий