Новости реактор на быстрых нейтронах в россии

В реакторах на быстрых нейтронах обходятся без замедлителей. Росатом ЗАМКНУЛ ЯДЕРНЫЙ ЦИКЛ! Борис Марцинкевич. Четвертый энергоблок БН-800 Белоярской АЭС после очередной загрузки инновационным МОКС-топливом выведен на 1.

Радиационные явления в реакторных материалах обсудили в Обнинске

В отличие от водо-водяных энергетических реакторов (ВВЭР), реактор на быстрых нейтронах в качестве теплоносителя использует не воду, а жидкий металл, в данном случае — натрий. Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. В реакторах на быстрых нейтронах обходятся без замедлителей. В России учёные-атомщики вывели реактор БН-800 на номинальную мощность с полной загрузкой инновационным, так называемым МОХ-топливом. «Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300.

Росатом получил лицензию на производство ядерного топлива для «реактора будущего»

не нужно будет хранить ядерные отходы и «урановые хвосты». использование свинцового теплоносителя, который не замедляет быстрые нейтроны. Замкнутый топливный цикл с реакторами на быстрых нейтронах обеспечивает сырьевую независимость и малоотходность атомной энергетики России не только за счет максимального вовлечения в энергопроизводство урана-238 из накопленных отвалов. Вообще-то, Россия не является пионером в создании реакторов на быстрых нейтронах, но она стала первой, кто преуспел в этом.

Навигация по записям

  • Росатом получил лицензию на производство ядерного топлива для «реактора будущего»
  • Также по теме
  • Россия сделала шаг к энергетике будущего
  • Россия создала нейтронный «Прорыв»
  • Главная тема

Быстрые нейтроны на земле, под водой и в реакторах Поднебесной: кто этому прокладывал дорогу?

Таким образом, впервые в мировой практике на одной площадке будут построены АЭС с быстрым реактором и пристанционный замкнутый ядерный топливный цикл. Облученное топливо после переработки будет направляться на рефабрикацию то есть, повторное изготовление свежего топлива — таким образом эта система постепенно станет практически автономной и независимой от внешних поставок энергоресурсов», — говорится в сообщении «Росатома». Генеральный директор «Росатома» Алексей Лихачев считает, что переработка ядерного топлива бесконечное количество раз сделает ресурсную базу атомной энергетики практически неисчерпаемой. Успешная реализация этого проекта позволит нашей стране стать первым в мире носителем атомной технологии, полностью отвечающей принципам устойчивого развития — в экологичности, доступности, надежности и эффективности использования ресурсов», — сказал Алексей Лихачев. Интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения.

Это, в частности, позволит решить ресурсную проблему атомной энергетики, связанную с ограниченностью запасов природного урана. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок будет уран-плутониевая смесь. В частности, реактор БН-800 в 2022 году был переведен на промышленное смешанное оксидное уран-плутониевое МОКС-топливо. Другой вид уран-плутониевого топлива для быстрых реакторов — нитридное СНУП-топливо, оно будет использоваться в первом инновационном реакторе со свинцовым теплоносителем БРЕСТ-ОД-300 строится в Северске в рамках отраслевого проекта "Прорыв".

В 1959-м здесь же ввели исследовательский реактор БР-5, а спустя время после реконструкции он получил название БР-10. Одновременно с этим и после реакторы на быстрых нейтронах разного назначения исследовательские, демонстрационные, реакторы-размножители, реакторы для подводных лодок и мощные энергетические аппараты с разным типом теплоносителя ртуть, натрий-калий, натрий, свинец-висмут были созданы и работали с разной продолжительностью в восьми странах, включая Советский Союз. Но почему США, Великобритания, Франция, чуть раньше Германия свернули, притормозили или, как сейчас Япония, заморозили у себя подобные программы, а Россия, Индия и вслед за нами Китай пошли дальше? Ответ на этот и смежные вопросы ученые и профессионалы из России, Беларуси, Казахстана и Китая обсуждали на недавней конференции "Инновационные проекты и технологии ядерной энергетики", которая под эгидой "Росатома" была проведена в Москве. К этому моменту шли поэтапно, постепенно увеличивая в загрузке реактора долю смешанного уран-плутониевого топлива. И полный перевод БН-800 на промышленное МОКС-топливо - важный шаг к созданию в России двухкомпонентной атомной энергетики с замкнутым топливным циклом. Следующим шагом должно стать строительство быстрых реакторов БН-1200М и БР-1200 уже коммерческого назначения.

Использование свинца в качестве теплоносителя позволяет направить практически все вылетевшие при делении ядер нейтроны назад — в топливные сборки. Поглощение быстрых нейтронов ураном-238 идет очень легко — он очень «жадный» на захват пролетающих через него частиц с высокой энергией. Захватив нейтрон, уран-238 превращается в изотоп другого химического элемента — в плутоний-239. А это, как мы знаем, тоже ядерное топливо, основа всего ядерного оружия в современном мире. В идеале на каждое разделившееся ядро урана-235 мы можем получить 1,25 ядра нового плутония-239, который чудесным образом возник прямо в реакторе из «бросового» урана-238, непригодного для обычного деления. Конечно, идеальную картинку в реальном реакторе получить невозможно. Нейтроны активно захватываются ядрами других элементов, присутствующих в активной зоне: осколками деления, теплоносителем и замедлителем, стержнями управления и защиты, часть нейтронов просто вылетает из активной зоны.

Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах

На конференции был представлен широкий спектр докладов, касающихся перспектив развития технологий быстрых натриевых реакторов в России и за рубежом, нейтронной физики, теплоносителя, перспективных конструкционных материалов и оборудования. ЦАИР частного учреждения «Наука и инновации» был представлен доклад «История и перспективы развития зарубежных проектов реакторов с быстрым спектром нейтронов и натриевым теплоносителем», включающий анализ ретроспективы развития быстрых натриевых реакторов за рубежом, описание текущих зарубежных проектов реакторов типа БН и национальных программ поддержки их развития, а также результаты многокритериального сравнения данной технологии с другими инновационными реакторными системами.

Только добытых запасов урана России хватит на тысячи лет. Лишний уран мы сможем пустить на топливо для ядерных ракетных двигателей ЯРД , которые уже у нас есть. ЯРДы позволят прорваться в дальний космос, освоить пояс астероидов и другие планеты. У человечества осталось совсем немного времени и свободного урана, его дефицит нарастает с каждым годом. Если его сжечь на Земле в ближайшее столетие, у нас не останется энергии, чтобы вырваться из «колыбели». В этом и заключается глубинный смысл «Прорыва». Пока наши солдаты и офицеры сражаются за независимость нашей Родины, за ее границы и саму человечность, попранную западным миром, наши ядерщики сражаются за будущее не только России, но и всего человечества. Единственная держава, которая способна справиться с этой умопомрачительной задачей — Россия.

Важно понимать, что это давно уже не вопрос теоретической науки, он перешел в сугубо практическую — инженерную — плоскость. Наши инженеры знают, как замкнуть топливный цикл. Эта победа особенно важна в эти дни, поскольку наши ядерщики заложили еще один камень в фундамент нашего энергетического могущества. Когда мы прорвемся, то станем неуязвимыми извне.

Однако есть вариант с так называемым «замкнутым топливным циклом», где ставка делается на реакторы на быстрых нейтронах, которые могут перерабатывать природный U-238 и торий. Что же это за технология такая, и почему будущее именно за ней? Во время работы обычного ядерного реактора тяжелое ядро урана, плутония или тория при делении выпускает несколько «лишних» нейтронов, что приводит к эффекту наведенной радиоактивности. В российских ВВЭР это ведет к накоплению в водяном носителе трития, тяжелого изотопа водорода. После этого его приходится выделять путем сложных и дорогостоящих манипуляций.

Новый перспективный отечественный реактор БРЕСТ на быстрых нейтронах решает одновременно множество проблем. Большим преимуществом расплавленного металла является то, что он практически не поглощает нейтроны и не набирает наведенную радиоактивность. Как известно, свинец — это очень радиационно стойкий элемент. При этом он химически пассивен при контакте с воздухом или водой, поэтому исключены возможные взрывы при нештатной разгерметизации контура реактора. Это чрезвычайно важно для безопасности современной ядерной энергетики.

В январе 2021 года после очередной перегрузки доля МОКС-топлива выросла до трети.

В конце июня 2022-го во время планового ремонта в реактор загрузили последнюю треть, а в начале сентября блок включили в сеть. Это важный шаг в выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла. Применение МОКС-топлива позволит в десятки раз увеличить топливную базу атомной энергетики. Остальное идет в отход, и в итоге образуется плутоний — искусственный топливный элемент, который является делящимся веществом. Раньше его отправляли либо на склад, либо военным. А теперь этот плутоний вернули в реактор, впервые выведя его на номинальную мощность.

Такой вид ядерного топлива называется МОКС-топливом. И это первый шаг к замыканию топливного цикла.

«Сделали то, что не успели в СССР». В России запущен вечный ядерный реактор

С нагревом реактора больше воды превращается в пар и меньше становится доступно для этой роли замедлителя. В результате ядерное деление замедляется. Этот принцип отрицательной обратной связи является ключевым аспектом безопасности, который предотвращает реакторы такого типа от перегрева. Реакторы типа РБМК-1000 отличаются. Они были созданы специально для работы на менее обогащенном топливе. В качестве теплоносителя реакторы этого типа также используют воду, но в качестве замедлителя в них используются графитовые блоки. Из-за такого разделения ролей теплоносителя и замедлителя в РБМК не работал принцип отрицательной обратной связи «больше пара — меньше реактивность». Вместо это реакторы типа РБМК использовали принцип пустотного коэффициента реактивности. Часть теплоносителя в реакторе может испаряться, образовывая пузырьки пара пустоты в теплоносителе.

Увеличение содержания пара может приводить как к росту реактивности положительный паровой коэффициент , так и к ее уменьшению отрицательный паровой коэффициент , это зависит от нейтронно-физических характеристик. При положительном коэффициенте для нейтронов облегчается задача по движению к графитовому замедлителю, говорит ядерный физик из Швеции Ларс-Эрик де Геер. Отсюда и растет корень катастрофы, говорит Де Геер. С увеличением реактивности реактор нагревается, больше воды превращается пар, что еще сильнее повышает реактивность. Процесс продолжается и продолжается. Что стало причиной катастрофы на Чернобыльской АЭС? Пульт управления атомной станцией это что-то из «Стар трэк» Когда Чернобыльская АЭС работала в полную силу, это не было большой проблемой, говорит Лайман. При высоких температурах урановое топливо, которое приводит в действие ядерное деление, поглощает больше нейтронов, что делает его менее реактивным.

Но при работе на пониженной мощности реакторы типа РБМК-1000 становятся очень нестабильными. На станции 26 апреля 1986 года шел планово-предупредительный ремонт. И каждый такой ремонт для реактора типа РБМК включал испытания работы различного оборудования, как регламентные, так и нестандартные, проводящиеся по отдельным программам. Данная остановка предполагала проведение испытаний так называемого режима «выбега ротора турбогенератора», предложенного генеральным проектировщиком институтом Гидропроект в качестве дополнительной системы аварийного электроснабжения. К моменту, когда операторы станции получили разрешение на дальнейшее снижение мощности, в реакторе из-за расщепления урана, скопился поглощающий нейтроны ксенон ксеноновое отравление , поэтому внутри него не мог поддерживаться соответствующий уровень реактивности.

To prevent a complete loss of the experimental base, it should be upgraded to meet the needs of future wide-range nuclear engineering.

The Program is intended to create a new technological platform for the nuclear engineering based on the closed fuel cycle involving fast reactors.

Это уникальная по своей сложности и инновационности задача, а топливная компания Росатома «ТВЭЛ» строго выполняет свои обязательства по поставкам серийного топлива CFR-600, заявил Григорьев. В конце 2021 года заказчику были направлены макеты сборок системы управления и защиты для испытаний имитационной зоны реактора. Игорь Лейпи, ГК Softline: Объем поставок российских операционных систем в ближайшие годы увеличится как минимум вдвое До конца года 2022 года в Китай планируется отправить еще две партии топлива для стартовой загрузки реактора и первой перегрузки. Финансовые условия соглашения не раскрываются.

ЦАИР частного учреждения «Наука и инновации» был представлен доклад «История и перспективы развития зарубежных проектов реакторов с быстрым спектром нейтронов и натриевым теплоносителем», включающий анализ ретроспективы развития быстрых натриевых реакторов за рубежом, описание текущих зарубежных проектов реакторов типа БН и национальных программ поддержки их развития, а также результаты многокритериального сравнения данной технологии с другими инновационными реакторными системами.

журнал стратегия

Несмотря на то, что разработкой реакторов на быстрых нейтронах занимались еще в СССР, для промышленного производства МОКС-топлива пришлось построить отдельный завод. "Росатом" начал строительство уникального энергоблока с реакторной установкой на быстрых нейтронах БРЕСТ-300 по стратегическому проекту "Прорыв". «Исследовать проблему вывода из эксплуатации быстрых реакторов можно на больших реакторах БН-600, БН-800. Интерфакс: Реактор на быстрых нейтронах БРЕСТ-300 в Томской области может быть введен в 2028-2029 гг., сообщил глава госкорпорации "Росатом" Алексей Лихачев в интервью телеканалу "Россия-24". Четвертый энергоблок Белоярской АЭС с реактором на быстрых нейтронах был впервые полностью переведен на инновационное МОКС-топливо.

Похожие новости:

Оцените статью
Добавить комментарий