Многие россияне опасаются применения ИИ в медицине. Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. Сценарии применения искусственного интеллекта в медицине. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области.
Эксперт объяснил провал искусственного интеллекта в медицине
Области применения искусственного интеллекта в медицине обширны и разнообразны. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики.
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах. Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства.
Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины.
Для первых ИИ будет самостоятельно формировать заключение в виде электронной медицинской записи в ЭМК, а вторые — направлять на описание врачу.
При этом характерная особенность профилактических исследований, таких как флюорография, — низкая доля исследований с патологическими признаками. Это решение позволит перенаправить время врача на более сложные виды исследований, где действительно требуется врачебная экспертиза. По итогам пилотного проекта мы сможем достоверно оценить безопасность применения автономного ИИ для пациентов.
Первыми шагами в развитии персональных ассистентов врача стал диагностический ассистент врачей-терапевтов и врачей общей практики для постановки предварительного диагноза. Сервис был внедрен в 2020 году, на основе анализа жалоб пациента он предлагает топ-3 диагноза. К выбранному диагнозу врачу предлагаются пакетные назначения.
Такой «синтез» искусственного и естественного интеллекта. В этом году внедрен диагностический ассистент при постановке заключительного диагноза во взрослых поликлиниках. Сервис анализирует данные ЭМК пациента за последние два года и сигнализирует врачу, если мнения с ИИ разошлись.
В обоих случаях ИИ выступает помощником, окончательное решение остается за врачом. Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта. ИИ не нужен отдых, сон, он не болеет и не устает.
Поэтому в алгоритмизированных задачах он может превзойти человека. Как калькулятор, автоматическая линейка. Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат.
Также способность ИИ анализировать гигантские объемы данных позволит учитывать влияние неочевидных факторов на развитие рисков и заболеваний. То, что недоступно возможностям человека в условиях временных ограничений. ИИ может в считаные минуты обрабатывать полный объем данных и просчитать все взаимосвязи, учесть ретроспективные данные.
Однако эффективная работа ИИ возможна только в результате совместных усилий ученых, экспертного врачебного сообщества и разработчиков. Последнее слово будет оставаться за врачом. Это позволит держать работу ИИ под контролем, объективно оценивать алгоритмы и видеть потенциал развития.
На основе медицинской истории пациента, данных о его образе жизни формируется цифровой двойник пациента. Это позволит перейти от всеобщей унификации к персонализированному здравоохранению. Извлечь ценность из этих данных можно при помощи ИИ.
ИИ-помощники смогут формировать необходимый набор профилактических мер, обследований для конкретного пациента, назначения, исходя не из установленных стандартов, а индивидуальные, в том числе учитывая резистентность к лекарственным препаратам, аллергоанамнез пациента и другие важные индивидуальные особенности.
Он может использоваться на стационарной основе и предоставлять больше функций. Это трудоёмкий процесс? Но от него зависят жизнь и здоровье человека, ребёнка. Если родители хотят ребёнку добра, то им придётся этим заниматься.
Всё зависит от мотивации. Именно для облегчения этого процесса мы создали чат-бота. Работать с ним было проще, чем пользоваться обычным мессенджером. Во многих случаях даже писать ничего было не нужно — только нажимать кнопки на экране. Туда же можно было отправить и результаты анализов например, общего анализа крови , полученные из лаборатории в виде стандартных PDF-файлов.
Прикрепляете файл, система его парсит, извлекает текст и вносит в базу. Очень удобно! В этом как раз и состояла одна из фишек системы. Есть мощный тренд: мы от статистической доказательной медицины переходим к персональной медицине , но тоже доказательной. Однако пока ни в одной стране полного перехода к ней так и не произошло.
И вот «Джейн» попыталась сделать шаг к светлому будущему, когда мы сможем собирать все показатели здоровья человека, а компьютерная система будет находить в них закономерности, которые важны для успешного лечения. Вы ему что-то отвечаете. Хотя откуда вы можете достоверно знать о противопоказаниях? Но если у нас будет возможность пользоваться «Джейн» или подобной программой, то все данные о пациенте рано или поздно станут известны системе и она сможет указать врачу на эти аспекты, индивидуальные особенности. Причём, в отличие от доктора-человека, компьютерная система не может что-то забыть или потерять, она способна запомнить информацию о тысячах пациентов с абсолютной точностью.
Персонализация является одной из частей современного подхода к здравоохранению, известного как концепция 4П-медицины. Название происходит от четырёх английских слов, начинающихся с буквы П: персонализация, прогнозирование, профилактика и преемственность Инфографика: Skillbox Media — Что из этого было реализовано в «Джейн»? Мы взяли базу РЛС, распарсили и ввели в систему. Так у «Джейн» появились знания о показаниях, противопоказаниях и побочных явлениях приёма лекарственных средств. Далее врач, когда решал, какой препарат назначить, давал алгоритму задание: «Подбери лекарство для этого ребёнка».
И система рассчитывала интегральный показатель для каждого вещества, который показывал степень риска приёма средства для конкретного пациента. Вещества, которые могут ухудшить состояние больного, компьютер подсветит красным. Более того, лекарственные средства взаимодействуют друг с другом. Если врач попытается назначить несовместимые препараты, то «Джейн» и об этом просигнализирует. Так алгоритм подбирает лекарство, наилучшим образом подходящее конкретному пациенту.
Это наглядный пример персонализированной медицины. Её можно модифицировать под другие болезни, не только для эпилепсии? Это отдельный модуль, который был встроен в «Джейн» и работал очень успешно. Кстати, им пользовались не только неврологи, но и врачи других специализаций. Как «Джейн» помогала предсказать приступы эпилепсии — Из каких частей состояла «Джейн»?
Перечислю основные модули: диагностика; разработка плана лечения и подбор лекарств; контроль принятия лекарств; Также был дневник пациента. Поскольку эпилепсия требует пристального внимания к состоянию пациента, были необходимы инструменты контроля. Сегодня все системы делаются с веб-доступом. Я не могу себе представить стационарную программу такого рода, которую нужно было бы устанавливать как отдельное приложение. Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее.
Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни.
Полное полагание на ИИ может привести к ослаблению роли врача и человеческого фактора в принятии решений, что сложно для понимания пациентами и вызывает опасения о безошибочности и безопасности процедур и лечения. Третьим важным аспектом является этическое использование ИИ в медицине. Возникают вопросы о прозрачности и объяснимости алгоритмов, использованных ИИ, чтобы врач мог понять и объяснить пациенту, какой именно алгоритм или модель привела к определенному диагнозу или рекомендации. Кроме того, ИИ должен использоваться только в тех случаях, где его применение будет полезным и эффективным для пациента, а не для коммерческих или иных целей. Искусственный интеллект в медицине стал важной и развивающейся областью. Однако, проблемы и вызовы, связанные с этикой и безопасностью данных, должны быть учтены и регулироваться соответствующими нормами и правилами, чтобы обеспечить эффективное и этичное использование ИИ в сфере здравоохранения. Искусственный интеллект в медицинских исследованиях: ускорение разработки новых лекарств и терапий Искусственный интеллект ИИ играет важную роль в современных медицинских исследованиях, позволяя ускорить разработку новых лекарств и терапий. Благодаря использованию ИИ, процесс разработки новых лекарств и терапий становится более эффективным и быстрым.
Алгоритмы машинного обучения и нейронные сети позволяют анализировать огромные объемы данных, включая генетическую информацию, результаты клинических испытаний и данные о воздействии лекарственных препаратов на организм. Использование ИИ позволяет выявить связи и тренды, которые могли бы остаться незамеченными при традиционных методах исследования. Таким образом, ученые и фармацевты могут получить новые и глубокие понимания основных механизмов заболеваний и разработать более эффективные методы их лечения. Техники ИИ также позволяют ускорить процесс поиска молекулярных структур, которые могут подавлять определенный вид заболевания. Алгоритмы машинного обучения способны анализировать огромное количество химических соединений и предсказывать их эффект на организм. Это позволяет исследователям экономить время и ресурсы, и ускоряет процесс разработки новых лекарственных препаратов и терапий. Искусственный интеллект в медицинских исследованиях — это мощный инструмент, который позволяет находить новые подходы к лечению заболеваний и способы предупреждения их развития. С помощью ИИ ученые имеют возможность углубиться в сложные механизмы заболеваний и найти инновационные решения для обеспечения лучшей медицинской помощи и улучшения качества жизни пациентов. Перспективы развития искусственного интеллекта в медицине: роль автоматизации и улучшение пациентского ухода. Искусственный интеллект в медицине — это одна из наиболее перспективных областей развития современной медицины.
На сегодняшний день автоматизация и использование искусственного интеллекта уже сыграли значительную роль в повышении качества оказания медицинской помощи и улучшении пациентского ухода. Развитие искусственного интеллекта в медицине открывает новые возможности для диагностики различных заболеваний. Автоматизированные системы на основе искусственного интеллекта позволяют проводить точную и быструю диагностику, основанную на анализе большого объема медицинских данных. Это помогает врачам принимать обоснованные решения и назначать эффективное лечение. Еще одной перспективой развития искусственного интеллекта в медицине является его роль в проведении лечения. Системы искусственного интеллекта могут помочь медицинскому персоналу в выборе оптимальных методов лечения, учете индивидуальных особенностей пациента и прогнозировании результатов. Автоматизация и искусственный интеллект также существенно улучшают пациентский уход и коммуникацию между медицинским персоналом и пациентами.
Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении.
Применение искусственного интеллекта в московском здравоохранении
Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине.
AI-платформа для анализа медицинских изображений
В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине. Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах.
Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения. При разработке программы подразумевался обязательный этап обучения на прецедентах. Значительная часть систем ИИ рассчитана на автоматизацию естественных интеллектуальных способностей человека. Технический комитет является представительным органом РФ в международной организации по стандартизации ИИ, и сейчас по инициативе российской стороны там рассматривается возможность разработки международного стандарта клинических испытаний систем с ИИ. Опыт и мудрость не заменить Медицина все больше переходит на цифру, и требуются новые цифровые инструменты обработки цифровых данных. Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика.
В 2020-21 гг. Сервисы использовались в 102 медицинских организациях при проведении 13 видов исследований КТ, МРТ и другие. Было обработано 3,8 млн исследований, подготовлено 104 дата-сетов механизмов хранения информации, предоставляющих быстрый доступ к большим объемам данных. Говорит главный внештатный специалист по лучевой и инструментальной диагностике, директор ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ» Сергей Морозов: «За время эксперимента мы увидели, что искусственный интеллект значительно снижает длительность подготовки описания результатов. Он не может заменить врача, но может в отдельных клинических сценариях ускорить работу рентгенолога, оптимизировать ресурсы за счет автоматизации двойных просмотров результатов скринингов. Поначалу врачи опасались, что ИИ заменит их, относились как к конкуренту, но потом настороженность все же сменилась слабопозитивным отношением». Очевидно, что искусственный интеллект может взять на себя лишь часть врачебных функций.
А еще один проект — персональная комплексная диагностика пациента, которая также будет основана на изучении ИИ его медкарты. Пример такого проекта мы реализовывали в 2022 году вместе с правительством Москвы. Речь идет о проекте диагностического ассистента. Разработанная модель ИИ анализирует всю содержащуюся в медкарте информацию: жалобы, результаты инструментальных и лабораторных исследований, анамнез, описание заключений — и выдает второе мнение врачу. Модель обучалась на обезличенных данных более чем на 30 млн визитов пациентов», - поделилась Елена Соколова из лаборатории искусственного интеллекта «Сбера». В медицине большинство сервисов для обработки диагностических изображений ориентировано на лучевое исследование, говорит Анна Мещерякова, гендиректор компании «Платформа «Третье мнение»: «Уровень зрелости этого направления самый высокий: данные — цифровые, инфраструктура наиболее готова к внедрению ИИ. Поэтому большинство сервисов, которые мы в «Третьем мнении» вывели на рынок, — это сервисы для отделения лучевой диагностики». Недавно организация в одном из регионов завершила проект по ретроспективному анализу исследований грудной клетки, были проанализированы данные за 1,5 года. Технологии помогают и младшему медперсоналу. Например, медсестры благодаря push-уведомлениям смогут до 50 раз быстрее реагировать на тревожные ситуации, связанные с возможным падением пациентов», - говорит Анна Мещерякова. Барьеры для внедрения ИИ Вопреки всем успехам, реального внедрения серьезных, глубоких систем поддержки принятия врачебных решений на федеральном уровне очень мало, подытожил руководитель экспертной группы «Цифровые технологии в медицине» при АНО «Цифровая экономика», гендиректор ассоциации «НБМЗ» и руководитель направления цифровой медицины компании «Инвитро» Борис Зингерман. По его мнению, сейчас ИИ охотнее всего доверяют сами пациенты. А у пациентов нет медобразования, и они рады любой помощи и подсказке от искусственного интеллекта», — отметил Борис Зингерман. Сложнее ситуация обстоит в здравоохранении в субъектах. На первом этапе обновлен парк медоборудования, создан центральный архив медицинских изображений и проведено несколько технических интеграций с сервисами ИИ. Для контроля качества ИИ-решений в медицине не хватало специалистов, поэтому на призывы о помощи откликнулись эксперты Департамента здравоохранения Москвы.
Это позволяет врачам принимать более обоснованные решения и выбирать оптимальные лечебные стратегии. Еще одной областью применения искусственного интеллекта является персонализированная медицина. Системы ИИ могут анализировать генетические данные пациентов, учитывать их индивидуальные особенности и предлагать персонализированные подходы к диагностике и лечению. Это позволяет более точно определить риск развития заболеваний, выбрать наиболее эффективные лекарственные препараты и предотвратить нежелательные побочные эффекты. Самым перспективным направлением ИИ в медцине можно считать квантовое машинное обучение. Генеративные модели ИИ на база квантовых алгоритмов позволят проектирвоать и разарбатывать новые сложные молекулярные соединения новых лекарств и материалов.