Мировые новости экономики, финансов и инвестиций. Ученые впервые обнаружили эффекты, предсказанные квантовой гравитацией — одной из физических теорий, призванной объединить квантовую механику с общей теорией относительности Эйнштейна. Новости. Фото дня. Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов. Все новости с тегом. Квантовые технологии.
Первые в мире: ученые МФТИ добились прорыва в области квантовых компьютеров
Теперь у учёных фактически есть способ заставить двух зверей такого зоопарка рычать на одном языке. Ещё один конкретный, хотя, пожалуй, и сложный для понимания перспектив пример. Квантовое зондирование. Оно позволит у знать о микромире много нового и интересного. Ведь когда только один из двух запутанных объектов будет подвергаться внешнему воздействию, запутанность позволит измерить нужные свойства второго объекта с невероятной по современным меркам чувствительностью, не ограниченной нулевыми колебаниями. Это как заглянуть в удивительный квантовый мир с помощью микроскопа. Если представить, сколько всего нового и важного учёные узнали с его помощью о мире бактерий и клеток, то голова просто взрывается от мыслей, как много нового мы узнаем при помощи квантового зондирования. Достижение открывает новые фантастические технические возможности. А ещё новое достижение потенциально позволяет увеличить и без того фантастическую чувствительность детекторов гравитационных волн.
Принципиальная сложность понимания квантовой теории Сложно представить, как выглядела бы наша цивилизация без классической физики и математики. Понятия об абсолютной «объективной реальности, существующей независимо от нашего сознания», о трехмерном евклидовом пространстве и равномерно текущем времени настолько глубоко укоренились в сознании, что мы не замечаем их. А главное, отказываемся замечать, что принципы квантовой физики применимы лишь в некоторых рутинных ситуациях и для объяснения устройства Вселенной оказываются попросту неверны. Это была революция, которую наше сознание не приняло. Со снисходительностью мы повторяем: «все относительно», «время и пространство едины», — всегда держа в уме, что это допущение, научная абстракция, имеющая мало общего с нашей привычной устойчивой действительностью. На самом же деле как раз наши представления слабо соотносятся с действительностью — удивительной и невероятной. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах. Это является одной из проблем квантовой физики в целом. Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями. Волна или частица До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Эта теория квантовой физики весьма красивая, но она имеет ряд парадоксов. Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им — чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние». Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом — пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна — это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов.
Нобелевскую премию по физике присудили за исследования в квантовой механике. Ален Аспе, Джон Клаузер и Антон Цайлингер описали эффект «квантового запутывания» Результаты, полученные этими учёными, расчистили путь для новых технологий, основанных на квантовой информатике. Так считают эксперты Нобелевская премия в области физики 2022 года присуждена группе учёных — французу Алену Аспе, американцу Джону Клаузеру и австрийцу Антону Цайлингеру. Премия присуждена за «эксперименты с запутанными фотонами, установление [принципа] нарушения неравенств Белла и первенство [в создании] науки о квантовой информации». Учёные описали эффект « квантового запутывания », когда входившие в состав одной и той же системы частицы продолжают «чувствовать» изменения состояния друг друга даже на расстоянии нескольких километров. Премия присуждена за эксперименты с запутанными протонами, выявление нарушения неравенства Белла теорема Белла показывает, что вне зависимости от реального наличия в квантово-механической теории неких скрытых параметров, которые влияют на любую физическую характеристику квантовой частицы, можно провести серийный эксперимент. Его статистические результаты подтвердят либо опровергнут наличие скрытых параметров в квантово-механической теории и новаторство в области квантовой информатики. То, что происходит с одной частицей в переплетённой паре, определяет происходящее с другой, даже если обе находятся на слишком большом расстоянии, чтобы воздействовать друг на друга. Создание лауреатами экспериментальных инструментов заложило основу для новой эры квантовых технологий», — отметил нобелевский комитет.
Подробнее о работе ученых можно узнать из пресс-релиза Нобелевского комитета. Аспе, Клаузер и Цайлингер провели новаторские эксперименты с использованием запутанных квантовых состояний, их исследования проложили путь для новых технологий, основанных на квантовой информации. Квантовая запутанность — феномен, при котором квантовые состояния нескольких частиц оказываются взаимосвязанными независимо от расстояния между ними. Это явление уже используется в криптографии, компьютерных технологиях и квантовой телепортации. Доказать квантовую запутанность частиц с помощью эксперимента можно, проверив выполнение неравенств Белла по имении физика Джона Белла. Они позволяют узнать о наличии в квантово-механической системе скрытых параметров, определяющих состояние, которое примет одна из частиц.
Квантовая запутанность
- Международная гонка кубитов
- Физика: 10 научных прорывов 2023 года со всего мира
- Распутать квантовую запутанность: за что дали «Нобеля» по физике
- Экспериментаторы надеются зафиксировать колебания массы атомов
- Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики
- Квантач – Telegram
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Спинароны могут найти полезные применения в наноэлектронике. Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации. В квантовых точках запутанные по поляризации фотоны рождаются в процессе двухфотонного резонансного возбуждения в биэкситонно-экситонном каскаде, однако эффективность этого метода остается пока ниже, чем в методе параметрической вниз-конверсии. Basso Basset Римский университет Сапиенца, Италия и соавторы исследовали влияние индуцированного лазером эффекта Штарка на спектры излучения квантовых точек и на квантовую запутанность излучаемых фотонных пар [3].
Квантовая точка в GaAs облучалась фемтосекундными лазерными импульсами. Оказалось, что эффективность запутывания зависит от соотношения длительности лазерного импульса и времени жизни верхнего возбужденного состояния точки, ответственного за генерацию каскада. В новом эксперименте длительность импульса была доведена до времени жизни указанного уровня, и была показана перспективность использования фотонных пар от квантовых точек на частотах выше ГГц, хотя пока остается широкое поле для дальнейших исследований и усовершенствований. Sreekanth Институт материаловедения и инжиниринга IMRE , Сингапур и соавторы продемонстрировали в своём эксперименте новый спектрограф для резонансной рамановской спектроскопии с поверхностным усилением в участке ближнего ИК-спектра [4].
Это устройство может применяться для идентификации молекул по частотам их колебательных линий. Использовался перестраиваемый брэгговский отражатель из чередующихся слоёв стибнита Sb2S3, вносящего малые фазовые потери, и слоёв SiO2, а также тонкой металлической плёнки. На ней генерировались таммовские плазмоны с длинами волн 738-1504 нм.
Мы видим, что работа лауреатов с запутанными состояниями имеет большое значение, даже помимо фундаментальных вопросов интерпретации квантовой механики», — отметил председатель Нобелевского комитета по физике Андерс Ирбек. Ален Аспе родился в 1947 году во Франции. С 1965 по 1969 годы учился в Высшей нормальной школе в Кашане и Парижском университете, с 1969 по 1971 годы был сотрудником университета Париж-юг, где занимался подготовкой диссертации по оптике. После защиты этой работы в 1971 году уехал в Камерун, где работал в Высшей нормальной школе Яунде до 1974 года. В 1983 году защитил докторскую диссертацию по неравенствам Белла. Сейчас он почётный директор по исследованиям во французском Национальном центре научных исследований, профессор парижской Политехнической школы и Высшей школы Института оптики. Аспе известен тем, что ему удалось объяснить фундаментальные аспекты квантового и механического поведения одиночных фотонов, пар фотонов и атомов. Он внёс значительный вклад в понимание квантового мира. Академик Французской академии наук, иностранный член Национальной академии наук США, член-корреспондент Австрийской академии наук.
В Москве при поддержке Газпромбанка прошла первая церемония вручения Национальной премии в области будущих технологий «Вызов». Премия «Вызов» призвана отметить фундаментальные прорывы, идеи и изобретения, меняющие ландшафт современной науки и жизнь каждого человека. Награда, а также 10 млн рублей были вручены российским учёным и разработчикам перспективных технологий в номинациях «Учёный года», «Инженерное решение», «Перспектива» и «Прорыв».
Клаузер и другие ученые продолжили искать ответы на некоторые спорные моменты. После эксперимента Джона Клаузера к процессу подключился Ален Аспект. Он усовершенствовал установку Клаузера и смог добиться того, чтобы изначальные условия, при которых испускались фотоны, не влияли на результаты измерений. Эксперимент подтвердил вывод ученых: квантовая теория верна, и нет никаких скрытых переменных. Опираясь на исследования коллег, Антон Цайлингер и его исследовательская группа продемонстрировала «квантовую телепортацию» — передачу квантового состояния от одной частицы к другой на расстоянии. Что это значит Первая квантовая революция в XX веке подарила миру транзисторы, лазеры, солнечные панели, мобильную телефонную связь и интернет. XXI век открыл новые возможности для квантовой механики.
Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики
Подробнее о работе ученых можно узнать из пресс-релиза Нобелевского комитета. Аспе, Клаузер и Цайлингер провели новаторские эксперименты с использованием запутанных квантовых состояний, их исследования проложили путь для новых технологий, основанных на квантовой информации. Квантовая запутанность — феномен, при котором квантовые состояния нескольких частиц оказываются взаимосвязанными независимо от расстояния между ними. Это явление уже используется в криптографии, компьютерных технологиях и квантовой телепортации. Доказать квантовую запутанность частиц с помощью эксперимента можно, проверив выполнение неравенств Белла по имении физика Джона Белла. Они позволяют узнать о наличии в квантово-механической системе скрытых параметров, определяющих состояние, которое примет одна из частиц.
Премия присуждена за создание ионного квантового процессора с использованием многоуровневых квантовых систем. Лауреатом в номинации «Инженерное решение» стал Гамлет Ходжибагиян, директор по научной работе Лаборатории физики высоких энергий Объединенного института ядерных исследований ОИЯИ , кандидат физико-математических наук. Премия присуждена за разработку магнитов на основе высокотемпературного сверхпроводящего материала для сверхмощных хранилищ электроэнергии и исследований новой физики.
Человек покорил космос, освоил энергию атома, создал мощнейшие суперкомпьютеры, научился анализировать чудовищные объемы информации и даже прочитал свой собственный геном. Мы видим, какие невероятно сложные задачи стоят перед современной биологией, шагнувшей далеко за пределы старого миропонимания. Вопрос о происхождении жизни давно перезрел и явно не может быть решен в рамках устаревшей научной парадигмы. Дальнейшее развитие научного познания немыслимо без качественного скачка во всем, что касается фундаментальной физики. Возрождение категории эфира и адекватное количественное описание его свойств произошли на редкость своевременно — только так можно кардинально разрешить массу накопившихся в науке противоречий, включая аспекты теории относительности и квантовой физики. Само научное достижение наверняка будет положено в основу новых технологий. Далеко ли от теории до практики? Если бы речь шла о начале прошлого века, на этот вопрос можно было бы ответить утвердительно — да, очень далеко. Но прошла уже почти четверть XXI века и хайтек сегодня развивается фактически в режиме реального времени.
От хорошей идеи до ее реализации в наше время один шаг. Учитывая родство новой теории эфира с законами аэрогидромеханики, вполне закономерно ожидать в близком будущем новых технологий движения в физическом вакууме и различных средах. Для меня, руководившего в 90-х годах двигательным подразделением ЦИАМ, высокая практическая значимость открытия россиян очевидна. Например, термин «сверхавиация», предложенный почти столетие назад Ф. Цандером, приобретает при этом вполне конкретный смысл. В последнее время от российских ученых и инженеров постоянно ждут «срезания углов» и «прыжков через поколения», как средств опережающего развития технологий. Это редкий шанс, упустить который будет непростительно со всех точек зрения. Дополнительно читать по теме:.
Антон Цайлингер Anton Zeilinger из Венского университета также проводил множество экспериментов по проверке неравенства Белла, усовершенствовав методику обоих предшественников. Он создавал спутанные пары фотонов, направляя луч лазера на специальные кристаллы, а также пошёл дальше, чем Ален Аспе — он также переключал схемы экспериментов, чтобы они не могли повлиять на поведение уже вылетевших фотонов, и при этом использовал генератор случайных чисел для переключения между несколькими схемами. В одном из экспериментов для управления фильтрами были задействованы сигналы от удалённых галактик — в таком случае можно было наверняка сказать, что они не влияют друг на друга. Также Аспе сделал шаг к практическому использованию спутанных состояний. В частности, его группа первой продемонстрировала эффект, который сейчас у многих на слуху — «квантовую телепортацию». Схемы экспериментов Дж. Клаузера, А. Аспе и А. Цайлингера по измерению поляризации двух спутанных фотонов в паре. В прошлом году Нобелевский комитет решил сделать акцент на исследованиях, так или иначе затрагивающих изменения климата и возможные глобальные угрозы — часть премии была вручена за междисциплинарные исследования хаотических систем основной математический объект этого поля науки — странный аттрактор, обозначающий крайне хаотичную систему с непредсказуемым поведением — таким, например, как система вихрей в атмосфере, непосредственно определяющая прогноз погоды на следующие несколько недель. Предыдущие два года подряд 2019 и 2020 годы внимание Комитета привлекли космические темы — премии были вручены соответственно за экзопланеты и чёрные дыры , то есть два класса модных сегодня астрономических объектов. Подробнее о проблематике, удостоившейся внимания Нобелевского комитета в предыдущие годы, можно прочитать в статьях по ссылкам выше.
Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики
Уральцева СПбГУ в коридоре здания Двенадцати коллегий Идея создания квантовых компьютеров — мощнейших вычислительных машин, работающих по законам квантового мира и способных решать многие задачи эффективнее самых производительных суперкомпьютеров, — давно завладела умами ученых и специалистов IT-корпораций. Подобные разработки ведутся, например, в Google и IBM, однако многие такие проекты требуют использования криостатов — резервуаров с жидким азотом или сжатым гелием, внутри которых квантовые процессоры охлаждаются до температуры ниже минус 270 градусов по Цельсию. Столь низкая температура нужна для сохранения эффекта сверхпроводимости, который необходим для работы квантовых компьютеров. Результаты исследования опубликованы сегодня в престижном научном журнале Nature Materials. Разработки Алексея Кавокина и его коллег связаны с созданием поляритонной платформы для квантовых вычислений. Одно из главных ее преимуществ — возможность проводить квантовые вычисления при комнатной температуре. Поляритонный лазер, работающий на открытом Алексеем Кавокиным и его коллегами принципе бозе-эйнштейновской конденсации экситонных поляритонов при комнатной температуре, позволяет создавать кубиты — базовые элементы квантовых компьютеров. Кубиты реализуются методом лазерного облучения искусственных полупроводниковых структур — микрорезонаторов.
Но еще слишком рано говорить об успешных технологических подходах". Генеральный директор IonQ Pete Chapman говорит: "... К концу 2023 года у компании будут коммерческие приложения для клиентов. У нас есть шанс стать первыми. В ближайшие несколько лет рынок будет принадлежать нам". Применение квантовых технологий Квантовые компьютеры никогда не заменят обычные вычисления. Вы никогда не будете использовать их для проверки электронной почты, игр или работы в Excel, и не будет квантовых смартфонов или ноутбуков. Вместо этого квантовые системы будут работать в тандеме с обычными вычислениями для решения проблем, которые не могут быть решены с помощью нынешних технологий. По оценкам консалтинговой компании McKinsey: квантовые вычисления способны "революционизировать" исследования и разработку молекулярных структур в биофармацевтике, ускорив открытие и разработку лекарств; в химической промышленности квантовые вычисления должны ускорить разработку новых катализаторов для улавливания углерода и увеличения энергоэффективности ; использование квантовых вычислений в чат-ботах с искусственным интеллектом сделает информацию в Интернете более полезной и легкодоступной Автопроизводители BMW и Volkswagen начали исследования по применению квантовых технологий для: управления цепочками поставок,.
Эффективную работу квантовых компьютеров останавливает явление декогеренции — информация, хранящаяся в кубитах, быстро теряет свои свойства в результате взаимодействия с окружающей средой. Квантовые вычисления идут с помощью частиц. Однако из частиц состоят не только кубиты, но и все вокруг, включая материалы, из которых сделан компьютер, воздух и пр. Кубиты быстро начинают взаимодействовать не только друг с другом, но и со средой. Это одна из фундаментальных проблем на пути к квантовому компьютеру, которую пытаются решить ученые всего мира. Квантовая коррекция ошибок была теоретически открыта в 1995 году, она предлагает средства для борьбы с декогерентностью, используя избыточность. То есть кодирует кубит в системе большего размера, уменьшая тем самым ее способность взаимодействовать с тем, с чем не нужно.
Джон Стюарт Белл, работавший над этой проблемой, в 1960-х годах века предложил проверить наличие скрытых параметров при помощи неравенства которое сейчас называется теоремой Белла. По замыслу ученого, если неравенство выполняется, значит, в системе есть скрытые параметры. Доказать это могли бы статистические эксперименты: в случае наличия или отсутствия скрытых параметров вероятность состояний будет отличаться. Недостаток теории заключался в том, что для ее доказательства необходимо было бы провести тысячи экспериментов, чтобы собрать достаточно статистических данных. Это стало возможно только сильно позже, когда появилось оборудование для фиксации состояния экспериментальных фотонов. Американский физик Джон Клаузер предложил эксперимент для проверки неравенства Белла, благодаря которому ему в 1972 году удалось доказать, что неравенства не выполняются, а значит, скрытых параметров нет. Однако работа на этом не завершилась.
Будь в курсе последних новостей из мира гаджетов и технологий
- Будущее квантовых компьютеров: перспективы и риски // Новости НТВ
- Нобелевскую премию по физике дали за доказательство постулатов квантовой механики
- О связи Канта с современной квантовой физикой рассказали в БФУ - Российская газета
- новости квантовой физики последние | Дзен
Прорыв уровня Эйнштейна? Создана теория, которая может объяснить весь мир
Все самое интересное и актуальное по теме "Квантовая физика". Новости. Фото дня. Новый эксперимент подтверждает краеугольное предположение о квантовых вычислениях; удваивая жизнь кубита, исследователи доказали ключевую теорию квантовой физики.
Квантовая физика о Боге, душе и Вселенной
Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически. События и новости 24 часа в сутки по тегу: ФИЗИКА. Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Центр передового опыта в области квантовой информации и квантовой физики Китайской академии наук (CAS) поставил 504-кубитный сверхпроводящий квантовый вычислительный чип под названием Xiaohong компании QuantumCTek Co., Ltd., сообщило агентство Xinhua. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших. Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин. Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода.
Что такое квант
- О связи Канта с современной квантовой физикой рассказали в БФУ
- Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики
- Квантовая физика • AB-NEWS
- Распутать квантовую запутанность: за что дали «Нобеля» по физике
- Распутать квантовую запутанность: за что дали «Нобеля» по физике
В МФТИ назвали главный прорыв года в квантовой физике
Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Награда присуждается трем физикам–экспериментаторам, чьи новаторские исследования заложили основу квантовой информатики. Новости физики в сети Internet: май 2023 (по материалам электронных препринтов).