Показав, что квантово-механические объекты, которые находятся далеко друг от друга, могут быть гораздо сильнее коррелированы друг с другом, чем это возможно в обычных системах, исследователи предоставили дополнительное подтверждение квантовой механике. Все новости с тегом. Квантовые технологии. В 1973 году физик Филип Андерсон описал ее в своей теории, отметив, что она бы сыграла ключевую роль в создании квантовых компьютеров. Изобретен квантовый радар для работы в условиях плохой видимости НОВОСТИ Наука и Технологии.
Распутать квантовую запутанность: за что дали «Нобеля» по физике
Изучение суперхимии открывает дорогу к ускорению химических реакций, а суперпарамагнетизма — к созданию очень мощных и быстрых компьютеров, работающих при комнатной температуре. Подробности — в обзоре новостей квантовой физики. Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. Отличная новость! Физики нашли элементарную частицу, "размазанную" на 735 километров. Ученые из MIT выяснили, что нейтрино могут находиться в состоянии квантовой суперпозиции, находясь одновременно в двух разных. Квантовый – последние новости. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. Новости, анонсы, рекомендации. Бытовая техника.
Нобелевка по физике за изучение квантовой запутанности — что это значит
И расширяет наше понимание квантовой физики и странных феноменов, которые возникают на атомном уровне. В прошлом году физики из Института Макса Планка сообщили о разработке эффективного метода создания квантовой запутанности между фотонами. В 1990–2013 годах занимался экспериментальной физикой в университете Инсбрука и Венском университете. В 2004–2013 годах возглавлял Институт квантовой оптики и квантовой информации (IQOQI) Австрийской академии наук. И расширяет наше понимание квантовой физики и странных феноменов, которые возникают на атомном уровне. В прошлом году физики из Института Макса Планка сообщили о разработке эффективного метода создания квантовой запутанности между фотонами. читайте, смотрите фотографии и видео о прошедших событиях в России и за рубежом!
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. квантовая физика: Последние новости. Физики из Национальной лаборатории в Брукхейвене (Brookhaven National Laboratory, BNL) открыли совершенно новый тип квантовой запутанности, достаточно известного явления, связывающего квантовые частицы. квантовая физика — самые актуальные и последние новости сегодня. Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только. Нобелевскую премию по физике дали за новаторство в квантовой информатике Награды удостоились француз Ален Аспе, американец Джон Клаузер и австриец Антон Цайлингер.
С приставкой «супер-»: обзор новостей квантовой физики
Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц. Квантовая физика называется разделом теоретической физики, в котором изучаются квантово-механические и квантово-силовые системы, взаимодействия и законы их движения. Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки.
Квантовые технологии
Благодаря этому управлению с помощью когерентного сложения электромагнитных волн MAPLE способен смещать фокус и направление излучаемой энергии — без каких-либо движущихся частей, передавая большую часть энергии в нужное место на Земле. Нейтрино заглянуло внутрь протона Американские физики из Рочестерского университета и проекта MINERvA Main Injector Neutrino ExpeRiment to study v-A interactions — Главный эксперимент с инжектором нейтрино для исследований взаимодействия нейтрино с атомами в Фермилабе впервые смогли точно измерить размер и структуру протона с помощью нейтрино. Их результаты опубликованы в журнале Nature. Тем самым создан ещё один инструмент, способный заглянуть внутрь субатомных частиц, который, возможно, позволит уточнить наши представления о них. Кроме того, подобные эксперименты могут прояснить и то, как нейтрино взаимодействуют с веществом. Информацию о структуре протона исследователи получили, направив пучок нейтрино на пластиковые мишени, содержащие углерод и водород, ядра которого как раз одиночные протоны. Нейтрино слабо взаимодействует с веществом, поэтому пришлось решить множество проблем для высокоточных измерений их рассеяния. Например, было сложно наблюдать сигнал нейтрино, рассеянного одиночными протонами водорода на фоне нейтрино, рассеянных связанными протонами в ядрах углерода. Для решения этой проблемы исследователи смоделировали сигнал углеродного рассеяния и вычли его из экспериментального сигнала.
Физики впервые увидели коллайдерное нейтрино Реакции, которые происходят в протонных коллайдерах ускорителях частиц, в которых два пучка протонов сталкиваются друг с другом , порождают большое количество нейтрино. Однако до сих пор эти нейтрино никогда не наблюдались напрямую. Очень слабое взаимодействие нейтрино с другими частицами делает их обнаружение крайне сложным. И вот в августе 2023 года участники сразу двух экспериментов на Большом адронном коллайдере объявили о первой регистрации нейтрино. Известно, что нейтрино высоких энергий производятся преимущественно на этом участке, но другие детекторы на БАКе имеют здесь слепые зоны и потому не могли наблюдать. Обнаруженные FASER нейтрино имеют самую высокую энергию, когда-либо зарегистрированную в лабораторных условиях. А от осколков столкновений протонов его прикрывают примерно 100 метров бетона и камня. Регистрация коллайдерных нейтрино может открыть новые возможности для экспериментальных исследований в области физики элементарных частиц.
Физики проводили основополагающие эксперименты со спутанными квантовыми состояниями — системами, в которых квантовые частицы ведут себя как одно целое, даже находясь на значительном удалении друг от друга. Самые известные объекты такого типа — спутанные фотоны, с которыми, по-видимому, сейчас проводят большинство экспериментов. Квантовую запутанность, хоть и реже, но пробуют реализовать и на других объектах — отдельных атомах. Подчеркнём, что квантовая запутанность — специфическое свойство материи, которое следует из законов квантовой механики и очень непросто объясняется интуитивно. Долгое время теоретиков волновал вопрос о природе такой корреляции частиц в спутанной паре. Одно из возможных объяснений — так называемые скрытые переменные. Теория скрытых переменных предполагает, что парадоксы квантовой механики являются следствием неполноты описания природы — отсюда якобы и следует вероятностный характер квантовых предсказаний. Сторонником такой интерпретации был и Эйнштейн, которому приписывают максиму «Бог не играет в кости».
В 1960 году Джон Стьюарт Белл вывел математическое неравенство, носящее теперь его имя. Оно чётко формализует эту проблему: если существуют скрытые переменные, корреляция между результатами значительного количества измерений не может превысить некоторого предела. А квантовая механика, в свою очередь, утверждает, что в экспериментах определённого типа неравенство Белла нарушается, то есть возможна более сильная корреляция квантовых частиц. Он работал с атомами кальция, которые могут излучать спутанные фотоны при облучении их светом с определёнными свойствами.
Квантовая коррекция ошибок — это процесс, предназначенный для сохранения квантовой информации. Информация в классических вычислениях поступает в виде битов, соответствующих единицам или нулям. В квантовых вычислениях информация существует в квантовых битах, или кубитах. Кубиты могут создаваться разными способами.
В этом исследовании — из сверхпроводящих цепей, охлаждаемых до температур в 100 раз ниже, чем температура открытого космоса. Каждый кубит может представлять единицу, ноль, или, как ни странно, и единицу, и ноль одновременно. Этот «квантовый параллелизм» позволяет квантовым компьютерам выполнять вычисления на несколько порядков быстрее, чем способны классические суперкомпьютеры.
Разнимали друзей всем научным миром. Другие полагают, что пока не открытая «человеческая энергия» безличностно отправляется в какое-то хранилище, вроде ноосферы.
Мне ближе другая точка зрения. С утратой физического тела человек переходит в, скажем так, квантовое состояние. Как на самом деле, конечно, никто не знает. Нам предстоит отказаться от тела и стать чистой энергией. Может, он и в остальном прав?
Она предполагает, что внутри нейронов мозга находятся белковые полимеры, которые живут по квантовым законам и порождают наше сознание. Согласно этой теории, сознание существует после физической гибели тела, а также может отделяться от него и путешествовать по Вселенной при жизни. Пенроуз еще в 1980-е годы показал, что квантовый компьютер будет по определению разумным. Ждать осталось недолго: их запустят через пару лет. Мы создали материальную цивилизацию, веря, что занимаемся «серьезным делом»: сталь, бетон, мощные машины.
Но теперь достижения нашей же цивилизации толкают нас к пониманию, как на самом деле обстоят дела. Пора взрослеть. Стол, стул, руки, ноги — лишь визуальная интерпретация реального мира. Возьмите проблему измерений. Длина, ширина, высота.
С трудом мы еще в состоянии понять, что есть еще четвертое измерение — время. А дальше — воображения не хватает. Трехмерный мир — это удобно. Мы так привыкли. На самом деле в мире бесконечное число измерений.
Давайте потренируем мозг, и вы увидите, как все логично и просто. Нарисуйте линию. Существа, живущие в ней, двумерны, у них нет ширины, и они могут двигаться только взад и вперед. Но вы можете двигать всю линию. Это — «время» для двумерных существ.
Идем в наш мир, и «время» двумерных существ становится нашей шириной, третьим измерением, которого у обитателей двумерного мира нет. Но у нас самих есть время, которое мы интерпретируем как «прошлое, настоящее и будущее» и которое для обитателей других миров, с четырьмя измерениями, просто «еще одна ширина», а никакое не «прошлое». Но у них есть свое «время», и так далее. В результате мы получаем матрешку иллюзий. Добавьте к этому парадокс наблюдателя, которого мы уже касались.
Мир меняется, когда мы на него смотрим. Это — одна из основ квантовой механики, принцип неопределенности. Для физиков это не абстракция, а повседневная реальность: если ты наблюдаешь за объектом, «щупаешь» его фотонами, он уже не тот, который без тебя. Принцип неопределенности сформулировали в 1920-х, и он показался таким странным, что физики отказывались в него верить, даже когда он подтвердился тысячами опытов. Принцип говорит: природа существует, лишь пока мы на нее смотрим.
Соратник Нильса Бора, физик Паскуаль Джордан, сказал так: «Мы не наблюдаем реальность, мы ее создаем». В 1970-х Джон Уилер провел эксперимент, который показал: природа не просто меняется от нашего взгляда, она заранее «знает», будем ли мы на нее смотреть. Упомянутый выше квантовый компьютер как бы соединит исконное «знание» Вселенной с нашим сознанием. Представим заброшенную деревню где-нибудь в глухой тайге. Принцип неопределенности на полном серьезе говорит, что, пока туда не забрела группа туристов, деревни нет.
А если на деревню смотрит лиса, муравей? Они — наблюдатели? Даже камень: он разогревается днем, и остывает ночью. В целом мир - система бесконечных взаимодействий. Муравей наблюдает камень, камень - Землю, та - Солнце.
Будущее квантовых компьютеров: перспективы и риски
Тем самым создан ещё один инструмент, способный заглянуть внутрь субатомных частиц, который, возможно, позволит уточнить наши представления о них. Кроме того, подобные эксперименты могут прояснить и то, как нейтрино взаимодействуют с веществом. Информацию о структуре протона исследователи получили, направив пучок нейтрино на пластиковые мишени, содержащие углерод и водород, ядра которого как раз одиночные протоны. Нейтрино слабо взаимодействует с веществом, поэтому пришлось решить множество проблем для высокоточных измерений их рассеяния. Например, было сложно наблюдать сигнал нейтрино, рассеянного одиночными протонами водорода на фоне нейтрино, рассеянных связанными протонами в ядрах углерода. Для решения этой проблемы исследователи смоделировали сигнал углеродного рассеяния и вычли его из экспериментального сигнала. Физики впервые увидели коллайдерное нейтрино Реакции, которые происходят в протонных коллайдерах ускорителях частиц, в которых два пучка протонов сталкиваются друг с другом , порождают большое количество нейтрино. Однако до сих пор эти нейтрино никогда не наблюдались напрямую.
Очень слабое взаимодействие нейтрино с другими частицами делает их обнаружение крайне сложным. И вот в августе 2023 года участники сразу двух экспериментов на Большом адронном коллайдере объявили о первой регистрации нейтрино. Известно, что нейтрино высоких энергий производятся преимущественно на этом участке, но другие детекторы на БАКе имеют здесь слепые зоны и потому не могли наблюдать. Обнаруженные FASER нейтрино имеют самую высокую энергию, когда-либо зарегистрированную в лабораторных условиях. А от осколков столкновений протонов его прикрывают примерно 100 метров бетона и камня. Регистрация коллайдерных нейтрино может открыть новые возможности для экспериментальных исследований в области физики элементарных частиц. Физики впервые квантово запутали молекулы.
Исследователи из Принстонского университета в Нью-Джерси США впервые осуществили квантово-механическую запутанность отдельных молекул. В этих особых состояниях молекулы остаются коррелированными друг с другом и могут взаимодействовать одновременно, даже если они находятся на расстоянии нескольких миль друг от друга или даже если они занимают противоположные концы Вселенной.
А Большой адронный коллайдер демонстрирует, что и кварк — это не «частица», а некая одномерная колеблющаяся струна. Получается, все вокруг - это энергия, колебания, а «твердое вещество» - своего рода иллюзия. Фантасты гадают, может, мы живем в Матрице, и мир — лишь компьютерная симуляция? На самом деле и гадать не надо, по сути так и есть. Мир «твердых предметов» удобен и комфортен. Взял стакан, поставил на стол, никуда он не денется. Но есть проблема: он иллюзорен, и мы его сами создали под нас, под возможности наших органов чувств.
Да, мы в Матрице, которую сотворили природа и наш мозг. В прошлом году международная группа ученых доказала: мир иллюзорен, и у каждого наблюдателя своя «голограмма». Им удалось воплотить «в железе» мысленный эксперимент, предложенный физиком Юджином Винером. Винер утверждал: если один видит, что знаменитый кот Шредингера мертв, друг этого наблюдателя увидит, что кот жив. Это назвали «парадокс друга Винера». Ученые с огромным трудом синтезировали шесть пар специальных фотонов, и оказалось: ничто во Вселенной не является «состоявшимся», «твердо установленным», пока информация об этом не обошла всю Вселенную. А, поскольку Вселенная велика, все вокруг по сути существует в неком подвешенном состоянии. Моя книга упала со стола. Но, пока информация об этом не дошла до самой далекой галактики, моя книга находится в квантовой суперпозиции где-то между столом и полом.
Когда случился Большой взрыв, мир был очень прост, состоял из чистой энергии, и описывался одной формулой. Но Вселенная расширялась, остывала, и из первоначально единой энергии выделились гравитация, электромагнетизм, сильные и слабые взаимодействия два последних «держат» вместе элементарные частицы в атомном ядре. Все запуталось, и теперь физики пытаются распутать запутанное, найти формулу Единого, того, с чего все началось. Термин «запутанность» остро актуален в современной физике. Вы наверняка слышали о квантовой запутанности. Скажем, два кванта «дружат», взаимодействуют, а потом разлетаются по разным уголкам Вселенной. Но связь сохраняется навсегда. Если что-то случится с одним, другой в точности повторит состояние первого. Причем он «узнает» об этом мгновенно, быстрее скорости света.
Это уже не теория: инженеры вот-вот представят новое поколение связи, которая заменит Интернет и сотовую телефонию, а опыты по квантовой запутанности в хороших школах учитель показывает просто на столе. Чтобы «пощупать» то, Единое, надо вернуться в состояние Большого взрыва, когда господствовали колоссальные энергии. А где, как? Пока что лучший инструмент — Большой адронный коллайдер. Протон в коллайдере — больше, чем протон. Мы почти научились превращать его в первоматерию, накачивая колоссальными энергиями. Тут на сцену выходят страхи, что мы устроим черную дыру в центре Европы, или спровоцируем «эффект бабочки», и все вокруг расплывется, как на картинах Сальвадора Дали. Если вы думаете, что это досужие разговоры, а сами физики не обсуждают это за чашкой кофе, то заблуждаетесь. Что из этого следует?
Дежавю, исчезающие предметы, двойники, которые понятия не имеют о существовании друг друга, призраки — все это может оказаться проявлением неизвестных частиц и энергий. Просто пока нет инструмента, чтобы это измерить. Не хватает энергии. Или нужен в принципе другой инструмент. Вообразим, например, что есть такое понятие, как «душа», у нее есть энергия, и есть частицы, которые эту энергию переносят. Слово «душа» все чаще фигурирует в исследованиях физиков. Упомянутый Джо Дэвис говорит о «термодинамической душе»: это «энергетическая память» хоть человека, хоть камня, которая делает одушевленной всю Вселенную. Идея одушевленности мира следует из принципов квантовой механики: фотон каким-то образом «сознательно» выбирает свой путь от лампы до страниц вашей книги. Если попытаться проконтролировать дорогу каждого фотона, они поменяют свое поведение — «ребята, за нами следят».
Разумно и «частицу души» искать на больших энергиях. А что это за энергии? Войны, гибель миллионов людей. Любовь матери к ребенку.
То, что происходит с одной частицей в переплетённой паре, определяет происходящее с другой, даже если обе находятся на слишком большом расстоянии, чтобы воздействовать друг на друга.
Создание лауреатами экспериментальных инструментов заложило основу для новой эры квантовых технологий», — отметил нобелевский комитет. Учёные провели новаторские эксперименты, используя запутанные квантовые состояния, в которых две частицы ведут себя как единое целое, даже если их разъединить. Их результаты расчистили путь для новых технологий, основанных на квантовой информатике, считают эксперты. Мы видим, что работа лауреатов с запутанными состояниями имеет большое значение, даже помимо фундаментальных вопросов интерпретации квантовой механики», — отметил председатель Нобелевского комитета по физике Андерс Ирбек. Ален Аспе родился в 1947 году во Франции.
С 1965 по 1969 годы учился в Высшей нормальной школе в Кашане и Парижском университете, с 1969 по 1971 годы был сотрудником университета Париж-юг, где занимался подготовкой диссертации по оптике. После защиты этой работы в 1971 году уехал в Камерун, где работал в Высшей нормальной школе Яунде до 1974 года. В 1983 году защитил докторскую диссертацию по неравенствам Белла.
Ниже в хронологическом порядке приведены 9 других достижений, попавших в список лауреатов премии Physics World. Суть метода заключается в использовании специального геля, который впрыскивается в требуемое место, после чего содержащиеся в нем ферменты расщепляют метаболиты организма, запуская процесс полимеризации органических мономеров в геле. В результате в ткани формируются гибкие и долговечные электроды. Источник: Thor Balkhed Пока что успешные эксперименты были проведены на рыбах и пиявках, но в перспективе технология может найти применение в медицине для создания безопасных нейроинтерфейсов, позволяющих расширить возможности человеческого организма или лечить различные заболевания. Изучение структуры протона при помощи нейтрино Теджин Кай из Рочестерского университета США совместно с коллегами из проекта MINERvA Main Injector Neutrino ExpeRiment to study v-A interactions удалось получить информацию о структуре протона путем «обстрела» пластиковых мишеней, содержащих углерод и водород, пучком нейтрино.
Примененный метод может быть использован для дальнейшего изучения взаимодействия нейтрино с материей. Читайте также Летящие насквозь: как физики научились охотиться на неуловимые частицы нейтрино 4. Симулирование расширения Вселенной Группа ученых из Германии, Испании и Бельгии смогла симулировать процесс расширения Вселенной на раннем этапе ее существования. Для этого исследователи использовали конденсат Бозе-Эйнштейна — такое название носит агрегатное состояние вещества из бозонов и разреженного газа, охлажденного до температур, близких к абсолютному нулю. В эксперименте конденсат имитировал Вселенную, а двигавшиеся в нем квазичастицы фононы — квантовые поля. Изменяя длину рассеяния атомов в конденсате, ученые смогли заставить «вселенную» расширяться с разной скоростью и изучить, как фононы создают в ней флуктуации плотности. Согласно существующим космологическим теориям, схожие процессы происходили после возникновения Вселенной, так что подобное моделирование может пролить свет на многие загадки, занимающие умы ученых.
«ФИЗИКА ПОЛУПРОВОДНИКОВ БУДЕТ НУЖНА ВСЕГДА»
Конденсат Бозе — Эйнштейна был получен в полупроводниковом микрорезонаторе, содержащем слой нового кристаллического материала диселенида молибдена толщиной в один атом. Локализация света в слое такой малой толщины была достигнута впервые. В результате этого исследования могут быть созданы новые типы лазеров, основанные на двумерных кристаллах, позволяющие создавать кубиты — квантовые транзисторы, основу квантового компьютера, работающего на светожидкости. Руководитель лаборатории оптики спина СПбГУ профессор Алексей Кавокин Важно понимать: как не раз отмечал ученый, квантовые компьютеры называют сегодня атомной бомбой XXI века, ведь они открывают огромные возможности не только в области, например, создания новых лекарств, но и в области кибератак. Имея компьютер с такими мощностями, можно разгадать практически любой шифр, поэтому перед учеными сегодня также стоит важная задача защиты квантовых устройств — квантовой криптографии, в которой открытия Алексея Кавокина и его коллег также играют очень важную роль. Сегодня Алексей Кавокин возглавляет лабораторию оптики спина имени И. Уральцева в СПбГУ, группу квантовой поляритоники в Российском квантовом центре, Международный центр поляритоники в Университете Вестлейка в Китае, а также является профессором Университета Саутгемптона Великобритания , где заведует кафедрой нанофизики и фотоники.
В 2011 году ученый выиграл мегагрант Правительства Российской Федерации, в рамках которого была создана лаборатория оптики спина имени И.
И основание фонда «Вызов», поддержка этой замечательной национальной премии в области будущих технологий - это следующий этап нашей веры в то, что страна зависит от российской науки и людей, которые могут открывать новые горизонты», — сказал заместитель Председателя Правления Газпромбанка Дмитрий Зауэрс во время церемонии. Лауреатом в номинации «Перспектива» стал Илья Семериков, кандидат физико-математических наук, заместитель руководителя научной группы в Российском квантовом центре, научный сотрудник Физического института имени Лебедева ФИАН. Премия присуждена за создание ионного квантового процессора с использованием многоуровневых квантовых систем.
Кот Шредингера — "участник" мысленного эксперимента, который был предложен австрийским физиком Эрвином Шредингером в 1935 году. Во время него в закрытый ящик помещаются кот и механизм, открывающий емкость с ядом в случае распада радиоактивного атома что может случиться или не случиться. В соответствии с принципами квантовой физики кот является одновременно и живым, и мертвым.
Отсюда берет свое начало термин "квантовая суперпозиция" — совокупность всех состояний, в которых может одновременно находиться кот. Сегодня физики активно пытаются создать такого кота Шредингера, которого можно было бы увидеть невооруженным глазом.
Изменения в одной из них мгновенно влияют на другую, независимо от расстояния. Понимание запутанности имеет решающее значение для использования истинной силы квантовых компьютеров. Ранее создание и изучение конкретных запутанных состояний в мультикубитных системах было чрезвычайно сложной задачей.
Однако новая методика предлагает решение.
Эфир существует! Российские ученые совершили прорыв в фундаментальной физике
Чем занимались физики в 2023 году | В этом видео представлена инновационная разработка в области эволюционной науки, которая предлагает новый взгляд на природу нашей Вселенной. Эта гипотеза нав. |
Экспериментаторы надеются зафиксировать колебания массы атомов | Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов. |
Наука РФ - официальный сайт | Физики показали, что операции над квантовыми системами, в которых не генерируется дополнительная квантовая запутанность вдобавок к уже имеющейся в системе, в общем случае являются необратимыми. |
Нобелевскую премию по физике присудили за квантовую запутанность | В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения. |
Физики обнаружили гигантский невзаимный перенос заряда в топологическом изоляторе
Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2. Проблема квантовых систем в том, что они страдают от вычислительных ошибок из-за шума в окружающей среде. Российские достижения Российские разработчики тоже работают над квантовыми технологиями, но соревнуются пока внутри страны. Ученые из МФТИ сообщили о запуске первого российского 12-кубитного квантового процессора в январе 2024 г.
Для практического применения и достижения конкурентного преимущества необходим квантовый процессор минимум из 100 кубитов. В феврале 2024 г.
Для этого ученые прикладывали ток возбуждения низкой частоты к образцу, охлажденному до 1,6 кельвин и помещенному в сильное магнитное поле величиной 12 тесла, и получали сопротивление второй гармоники путем измерения переменного напряжения. Ученые отмечают, что полученные экспериментальные результаты хорошо согласуются с теоретическими расчетами. Эти расчеты показали, что при частичном заполнении асимметричное рассеяние между краевыми квантовыми состояниями Холла и орбитами Ландау как раз и приводит к подобному невзаимному переносу. Изучение топологических свойств квантовых материалов стало одним из основных направлений исследований в последнее время. Например, совсем недавно мы рассказывали, что физики обнаружили гибридное топологическое состояние в элементарном твердом теле.
Но связь сохраняется навсегда.
Если что-то случится с одним, другой в точности повторит состояние первого. Причем он «узнает» об этом мгновенно, быстрее скорости света. Это уже не теория: инженеры вот-вот представят новое поколение связи, которая заменит Интернет и сотовую телефонию, а опыты по квантовой запутанности в хороших школах учитель показывает просто на столе. Чтобы «пощупать» то, Единое, надо вернуться в состояние Большого взрыва, когда господствовали колоссальные энергии. А где, как? Пока что лучший инструмент — Большой адронный коллайдер. Протон в коллайдере — больше, чем протон. Мы почти научились превращать его в первоматерию, накачивая колоссальными энергиями.
Тут на сцену выходят страхи, что мы устроим черную дыру в центре Европы, или спровоцируем «эффект бабочки», и все вокруг расплывется, как на картинах Сальвадора Дали. Если вы думаете, что это досужие разговоры, а сами физики не обсуждают это за чашкой кофе, то заблуждаетесь. Что из этого следует? Дежавю, исчезающие предметы, двойники, которые понятия не имеют о существовании друг друга, призраки — все это может оказаться проявлением неизвестных частиц и энергий. Просто пока нет инструмента, чтобы это измерить. Не хватает энергии. Или нужен в принципе другой инструмент. Вообразим, например, что есть такое понятие, как «душа», у нее есть энергия, и есть частицы, которые эту энергию переносят.
Слово «душа» все чаще фигурирует в исследованиях физиков. Упомянутый Джо Дэвис говорит о «термодинамической душе»: это «энергетическая память» хоть человека, хоть камня, которая делает одушевленной всю Вселенную. Идея одушевленности мира следует из принципов квантовой механики: фотон каким-то образом «сознательно» выбирает свой путь от лампы до страниц вашей книги. Если попытаться проконтролировать дорогу каждого фотона, они поменяют свое поведение — «ребята, за нами следят». Разумно и «частицу души» искать на больших энергиях. А что это за энергии? Войны, гибель миллионов людей. Любовь матери к ребенку.
С ребенком что-то случилось на другом конце света, мать чувствует. Мы удивляемся: экстрасенсорика! При этом нас не удивляет, что «запутанные» фотоны точно так же чувствуют друг друга. Так может, «фотоны души» матери и ребенка тоже находятся в состоянии квантовой запутанности? Пока что лучшим «коллайдером» для исследования этих вещей остается сам человек. Сидит человек вечером один, вспоминает умершего родственника. Посмотрел на его портрет, сконцентрировался. Настроил свой «коллайдер».
Он один, дневные дела позади, ничто не отвлекает. И…что-то изменилось. Мы не знаем, что именно. Шорох, упала тень, сдвинулась книга, которую любил покойный. Что это, игра воображения? А если попытаться описать эти феномены в формулах квантовой механики, так никакой мистики и нет. Если «квант души» существует, ваши кванты запутанны. Вот вы и вступили во взаимодействие.
Мы можем предположить, что некоторые могут настраивать свой «коллайдер» эффективнее других. Пророки, святые, любимые толпой диктаторы или лидеры вроде Илона Маска — люди, которые лучше управляют гипотетическими, еще не открытыми, энергиями. Мне кажется, самоизоляция сильно нас изменила. Все человечество взяли, и отрезали от суеты, погрузили каждого в себя. Если я прав, последствия будут колоссальными. Переход на удаленную работу, изменения в экономике — все это мелочи.
В поиске квантовой гравитации ученым может помочь экспериментальная проверка ее на состояния движущихся частиц во времени. Например, нейтрино во время взаимодействия с квантовыми флуктуациями пространства-времени могут частично терять квантовую когерентность.
Это должно проявляться отклонением от ожидаемой картины нейтринных осцилляций на больших расстояниях и высоких энергиях. Но гравитационные квантовые флуктуации не повлияли на атмосферные нейтрино. К такому выводу пришли физики из IceCube, которые уже не первый раз ищут подобные нарушения. Ученые не обнаружили отклонений в осцилляциях нейтрино от теоретических предсказаний. Проведенный эксперимент позволил ученым ужесточить ограничения на подобные взаимодействия в 30 раз, сузив область параметров для описания физических процессов.