Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся.
Регуляция желудочной секреции.
Нервная ткань. Нейрон. Синапс. Нервы — урок. Биология, 9 класс. | Б. По аксону нервные импульсы поступают к телу другой нервной клетки. |
Задание №9 ОГЭ по Биологии | Нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных. |
Нервные импульсы поступают непосредственно к мышцам и железам по | Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. |
КР Нервная система 8 класс - Вариант Часть Нервные импульсы поступают непосредственно к железам по | В нейроне нервные импульсы по дендритам проходят к соме клетки. |
Химическая передача нервного импульса
В эти центры поступают все нервные импульсы и протягиваются все афферентные чувствительные пути, которые (за немногими исключе-ниями) предварительно проходят через один общий центр – таламус. Функция нервной системы. направляет импульсы к скелетным мышцам. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга.
Содержание
- Похожие презентации
- ГДЗ Стр. 47 Биология 8 класс Драгомилов | Учебник
- Нервная система. Общие сведения • Биология, Анатомия и физиология человека • Фоксфорд Учебник
- Регуляция желудочной секреции.
- Последние опубликованные вопросы
Нервные импульсы поступают непосредственно к железам по
Тела этих нервных клеток расположены в сером веществе ЦНС, а аксоны — за её пределами. Вставочные нейроны — обеспечивают связь между первыми двумя типами нейронов. Находятся они в головном и спинном мозге. Но это не единственная классификация нейронов. Так, по количеству отростков они делятся на: Униполярные дендриты отсутствуют, есть только аксон ; Биполярные один аксон и один дендрит ; Псевдоуниполярные один аксон Т-образной формы ; Мультиполярные один аксон и много дендритов. Прежде чем переходить к отделам нервной системы, перечислим её основные функции: координация работы органов и их систем, обеспечение их согласованного функционирования; взаимодействие организма с внешней средой, приспособление к меняющимся условиям; обеспечение психической деятельности человека. Существует две классификации отделов нервной системы: по строению анатомическая и по функциям функциональная. Анатомическая классификация подразумевает деление нервной системы на центральную ЦНС и периферическую ПНС : Центральная нервная система — включает в себя спинной и головной мозг кстати, о мозге мы подробно говорили в этой статье. Периферическая — состоит из нервных структур нервов и нервных ганглий , не входящих в состав спинного и головного мозга. Функционально нервная система делится на вегетативную и соматическую: Вегетативная — отвечает за функции нашего тела, которые мы не можем контролировать произвольно такие как кровообращение, пищеварение.
Соматическая — позволяет нам контролировать своё тело: двигаться, говорить, выражать эмоции и так далее. Итак, периферическая нервная система — это часть нервной системы, которая находится за пределами головного и спинного мозга. Она получает команды от «руководства» — центральных отделов — и прилежно их выполняет. А ещё она собирает и передаёт импульсы от рецепторов кожи и внутренних органов в обратно в ЦНС. Периферическая нервная система состоит из: собственно, нервов; нервных сплетений. Разберём каждую из этих структур подробнее. Нерв — это орган, состоящий из пучков нервных волокон в основном это аксоны нейронов , покрытых соединительной оболочкой.
Отправить Обработка персональных данных Отправляя комментарий, вы даёте согласие на обработку своих персональных данных на условиях и для целей, определённых в политике в отношении обработки персональных данных , а также принимаете Пользовательское соглашение.
FlasFlas 26 марта 2023 20:09 Цитировать Ответить -1 В тесте присутствует несколько ошибок. Во втором задании правильным ответом является и 2 и 3, так как нервные импульсы могут образовываться в аксонных холмиках в телах нейронов.
Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?
Не случайно симпатический подотдел называют системой аварийной ситуации, а парасимпатический подотдел — системой отбоя. Вопрос Как устроен спинной мозг? Какие функции он выполняет?
Ответ: спинной мозг имеет вид длинного шнура, заостренного внизу. На уровне большого затылочного отверстия он переходит в головной мозг, а на уровне первого — второго поясничного позвонка заканчивается. Передняя щель и задняя борозда делят спинной мозг на две симметричные половины правую и левую. В спинном мозге различают серое и белое вещество.
Серое вещество состоит из тел нейронов и дендритов, белое — из их длинных отростков, образующих нервные волокна. В центре спинного мозга проходит центральный канал, также заполненный спинно — мозговой жидкостью. Серое вещество слева и справа от канала образует серые столбы, соединенные узкой перемычкой. Белое вещество расположено снаружи, вокруг серого.
От спинного мозга отходит 31 пара нервов, связывающих его с органами либо непосредственно, либо через нервные узлы. В спинном мозге находятся центры врожденных безусловных рефлексов. Он регулирует движения туловища и конечностей, работу внутренних органов: сердца, почек, легких, органов пищеварения и др. Помимо рефлекторной спинной мозг выполняет и проводящую функцию.
По его нервным путям проходят нервные импульсы в головной мозг и из головного мозга. Через спинной мозг головной мозг получает информацию о состоянии внешней среды, через спинной мозг передаются команды от головного мозга к мышцам. Вопрос Просмотрите таблицы 3 и 4 и найдите черты сходства и различия в строении и функциях головного мозга человека и шимпанзе. Ответ: Строение мозга человека и шимпанзе практически не отличаются по составляющим компонентам, различия в размерах отдельных частей головного мозга.
Мозг человека имеет вес 1400г. У человека сильно развита кора больших полушарий, что увеличивает объем мозга по отношению к шимпанзе. Теменные, височные и лобные доли, в которых расположены важнейшие центры психических функций и речи, сильно развиты. Только человек обладает членораздельной речью, у шимпанзе отсутствует речевой центр.
Вопрос Сравните рефлексы продолговатого и среднего мозга. Ответ: Рефлексы продолговатого мозга безусловные, они существуют независимо от воли человека коленный рефлекс, мигательный. Рефлексы среднего мозга — условные, они могут регулироваться волевым усилием — вмешательством коры больших полушарий головного мозга.
Химическая передача нервного импульса
Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка.
Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор. Астроглию образуют астроциты. Астроциты — клетки отростчатой формы, бедные органеллами.
Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе. Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром.
Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты.
Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов.
В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов. Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы.
Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.
В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов.
Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию. Реактивная микроглия появляется после травмы в любой области мозга.
Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе.
Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты. Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.
В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы. Нервные волокна.
Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы.
Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани.
От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды.
Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг. Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами.
Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота.
Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов. К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы. По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические.
Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит. Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой.
Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром. Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка.
Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных. Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна. Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами.
Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками. Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга.
По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными.
Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне. Миелин отсутствует.
Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой. Строение нерва А и нервного волокна Б. Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается.
Он проходит по безмякотным нервным волокнам в 10 раз медленнее, по сравнению с мякотными. Мякотные нервные волокна составляют белое вещество головного и спинного мозга и входят в периферические нервы. Мякотное нервное волокно состоит из одного осевого цилиндра, вокруг которого шванновские клетки образуют миелиновую оболочку. Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым.
Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку. Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом. Она выполняет роль изолятора.
Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки. Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой.
По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками. Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации.
Функция насечек неясна. В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты.
Скорость проведения нервного импульса зависит от диаметра аксона, а сам диаметр определяется количеством содержащихся в нем нейрофиламентов. В нормальных и патологических условиях количество нейрофиламентов и диаметр аксона тесно коррелируют. Аксонный транспорт обеспечивает кинезии микротрубочек. Основной материал антероградного транспорта — белки, синтезированные в перикарионе например, белки ионных каналов, ферменты синтеза нейромедиаторов.
Внешняя плазмалемма шванновских клеток окружена базальной мембраной. Выше изложено особенности строения мякотного периферического нервного волокна. Мякотные нервные волокна ЦНС построены сходным образом. Однако оболочка их образована не леммоцитами, а олигодендроцитами.
Насечки и перехваты в них отсутствуют, нет и базальных мембран. Нервные стволы нервы образованы пучками мякотных и безмякотных нервных волокон, которые объединяются соединительной тканью, образующей соединительнотканные оболочки. В нерве может быть множество волокон только мякотных только или безмякотных. Есть нервы, в которых встречаются и те и другие.
Наружная оболочка нерва — эпиневрий - состоит из волокнистой соединительной ткани, объединяющей все пучки в составе нерва. Периневрий — соединительнотканная оболочка, окружающая каждый отдельный пучок нервных волокон. Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами. Эта ткань связывает отдельные нервные волокна в пучки, соединяясь с их базальной мембраной.
Нервы образованы пучками нервных волокон, которые объединены соединительнотканными оболочками. Большинство нервов - смешанные, то есть включают афферентные и эфферентные нервные волокна. Периневриальный барьер необходим для поддержания гомеостаза в эндоневрии. Барьер контролирует транспорт молекул через Периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.
Периферический нерв содержит разветвленную сеть кровеносных сосудов. В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна.
Тема 5. Нервные сети. Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно.
Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис.
Отросток, по которому импульс идет от тела нейрона, называется аксоном. У большинства нервных клеток аксон — это длинный отросток. Отросток нейрона, по которому импульс идет к телу клетки, называется дендрит. Нейрон может иметь один или несколько дендритов. Дендриты, отходя от тела клетки, постепенно ветвятся под острым углом. Синапсы Передача сигнала от клетки к клетки осуществляется в особых образованиях — синапсах. Такое название им дал в 1897 г. Чарлз Шеррингтон.
В них конечная веточка аксона утолщена и содержит пузырьки с раздражающим веществом — медиатором. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. В зависимости от ее состава клетка, регулируемая нейроном, может включиться в работу, то есть возбудиться, или выйти из работы затормозиться. Нейроны различаются по своим функциям и подразделяются на чувствительные, вставочные и двигательные. Чувствительные нейроны — это нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Чувствительный нейрон Двигательные исполнительные нейроны — нейроны, иннервирующие мышечные волокна и железы. Двигательный нейрон Вставочные нейроны обеспечивают связь между чувствительными и двигательными нейронами. Между чувствительным и двигательным нейроном может быть очень большое количество вставочных нейронов. Они собирают, анализируют информацию, полученную от чувствительных нейронов, и принимают решение о том, каким образом отреагировать на изменившиеся условия.
Классификация нервной системы по месторасположению Нервную систему по месту расположения подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг, к периферической — нервы, нервные узлы и нервные окончания. Нервы — пучки длинных отростков, покрытые общей оболочкой, выходящие за пределы головного и спинного мозга.
Рефлекторная дуга ЦНС. Центральная и периферическая рефлекторные дуги. Нервно-рефлекторный метод. Рефлекторная дуга периферической нервной системы. Строение рефлекторной дуги анализатора. Двигательный анализатор рефлекторная дуга. Аксон двигательного нейрона в рефлекторной дуге. Общая схема строения рефлекторных дуг анализаторов.. Чувствительные Нейроны спинного мозга расположены. Где располагаются чувствительные Нейроны. Тело чувствительного нейрона Аксон чувствительного нейрона. Где находится первый чувствительный Нейрон. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Связь между нейронами. Нейронные механизмы. Схема рефлекторной дуги. Рефлекторная дуга структура двигательной нервной клетки. Строение рефлекторной дуги спинного мозга. Схема Рецептор чувствительный Нейрон. Рецептор чувствительный Нейрон ЦНС схема. Схема спинного мозга чувствительный Нейрон. Тип нейрона 1 двигательный 2 вставочный. Чувствительный Нейрон ЦНС вставочный. Схема передачи двигательных импульсов между нейронами. Нейромедиаторы стресса. Нейротрансмиттеры и нейромедиаторы. Нейромедиаторы нервная клетка. Строение нерва дендрит. Дендрит тело нейрона Аксон синапс. Нервная ткань Аксон дендрит. Начальный сегмент аксона функции. Рефлекс отдергивания руки от горячего предмета рефлекторная дуга. Схема рефлекторной дуги отдергивания руки от горячего предмета. Схема рефлекторной дуги отдергивания руки. Схема рефлекторной дуги двигательного рефлекса. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Звенья рефлекторной дуги 5 звеньев. Рефлекс звенья рефлекторной дуги. Рефлекторная дуга 5 звеньев рефлекторной дуги. Таблица звенья рефлекторной дуги функции звенья. Нейронные головного мозга. Нейронные связи в мозге. Нейропластичность мозга. Вставочный Нейрон строение. Вставочные Нейроны передают нервные импульсы. Вставочный Нейрон схема. Чувствительный Нейрон Импульс вставочный Нейрон. Передача нервного импульса. Передача импульса в нервной системе. Движение нервного импульса по нейрону. Рефлекторные механизмы регуляции дыхания. Рефлекторная саморегуляция вдоха и выдоха. Рефлекторная регуляция механизм регуляции. Рефлексы регуляции дыхания. Строение рефлекторной дуги мигательного рефлекса. Схема рефлекторной дуги мигательного рефлекса. Дуга мигательного рефлекса физиология. Нервные импульсы от рецепторов. Синапс место контакта между двумя нейронами. Передача импульса между нервными клетками. Нейроны передача импульсов. Передача импульса между нейронами. Рефлекторная дуга внутри ЦНС. Рефлекторная дуга и ее компоненты. Рефлекторная дуга путь рефлекса.
Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки. У большинства аксонов миелиновая оболочка имеется. Миелиновая оболочка Миелиновая оболочка — электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. В периферической нервной системе миелиновую оболочку аксонов образуют шванновские клетки несколько шванновских клеток на один аксон. В ЦНС один олигодендроцит образует миелиновую оболочку нескольким нервным клеткам. Образование миелиновой оболочки в ЦНС Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны. Такое высокое содержание липидов отличает миелин от других биологических мембран. Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм расстояние между перехватами Ранвье прямо пропорционально толщине аксона. В связи с тем что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведет к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5 — 10 раз быстрее, чем по безмиелиновым. Благодаря наличию миелиновой оболочки и совершенству метаболизма на всем протяжении мембраны в покое поддерживается одинаковый заряд, который быстро восстанавливается после прохождения возбуждения. Цвет миелинизированных нейронов белый, отсюда название «белого вещества» мозга. Безмиелиновые волокна изолированы по другой схеме.
Нервные импульсы поступают непосредственно
Тест «Нервная система» — 4ЕГЭ | Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. |
Задание 17 ОГЭ по биологии с ответами, ФИПИ: организм человека, 3 из 6 | Вариант Часть Нервные импульсы поступают непосредственно к железам по. |
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…
Проведение нервного импульса в ЦНС. ответ: 7. чем питается кит? 1) планктоном 2) придонными организмами 3) крупными рыбами 4)морскими млекопитающими 8. нервные импульсы, 919107520220418, Відповідь:Тіршіліктің пайда болуының алғышарттарыҒылыми деректер бойынша Күн жүйесіне жататын Жер. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга.
Регуляция желудочной секреции.
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных. Нервные импульсы поступают непосредственно к железам по. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам вставочных нейронов 3)серому веществу спинного морга 4)белому веществу спинного мозга.
Регуляция желудочной секреции.
FlasFlas 26 марта 2023 20:09 Цитировать Ответить -1 В тесте присутствует несколько ошибок. Во втором задании правильным ответом является и 2 и 3, так как нервные импульсы могут образовываться в аксонных холмиках в телах нейронов. В 11 задании отмечен ответ 2, но правильным является 3, тк червь - образование между полушариями мозжечка, а для коры характерны серое вещество, извилины и борозды.
Опухоли в гипоталамусе. Доброкачественные или злокачественные опухоли, развивающиеся в гипоталамусе, могут нарушать выработку и регуляцию гормонов. Расстройства пищевого поведения. Расстройства пищевого поведения, такие как нервная анорексия или булимия, могут воздействовать на гипоталамус из-за резких изменений в рационе питания. Операции на головном мозге. Хирургические вмешательства на головном мозге, особенно в области гипоталамуса, потенциально могут привести к повреждению или нарушению его функции.
Аутоиммунные расстройства: некоторые аутоиммунные состояния могут привести к воспалению или повреждению гипоталамуса. Симптомы гипоталамических расстройств: Колебания температуры тела: нарушения гипоталамуса могут приводить к трудностям регулирования температуры тела, что приводит к эпизодам чрезмерного потоотделения, ознобу или колебаниям температуры тела. Бесплодие: Гормональный дисбаланс, вызванный нарушениями гипоталамуса, может влиять на репродуктивную функцию, приводя к трудностям с фертильностью и нерегулярным менструальным циклам у женщин. Необычно высокое или низкое кровяное давление: Нарушение регуляции артериального давления может происходить при нарушениях гипоталамуса, вызывая эпизоды гипертонии высокое кровяное давление или гипотонии низкое кровяное давление. Бессонница: нарушения сна, в том числе трудности с засыпанием или продолжительным сном, могут быть симптомом дисфункции гипоталамуса. Изменение аппетита. Гипоталамические расстройства могут нарушать регуляцию аппетита, что приводит к изменениям в потреблении пищи и аппетите - к усилению или уменьшению чувства голода. Частое мочеиспускание.
Заболевания гипоталамуса могут влиять на баланс жидкости в организме и приводить к увеличению выработки мочи и частому мочеиспусканию. Задержка полового созревания: Гормональные нарушения в гипоталамусе могут задерживать начало полового созревания, что приводит к задержке полового развития у подростков. Является центральным органом эндокринной системы; тесно связан и взаимодействует с гипоталамусом. Гипофиз располагается в основании головного мозга нижней поверхности в гипофизарной ямке турецкого седла клиновидной кости черепа. Турецкое седло прикрыто отростком твёрдой оболочки головного мозга — диафрагмой седла, с отверстием в центре, через которое гипофиз соединён с воронкой гипоталамуса промежуточного мозга; посредством её гипофиз связан с серым бугром, расположенным на нижней стенке III желудочка. По бокам гипофиз окружён пещеристыми венозными синусами. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз. Передняя доля гипофиза, состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов.
Выделяют дистальную, промежуточную и бугорную часть передней доли. Гормоны передней доли гипофиза: 1. Тропные, их органами-мишенями являются эндокринные железы. Гипофизарные гормоны стимулируют железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи. Тиреотропный гормон — главный регулятор биосинтеза и секреции гормонов щитовидной железы. Адренокортикотропный гормон стимулирует кору надпочечников. Гонадотропные гормоны: 1. Фолликулостимулирующий гормон способствует созреванию фолликулов в яичниках, лютеинизирующий гормон вызывает овуляцию и образование желтого тела.
Соматотропный гормон — важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма. Лютеотропный гормон пролактин регулирует лактацию, дифференцировку различных тканей, ростовые и обменные процессы, инстинкты заботы о потомстве. Задняя доля нейрогипофиз состоит из: 1. Образована клетками эпендимы питуицитами и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин антидиуретический гормон и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь. Соединяет нервную долю со срединным возвышением. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза. Функционирование всех отделов гипофиза тесно связано с гипоталамусом.
Это положение распространяется не только на заднюю долю — «приемник» и депо гипоталамических гормонов, но и на передний и средний отделы гипофиза, работа которых контролируется гипоталамическими гипофизотропными гормонами — рилизинг-гормонами. Гормоны задней доли гипофиза: аспаротоцин, вазопрессин антидиуретический гормон, АДГ депонируется и секретируется , вазотоцин, валитоцин, глумитоцин, изотоцин, мезотоцин, окситоцин депонируется и секретируется Вазопрессин выполняет в организме две функции: 1. Промежуточная средняя доля Представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны — меланоцитстимулирующие гормон — стимулирует синтез кожного пигмента меланина и увеличивает размер и количество пигментных клеток. Регуляция клеток промежуточной доли гипофиза осуществляется гипоталамическими и рилизинг-факторами, а также ингибирующими Заболевания и патологии: Акромегалия; Болезнь Иценко — Кушинга; Несахарный диабет; Синдром Шихана; Гипофизарный нанизм; Гипофизарный гипотиреоз; Гипофизарный гипогонадизм; Гиперпролактинемия; Гипофизарный гипертиреоз; Гигантизм Эпифиз шишковидная железа. Строение и расположение эпифиза Небольшое овальное железистое образование; относится к промежуточному мозгу располагается в борозде между верхними холмиками среднего мозга, масса — 0. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название. Эпифизу придают шишковидную форму импульсный рост и васкуляризация капиллярной сети, которая врастает в эпифизарные сегменты по мере роста этого эндокринного образования.
По строению и функции эпифиз относится к железам внутренней секреции. Эндокринная роль шишковидного тела - его клетки выделяют вещества, тормозящие деятельность гипофиза до момента полового созревания, а также участвующие в регуляции всех видов обмена веществ. Эпифизарная недостаточность в детском возрасте влечет за собой быстрый рост скелета с преждевременным и преувеличенным развитием половых желез и преждевременным и преувеличенным развитием вторичных половых признаков. Эпифиз является регулятором циркадных ритмов, поскольку связан со зрительной системой. Под влиянием солнечного света в дневное время в эпифизе вырабатывается серотонин, а в ночное время - мелатонин. Оба гормона сцеплены между собой, поскольку серотонин является предшественником мелатонина. Эпифиз покрыт снаружи соединительнотканной капсулой, от которой внутрь железы отходят соединительнотканные трабекулы, разделяющие ее на дольки, состоящие из клеток двух типов: железистых и глиальных. Функция железистых клеток имеет четкий суточный ритм: ночью синтезируется мелатонин, днем - серотонин.
Этот ритм связан с освещенностью, при этом свет вызывает угнетение синтеза мелатонина. Воздействие осуществляется при участии гипоталамуса. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии». Строение щитовидной железы. Щитовидная железа - самая большая железа внутренней секреции. Впервые она описана Везалием в 1543 г. Щитовидная железа ЩЖ располагается на передней поверхности шеи и состоит из двух долей и перешейка.
Правая и левая доли ЩЖ находятся на уровне щитовидного хряща гортани, нижние их полюса достигают V — VI колец трахеи. Доли частично прилегают к глотке и пищеводу, прикрывают медиальную полуокружность общих сонных артерий в средних третях. В ряде случаев перешеек отсутствует. Снаружи орган окружен четвертой фасцией шеи внутренностная фасция , состоящей из двух листков — наружного и внутреннего. Внутренний листок висцеральный более тонкий, охватывает органы шеи — глотку, пищевод, гортань и ЩЖ. Наружный париетальный листок расположен спереди и с боков от органов шеи, прилегает к задней стенке влагалища мышц, он образует влагалище сосудисто-нервного пучка в области внутреннего треугольника шеи. Масса ЩЖ взрослого человека 15 — 30 г. У мужчин ЩЖ крупнее.
Соединительнотканные прослойки, отходящие от собственной капсулы железы, делят ее на дольки, состоящие из сферических фолликулов. Основным компонентом коллоида фолликулов является тиреоглобулин, в коллоиде содержатся протеиды, йод, ферменты. Диаметр фолликула 20 — 40 мк. При повышенной функциональной активности ЩЖ фолликулярные клетки приобретают цилиндрическую форму, при гипофункции — уплощаются. Между фолликулами располагаются кровеносные капилляры и нервные окончания, непосредственно контактирующие с наружной поверхностью фолликулов. Поверхность фолликулярных клеток, обращенная к полости с коллоидом, называется апикальной. Она содержит микроворсинки, проникающие в коллоид. В ЩЖ обнаруживаются три вида клеток.
Основную массу железы составляют А-клетки фолликулярного эпителия тиреоциты , синтезирующие тиреоидные гормоны. В-клетки Ашкинази-Гюртля накапливают серотонин и биогенные амины. В межфолликулярной соединительной ткани расположены С-клетки парафолликулярные , вырабатывающие кальцитонин. В С-клетках содержится много митохондрий и электронно-плотных гранул. С-клетки имеют нейроэктодермальное происхождение. ЩЖ секретирует йодсодержащие гормоны — трийодтиронин Т3 , тироксин Т4 и нейодированный кальцитонин. Основными компонентами тиреоидных гормонов являются йод и аминокислота тирозин. Йод поступает в организм с пищей и водой в виде неорганических и органических соединений.
Избыток йода выводится организмом с мочой и желчью. Физиологическое потребление йода 110 — 140 мкг. Соединения йода образуют в организме йодиды калия и натрия. При участии окислительных ферментов йодиды превращаются в элементарный йод. Фолликулярные клетки захватывают йод из крови. В клетках ЩЖ происходит синтез тиреоглобулина. Последний секретируется в просвет фолликула. В коллоидном пространстве происходит органификация йода — присоединение его к белку.
Тиреоидные гормоны выделяются фолликулярными клетками в кровь. Основным и физиологически активным гормоном является трийодтиронин Т3 , который во много раз активнее тетрайодтиронина тироксина, Т4. Т3 образуется в тканях на периферии за счет дейодирования Т4. Поступающий из ЩЖ в кровь тироксин большей частью связывается с белками плазмы. Нарушения функции печени и почек влияют на содержание в крови тиреоидных гормонов. На связывающую способность плазмы могут влиять глюкокортикоиды и лекарственные препараты контрацептивы, препараты раувольфии и др. Синтез и секреция тиреоидных гормонов регулируется гипоталамусом. Установлено, что ТРГ является рилизинг-фактором для пролактина.
Физиологическое действие ТТГ заключается в стимуляции синтеза и секреции тиреоидных гормонов. С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ. На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями. Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом. Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме.
Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы. Их количество от 2 до 6, две верхние и две нижние. Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща. Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований. Анатомическое строение.
Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму. Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних. Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией. Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея. Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула.
Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом. Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития. В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы.
Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ.
Синапс Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом. На теле одного нейрона насчитывается 1200—1800 синапсов. Синапс — пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому. Каждый синапс состоит из трёх отделов: мембраны, образованной нервным окончанием пресинаптическая мембрана ; мембраны тела клетки постсинаптическая мембрана ; синаптической щели между этими мембранами В пресинаптической части синапса содержится биологически активное вещество медиатор , которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передается возбуждение от одного нейрона к другому. Распространение возбуждения связано с таким свойством нервной ткани, как проводимость.
Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора. От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода. По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения. Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны.
Физиология мышечного сокращения
В нервной системе человека вставочные нейроны передают нервные импульсы 1 с двигательного нейрона в головной мозг 2 от рабочего органа в спинной мозг 3 от спинного мозга в головной мозг 4 от чувствительных нейронов к рабочим органам 5 от чувствительных нейронов к двигательным нейронам 6 из головного мозга к двигательным нейронам. Murashevrafael 26 февр. Carab876 2 дек. Синапс Спинномозговуюмою жидкость Серое вещество Нервный центр Белое вещество? На этой странице сайта размещен вопрос Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных нейронов2 аксонам вставочных нейронов3 серому веществу спинного мозга4 белому веществу спинного мозга? Уровень сложности вопроса соответствует знаниям учеников 5 - 9 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы.
Ток проходит через тело нейрона к периферическому концу. Так происходит изменение проницаемости. Центральная нервная система Состоит из головного и спинного мозга. Является ведущим центром в организме человека, отвечающим за мышление, координацию движений, психическое состояние и взаимодействие с окружающим миром. Спинной мозг расположен в позвоночном столбе, имеет вид длинного тяжа. Он разделен на две симметричные половины: переднюю и заднюю борозды. По центру проходит спинномозговой канал, заполненный жидкостью — ликвором. Вокруг спинномозгового канала расположено серое вещество. На срезе он имеет вид бабочки, образован телами нервных клеток. Спинной мозг снаружи покрывает белое вещество, состоит из отростков нейронов, образует проводящие пути. Поперечный срез спинного мозга Поперечный срез спинного мозга имеет боковые и передние рога. В задних находится ядро чувствительного нейрона, а в передних нейроны двигательного центра. В боковых рогах залегают рецепторы симпатической и парасимпатической системы.
Аксональный аксонный транспорт — это перемещение веществ по аксону. Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему. Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется. Различают антероградный от тела нейрона и ретроградный к телу нейрона аксонный транспорт. Выделяют два вида отростков: короткие ветвящиеся дендриты и один длинный не ветвящийся аксон. Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки. У большинства аксонов миелиновая оболочка имеется. Миелиновая оболочка Миелиновая оболочка — электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. В периферической нервной системе миелиновую оболочку аксонов образуют шванновские клетки несколько шванновских клеток на один аксон. В ЦНС один олигодендроцит образует миелиновую оболочку нескольким нервным клеткам. Образование миелиновой оболочки в ЦНС Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны.
Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему. После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс. Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остаётся????? Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие — осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи. Существуют разнообразные механизмы рецепции на молекулярном уровне. Ацетилхолин взаимодействует с рецепторным белком в постсинаптической мембране. АХ является лигандом, когда имеют ввиду, что он связывается с определенным участком белка. И это вызывает изменение проницаемости мембраны. Реакция мембраны может быть либо быстрая либо медленная. ГАМК может связываться с 2 типами мембранных рецепторов — с высоким и низким сродством. Бензодиазепиновые препараты вызывают угнетение ГАМК-эргических синапсов и, благодаря этому, используются для лечения тревожных состояний и страха. ГАМК удаляется из щели путем захвата пресинаптическим окончанием, а также клетками глии. Глия играет важную роль как в захвате так и в метаболизме ГАМК. Однако последующая реакция в постсинаптическом окончании более сложна. Рецепторный белок аденилатциклаза активирует внутренний рецептор — протеинкиназу, что приводит к фосфорилированию белка. Завершается этот процесс изменением ионной проводимости мембраны.
Роль гипоталамуса
- Смотрите также
- Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных
- Страница 47
- Тест «Нервная система» — 4ЕГЭ
ОБНОВЛЕНИЯ
- Нервные импульсы поступают непосредственно к железам по 1) аксонам…
- ОБНОВЛЕНИЯ
- Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека
- Страница 47
- Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы. Учебное видео - соматическая рефлекторная дуга Скачать данное видео и просмотреть с другого видеохостинга можно на странице: Здесь.
Рецептор, кондуктор и эфферентный нейрон.. Афферентный сигнал. Афферентный нерв. Исполнительные органы. Обратная афферентация связь.
Замкнутая кольцевая цепь рефлексов. Вегетативная автономная и анимальная нервная система. Развитие нервной системы. Филогенез нервной системы. Трубчатая нервная система.
Развитие отделов мозга: промежуточный, передний, конечный. Новый мозг. Первая сигнальная система. Вторая сигнальная система. Эмбриогенез нервной системы.
Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора. От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода.
По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране.
Длина аксона. Аксон нейрит. Направление нервного импульса от аксона к телу клетки. Направлении проведения нервного импульса аксоном и дендритами. Нейрон проводящий нервный Импульс. Нервные импульсы от тела. Нервный Импульс генерируют Нейроны.
Схема передачи нервных импульсов по нейронам. Скорость передачи нервных импульсов в теле человека. Скорость передачи импульса в нейронах. Нейроны афферентных путей. Нейрон структурно-функциональная единица нервной системы. Функциональное строение нервной системы. Структурно-функциональная характеристика нейронов.
Нейрон строение и функции. Нейрон направление нервного импульса. Нейромедиатор это гормон. Нейромедиаторы представители. Нейромедиаторы мозга. Медиаторы и нейромедиаторы. Распространение нервного импульса по аксону.
Нервные импульсы к телу нейрона идут по. Медиаторы нервных клеток. Медиаторы нервного импульса. Роль медиаторов в передаче импульсов.. Передача нервного импульса биохимия. Нервная клетка. Нейроны головного мозга.
Двигательный Нейрон. Проводниковая функция спинного мозга. Проводниковая функция спинного мозга схема. Проводниковой функции спинного мозга. Схема проводниковой функции спинного мозга. Функции вставочного нейрона рефлекторной дуги. Рефлекс вставочные Нейроны.
Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Путь рефлекторной дуги. Рефлекторная и проводниковая функции спинного мозга. Рефлекторная и проводниковая функции. Рефлекторная функция спинного мозга. Строение нейрона. Строение тела нейрона.
Отросток нервной клетки. Строение отростков нейрона. Передача импульса с нейрона на Нейрон. Передача нервного импульса в клетке. Этапы и механизмы синаптической передачи. Синаптическая передача нервного импульса механизм. Синапс этапы синаптической передачи.
Структурные компоненты и функциональные участки нейрона. Структурно-функциональной единицей нервной ткани является. Схема строения двигательного нейрона. Нейрон основная структурно-функциональная единица нервной системы. Путь нейрона по рефлекторной дуге. Путь нервного импульса по рефлекторной дуге. Рефлекторная дуга по порядку нервного импульса.
Порядок элементов рефлекторной дуги. Чувствительный вставочный и двигательный Нейроны. Чувствительный Нейрон вставочный Нейрон двигательный Нейрон. Дыигалетные, чувствительные вставочнвставочные Нейроны. Чувствительный вставочный и двигательный Нейроны функции. Мембрана нервной клетки схема. Схема передачи импульса нейрона.
Распределение зарядов и ионов на мембране нервной клетки. Схема проведения импульса в нейроне. Рефлекторная дуга чувствительный Нейрон. Рецепторная рефлекторная дуга. Рефлекторная дуга вставочный Нейрон чувствительный Нейрон. Коленный рефлекс вставочный Нейрон. Строение рефлекторной дуги кратко.
Строение рефлекторной дуги чувствительности.
Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate! Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat.
Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla? Эта информация доступна зарегистрированным пользователям Высшая нервная деятельность человека Высшая нервная деятельность- это деятельность высших отделов центральной нервной системы, которая обеспечивает наиболее совершенное приспособление животных и человека к окружающей среде. Термин «высшая нервная деятельность» впервые введён в науку И. Основная роль в осуществлении высшей нервной деятельности у высших животных и человека принадлежит коре больших полушарий.
К высшей нервной деятельности относят познание, речь, память и абстрактное мышление, сознание и др. Мышление интеллект - процесс обобщённого отражения действительности с её связями, отношениями и закономерностями. С помощью мышления познается содержание и смысл воспринимаемого. Мышление представляет собой самую сложную форму психической деятельности человека, вершину её эволюционного развития.