Эта черная дыра вовсе не похожа на Гаргантюа — аналог из фильма Нолана с МакКонахи в главной роли. Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века! Новости черных дыр. Сверхмассивные черные дыры в центре масс галактик. Кинематограф и сверхмассивная черная дыра. Гаргантюа – этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе
Диск снабжает планеты Гаргантюа светом и теплом. Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней. Кротовая нора Кротовая нора или червоточина, которую использует экипаж в "Интерстеллар" — это одно из явлений в фильме, существование которого не доказано. Она гипотетическая, но очень удобная в сюжетах научно-фантастических историй, где нужно преодолеть большое космическое расстояние. Просто кротовые норы — это своего рода кратчайший путь сквозь пространство.
Любой объект с массой создает норку в пространстве, что означает, что пространство можно растягивать, деформировать и даже складывать. Червоточина - это как складка на ткани пространства и времени , которая соединяет две очень далекие области, что помогает космическим путешественникам преодолеть большое расстояние за короткий период времени. Официальное название кротовой норы — "мост Эйнштейна-Розена", так как впервые она была предложена Альбертом Эйнштейном и его коллегой Натаном Розеном в 1935 году. В двухмерных диаграммах устье кротовой норы показано в виде круга. Однако, если бы мы могли увидеть кротовую нору, она бы выглядела, как сфера.
На поверхности сферы был бы виден гравитационно искаженный вид пространства с другой стороны "норы". Размеры кротовой норы в фильме: 2 км в диаметре и расстояние переноса - 10 миллиардов световых лет. Гравитационное замедление времени Гравитационное замедление времени — это реальное явление, наблюдаемое на Земле. Оно возникает потому, что время относительно. Это означает, что оно течет по-разному для различных систем координат.
Когда вы находитесь в сильной гравитационной среде, время течет медленнее для вас по сравнению с людьми, находящимися в слабой гравитационной среде. Оказавшись на обратной стороне кротовой норы, космический корабль входит в трехпланетную систему, вращающуюся вокруг сверхмассивной чёрной дыры, которую исследователи называют Гаргантюа. Предполагается, что сверхмассивные чёрные дыры, с массами от миллиона до нескольких миллиардов масс Солнца, сидят в ядрах всех галактик. Вероятно, что и в центре нашего Млечного Пути есть такой объект - Sagittarius А, чья масса превышает 4 миллиона Солнечных масс 4,31 106 M;. По Торну, Гаргантюа скорее похож на ещё более массивную сверхмассивную чёрную дыру, которая предположительно находится в ядре туманности Андромеды и которая оценивается в 100 миллионов солнечных масс 1.
Её размер приблизительно пропорционален массе, а радиус такого гиганта охватывал бы орбиту Земли вокруг Солнца. Такие огромные чёрные дыры не являются фантастическим преувеличением, поскольку у нас есть наблюдательные данные, подтверждающие существование таких «монструозных» чёрных дыр в далеких галактиках Behemoth. Самой большой из обнаруженных на данный момент является чёрная дыра в галактике NGC 1277, находящейся в 250 миллионах световых лет от нас. Её масса может быть оценена в 17 миллиардов солнечных, а её размер сравним с орбитой Нептуна. Ещё одной важной характеристикой Гаргантюа является то, что это быстро вращающаяся чёрная дыра.
Все объекты во Вселенной, исключая саму Вселенную, имеют свойство вращаться. Естественно, что и чёрные дыры тоже вращаются, что описывается геометрией Керра. Последнее зависит от двух параметров: массы чёрной дыры М и момента количества движения J. Важным отличием от обычных звёзд, которые вращаются по-разному, является то, что чёрные дыры по Керру вращаются с необычной устойчивостью: все точки на её условной поверхности горизонте событий вращаются с одной и той же угловой скоростью. Однако существует такой предельный момент количества движения Jmax , выше которого горизонт событий пропадет: это ограничение соответствует тому, что скорость вращения горизонта будет равна скорости света.
В такой чёрной дыре, называемой «экстремальной», гравитационное поле у горизонта событий исчезнет, потому что внутреннее влияние гравитации будет компенсироваться за счет огромных отталкивающих центробежных сил. Тем не менее, вполне возможно, что большинство чёрных дыр во Вселенной имеет момент количества движения, довольно близкий к предельному. Например, типичная чёрная дыра звёздной массы около 3 солнечных , считающаяся движущим механизмом в двойных рентгеновских источниках, должна вращаться на 5000 оборотах в секунду. Предположительно, чёрная дыра Гаргантюа, показанная в "Интерстелларе" как раз имеет момент количества движения на 10 в -10 степени близкий к предельному Jmax. Даже если это теоретически возможно, данная конфигурация всё равно выглядит нереалистичной с физической точки зрения.
Потому что чем быстрее вращается чёрная дыра, тем тяжелее увлечь за собой вещество, вращающееся в том же направлении под воздействием центробежных сил, в то время как вещество, вращающееся в противоположном, легко «всасывается» в чёрную дыру, замедляя вращение. Вследствие этого слишком быстро вращающаяся чёрная дыра будет иметь тенденцию к замедлению до равновесной скорости, меньшей, чем у Гаргантюа по релятивистским общим расчетам, чёрные дыры должны вращаться не быстрее, чем 0,998 Jmax. Однако преимуществом очень быстро вращающихся чёрных дыр является то, что планеты могут вращаться в непосредственной близости от горизонта событий, не падая под него. Это является ключевым моментом в фильме, а также позволяет очень сильное замедление времени. Для чёрной дыры с массой, равной 100 миллионам солнечных масс, это расстояние должно быть около 900 миллионов километров, чуть больше, чем расстояние от Юпитера до Солнца.
Но для чёрной дыры Керра, вращающейся очень близко к предельному Jmax, устойчивая внутренняя круговая орбита может быть также близко, как сам горизонт событий, всего 100 миллионов километров. Это объясняет почему в «Интерстелларе» планета Миллер может вращаться над самым горизонтом событий и не падать. Стоит также отметить, что чёрная дыра Керра это не волчок, крутящийся в стационарном внешнем пространстве; вращаясь, она задерживает всё полотно пространства-времени вместе с собой. Как следствие, планета Миллер должна вращаться со скоростью, близкой к световой. На вопрос Что находится в центре "Млечного Пути"?
Черная дыра или Огромная звезда? Впрочем, есть гипотеза, что даже двойная черная дыра. Ответ от шеврон [гуру] Для внешнего наблюдателя сжатие звезды в чёрную дыру никогда не заканчивается, поэтому абсолютно точно сказать нельзя. Но косвенные данные - очень большая масса и очень маленький размер ссылка говорят о том, что это, скорее всего, чёрная дыра. Изображение, размером 400 на 900 световых лет, составленное из нескольких фотографий телескопа «Чандра» , с сотнями белых карликов, нейтронных звёзд и чёрных дыр, в облаках газа, раскалённого до миллионов градусов.
Цвета на снимке соответствуют рентгеновским энергетическим диапазонам: красный низкая , зелёный средняя и синий высокая. Галактический центр находится на расстоянии 8,5 кпк от Солнечной системы, в направлении созвездия Стрельца. В галактической плоскости сосредоточено большое количество межзвёздной пыли, благодаря которой свет, идущий от галактического центра, ослабляется на 30 звёздных величин, то есть в 1012 раз. Поэтому центр невидим в оптическом диапазоне - невооружённым глазом и при помощи оптических телескопов. Галактический центр наблюдается в радиодиапазоне, а также в диапазонах инфракрасных, рентгеновских и гамма-лучей.
Последующие наблюдения установили более точное значение массы - 3,7 миллионов масс Солнца, а радиус не более 6,25 световых часов 45 а. Для сравнения: орбита Плутона отстоит от Солнца на 5,51 световых часов.
Зато для появления мемов и шуток по поводу нового фото потребовались считанные часы.
My face when I saw the black hole pic. Одним из самых популярных вариантов стало сравнение чёрной дыры с пончиком: I am sure the spatial resolution of the blackhole images will get better in future. That black hole photo is mighty blurry.
Давайте сделаем его более чётким. Чёрная дыра — это пончик.
Но для кого-то первое изображение черной дыры — величайшее открытие, а для кого-то… Вообще, любители науки с интересом восприняли сообщение о первой фотографии черной дыры, хотя и успели друг с другом поспорить о том, что объект на самом деле нельзя сфотографировать. Потом начались диванные баталии о том, что ученые получили фотографии аккреционного диска, а затемнение в центре и есть горизонт событий, откуда не исходит и не отражается свет. Но некоторых пользователей все равно не удалось убедить, что открытие важно.
Зажгите свечку Сотрудник отдела релятивистской астрофизики Астрономического института имени Штернберга Константин Постнов объяснил «360», почему черная дыра, которая не позволяет свету выйти, все равно светится. Она не светится. Светится вещество вокруг нее. Свечка у вас есть, зажгите. Почему горит?
Потому что там идет химическая реакция и частички, которые там вылетают, они горячие. Чем горячее, тем белее свет. То же самое и там. Когда газ падает вокруг черной дыры, он из-за трения нагревается до высоких температур и светится, как любое раскаленное тело Константин Постнов. Астрофизик отметил, что светятся плазма и газ, которые нагреты до огромных температур в окрестностях черной дыры.
Постнов объяснил, что черная дыра — это очень глубокая «потенциальная яма», компактный объект с большой массой. Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света. Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной.
Почему в случае невращающейся черной дыры рис. На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений желтые кривые на рис. В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной — звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные — между внутренним и внешним кольцами. На рис. Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка. Камера движется вокруг Гаргантюа против часовой стрелки.
Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет
это одно из самых загадочных явлений вселенной. Она представляет собой область космического пространства с крайне высокой плотностью и силой притяжения, из которой ничто, включая свет, не может выбраться. Черная дыра в центре галактики M87, очерченная излучением раскаленного газа, который, вращаясь вокруг нее, образует кольцо. К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т.е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути.
Сколько же лететь до ближайшей звезды?
- Гаргантюа и червоточина
- Что значит фотография черной дыры - Афиша Daily
- Горизонт событий наблюдаемой Вселенной | Сайт про Космос и Вселенную
- Гаргантюа интерстеллар - 82 фото ★
- Что такое Гаргантюа?
- Гаргантюа интерстеллар - 82 фото ★
Сверхмассивная черная дыра в центре Млечного Пути. Сверхмассивная черная дыра в квазаре OJ 287
Чёрная дыра снимки из космоса. Сверхмассивные черные дыры в центре масс галактик. Черная дыра Рейснера-Нордстрема. Ядро Галактики Млечный путь черная дыра. Белая дыра в космосе. Первичные черные дыры. Чёрные дыры во Вселенной. Маленькая черная дыра. Снимки черных дыр. Чёрная дыра Рейснера нордстрёма.
Черная дыра сбоку. Квазар 3с9. Сверхмассивная черная дыра в галактике. Черные дыры фильм 1995. Черная дыра вместо солнца. Огромная черная дыра. Сверх масивная чёрная дыра. Черная дыра изнутри. Гравитационные воронки.
Дыра внутри. Гаргантюа черная дыра Интерстеллар. Черная дыра обои. Красивая черная дыра. Черная дыра фото. Зарождение чёрной дыры. Белая дыра. Черная дыра м57. Притяжение звезд.
Сверхмассивная нейтронная звезда. Рождение черной дыры. Электрическая черная дыра. Звук черной дыры. Микроскопические черные дыры. Квантовые черные дыры. Планковская черная дыра. Черная дыра маслом. Черная дыра диск аккреции.
Аккреционный диск черной дыры. Черная дыра фото с телескопа Хаббл.
Океан и его обитатели получились такими, что глаз не оторвать. Правда Референсом при создании подводной фауны Пандоры были образы доисторических животных Земли с некоторыми кэмероновскими модификациями. В результате рыбы и млекопитающие, с одной стороны, выглядят экзотично, с другой — узнаваемо. Кэмерон достаточно последовательно изображает подводных животных с шестью конечностями и парой дополнительных глаз, что идет в русле наших представлений об эволюции. Если сухопутные животные имеют дополнительную пару лапок, то и их водные родственники тоже должны.
То есть эволюционно они разошлись гораздо дальше друг от друга, чем современные человеческие расы. Шестиногость пандорианской фауны не является чем-то невероятным. По словам палеоантрополога Станислава Дробышевского, земная эволюция тоже могла пойти по этому пути. В древности в наших океанах плавали рыбки акантоды, у которых росло до семи пар плавников. Они вполне могли развиться во что-то многоножковое, и только по стечению обстоятельств и условий окружающей среды оказались тупиковой ветвью. Отсюда мы узнаем, почему у прямоходящих хвостатых осталось только четыре конечности: две верхние просто срослись. Однако открытым остается вопрос: как так получилось, что древолазающим существам не нужна дополнительная пара глаз, характерная для остальных животных планеты?
Прекрасный прибор, позволивший бы точнее прицеливаться во время прыжков с ветки на ветку. У племени меткайина есть духовные братья тулкуны, похожие на наших китов. Однако на Пандоре эти млекопитающие обладают разумом: у них есть речь, искусство, наука, законы. Они не создают ничего, поскольку ластами это делать затруднительно, но в их высоком интеллекте сомневаться не приходится. Тут, конечно, напрашиваются параллели с земными китообразными. Есть предположения, что наши дельфины могут обладать разумом, но пока однозначных доказательств этому нет. И совершенно точно нам еще очень далеко до осознанного разговора с дельфинами или китами.
Так что в образе тулкунов Джеймс Кэмерон, видимо, воплотил мечту о возможности поболтать с этими смышлеными морскими обитателями, которые могли бы поведать много интересного. Прибытие Однажды на Землю прибывают корабли пришельцев и в полной тишине зависают в разных точках планеты. Правительства, естественно, срочно поднимают армии, но агрессивных действий со стороны инопланетян не следует, поэтому нужно как-то контактировать. Для этого желательно понять, как общаться, и власти США обращаются к высококлассному лингвисту Луизе Бэнкс. Ей предстоит освоить язык, который абсолютно не вписывается в рамки человеческих. Один из самых сложных и восхитительных научно-фантастических фильмов поставлен по повести Теда Чана «История твоей жизни», в которой лингвистические экзерсисы проработаны еще тщательнее. Вопрос о существовании пришельцев мы сразу выносим в область базового фантастического допущения, которое позволяет нам сосредоточиться на мысленном эксперименте.
Лингвист Александр Пиперски в лекции из цикла «Ученые против мифов» сделал несколько интересных наблюдений по мотивам «Прибытия». Правда По сюжету фильма Луиза Бэнкс расшифровывает язык пришельцев-гептаподов, в результате чего неожиданно получает дополнительный бонус. Дело в том, что представленные в картине инопланетяне не оперируют понятиями времени, и их письменный язык — тоже. Поэтому Луиза вместе с языком некоторым образом осваивает и мышление его носителей и, как следствие, получает возможность немножко видеть будущее. Разумеется, в реальности нет языка, который позволит вам видеть будущее, это просто красивый мысленный эксперимент. Но в то же время существует гипотеза лингвистической относительности Сепира — Уорфа, которая предполагает, что язык оказывает влияние на то, как мы мыслим, и есть реальные эксперименты, которые показывают, что некоторая зависимость есть. Миф Самым фантастическим явлением «Прибытия» Александр Пиперски назвал профессию главной героини.
Людей в этом ограничивает длительность полета, набор скорости при помощи гравитационных маневров занимает гораздо больше времени. Источник: kinomania. И вот при подлете к «червоточине» знания Купера о ней испаряются. Ромилли приходится объяснять ему, что она выглядит как сфера, а не как дыра из-за сгибов в пространстве. Но действительно ли кто-то согнул наше пространство как лист бумаги? И можно ли так просто дать единственное объяснение представленной кротовой норе? В фильме говорят, что она гиперпространственная, имеет пять измерений в нашем пространстве их четыре. В настоящий момент имеются три самые популярные модели таких «червоточин», только две из них гиперпространственные. Мост Эйнштейна — Розена требует пройти «червоточину» быстрее скорости света и проскочить две сингулярности, что довольно опасно. Согласно модели Моррисона — Торна необходимы дополнительные шесть измерений, а также предполагается наличие экзотической материи, которую пока не нашли, она лишь предсказана общей теорией относительности, должна обладать отрицательной плотностью энергии.
Модель Романа Конопли задействует гиперпространственную математику — целых 26 измерений. Источник: kinorium.
Правда, у вращающихся черных дыр есть предел скорости вращения, причем максимума они, как правило, не достигают. Чтобы на планете Миллер было такое замедление времени, Гаргантюа должна вращаться лишь чуточку меньше максимума. Это реально, хотя и маловероятно.
На планету Миллер должны регулярно падать огромные метеориты. Гаргантюа не всегда сможет поглощать космический мусор, чаще он будет попадать на орбиту и вращаться там. Они возможны, только если разница в гравитационном притяжении черной дыры на разных сторонах планеты очень велика. Но в таком случае планету просто разорвало бы на части! На самом деле нет.
Благодаря гигантским размерам Гаргантюа разница в притяжении черной дыры на разных сторонах планеты Миллер недостаточно велика. Тем не менее силы притяжения должно было хватить для деформирования планеты. Планета Миллер должна была выглядеть как эллипсоид, сжатый по бокам и вытянутый в длину. Кроме того, если бы планета вращалась вокруг своей оси, то силы притяжения Гаргантюа действовали бы в нескольких направлениях в зависимости от положения орбит. По фильму же мы видим, что все гигантские волны движутся примерно в одном направлении.
Отсюда следует вывод, что планета Миллер всегда повёрнута к черной дыре одной и той же стороной. Возможно и еще одно объяснение: из-за деформации планеты и притяжения Гаргантюа в определенных районах постоянно проходят землетрясения, вызывающие гигантские цунами. Неужели нужно было лететь на нее в первую очередь и неужели этой части экспедиции нельзя было избежать? Разумеется, можно было. Планета Миллер никогда бы не стала бы первым кандидатом на место нового дома для человечества, если бы Купер или другие члены экипажа «Эндюранс» догадались использовать по назначению кучу научного оборудования, именно с этой целью доставленного на борт корабля.
Информацию о пригодности планеты Миллер для жизни можно было получить прямо с орбиты при помощи телескопов и прочих приборов. Тех самых, которыми Ромили почти четверть века изучал саму чёрную дыру, пока остальные боролись с цунами. Не спускаясь на планету, можно было бы провести ее изучение с безопасного расстояния, где временной лаг минимальный. Простой спектральный анализ здорово сэкономил бы топливо экспедиции и снизил бы накал страстей на экране. Кристоферу Нолану нужно было это замедление времени, чтобы показать, как растёт пропасть между отцом и дочерью.
В крайнем случае, если NASA так уж хотелось отправить на планету делегацию из мыслящих существ, вполне можно было бы послать в экспедицию экипаж, состоящий из одних роботов. Роботы способны выжить почти в любых условиях судя по фильму — даже в черной дыре , они менее требовательны, не так капризны и легче переносят одиночество. Замедления времени он не избежал бы в любом случае — оно возрастает обратно пропорционально расстоянию от черной дыры. Но сэкономить время путем корректировки курса корабля благодаря гравитационному притяжению разных небесных тел еще как можно. В фильме Купер решает избежать притяжения Гаргантюа, разогнавшись до огромной скорости, а затем резко затормозить, попав в зону притяжения нейтронной звезды.
На самом деле подобным образом снизить скорость и чтобы корабль и пассажиров при резком торможении не разорвало на кусочки с помощью нейтронной звезды не удалось бы — для этого требуется небольшая черная дыра размером с Землю. Но Нолан был непреклонен насчёт количества черных дыр в фильме: одна, только одна! Действие разворачивается высоко над поверхностью, в небе которой висят гигантские ледяные облака. И почему они не падают под собственным весом? По-видимому, планета Манна вращается вокруг Гаргантюа по крайне сложной орбите и большую часть времени проводит вдали от черной дыры.
Во-первых, до планеты Манна было чуть ли не дольше всего лететь, когда экипаж «Эндюранс» решал, откуда начать. Зато, когда Купер взлетает с планеты, «Рейнджер» оказывается совсем рядом с Гаргантюа. А во-вторых, на это намекают гигантские ледяные облака, которые замерзают на то время, пока планета удалена от аккреционного диска. А не падают они благодаря особому виду магии. На самом деле они давно должны были рухнуть на поверхность.
Куперу удается спасти основной модуль, но сам он, робот ТАРС и «Рейнджер» проходят сквозь горизонт событий и падают в черную дыру. Как они пережили весь процесс? Их должно было или убить радиацией и температурой аккреционного диска, или они должны были спагеттицифицироваться — превратиться в вытянутую нить из-за разницы в притяжении разных частей тела.
Энергия из черных дыр – выдумка или реальность?
Черные дыры являются, возможно, самыми загадочными объектами во Вселенной. Они — результат гравитационного коллапса сверхмассивных звезд, приводящего к созданию настоящей сингулярности — объекта бесконечной плотности, появившегося вследствие сжатия целой звезды до крошечной точки. Эти горячие точки бесконечной плотности обладают настолько мощной гравитацией, что способны в буквальном смысле разрывать пространство-время. Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий.
Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы.
Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей.
Больше по теме Необъятность Вселенной — это то, что не перестает нас удивлять. И когда мы говорим о солнечных системах, мы обычно думаем о той, которую называем своим домом, с нашим Солнцем и сопутствующими ему планетами. А как насчет самой большой солнечной системы во Вселенной? Что ж, ученые недавно обнаружили систему, которая действительно затмевает нашу собственную. Они назвали его «Гаргантюа» в честь вымышленной черной дыры в фильме «Интерстеллар».
Самой большой из обнаруженных на данный момент является чёрная дыра в галактике NGC 1277, находящейся в 250 миллионах световых лет от нас. Её масса может быть оценена в 17 миллиардов солнечных, а её размер сравним с орбитой Нептуна. Ещё одной важной характеристикой Гаргантюа является то, что это быстро вращающаяся чёрная дыра. Все объекты во Вселенной, исключая саму Вселенную, имеют свойство вращаться. Естественно, что и чёрные дыры тоже вращаются, что описывается геометрией Керра. Последнее зависит от двух параметров: массы чёрной дыры М и момента количества движения J. Важным отличием от обычных звёзд, которые вращаются по-разному, является то, что чёрные дыры по Керру вращаются с необычной устойчивостью: все точки на её условной поверхности горизонте событий вращаются с одной и той же угловой скоростью. Однако существует такой предельный момент количества движения Jmax , выше которого горизонт событий пропадет: это ограничение соответствует тому, что скорость вращения горизонта будет равна скорости света.
Проект Event Horizon Telescope «Телескоп горизонта событий» , в рамках которого и получился итоговый снимок, был запущен в 2012 году для наблюдения за чёрными дырами. Всё это время учёные собирали необходимую информацию, а последние два года суперкомпьютер работал над получением того самого изображения. Зато для появления мемов и шуток по поводу нового фото потребовались считанные часы. My face when I saw the black hole pic. Одним из самых популярных вариантов стало сравнение чёрной дыры с пончиком: I am sure the spatial resolution of the blackhole images will get better in future. That black hole photo is mighty blurry.
Почему первое изображение черной дыры не похоже на то, что было в "Интерстеллар"
Одна из них расположена прямо над северным полюсом Гаргантюа, другая — прямо под южным. Это аналоги Полярной звезды, которая расположена прямо над Северным полюсом Земли. Я нарисовал пятиконечные звездочки рядом с первичными красная звездочка и вторичными желтая изображениями полярных звезд Гаргантюа. С Земли кажется, будто все звезды циркулируют вокруг Полярной звезды — поскольку мы вращаемся вместе с Землей.
Аналогично по мере движения камеры по орбите вокруг дыры все первичные изображения звезд рядом с Гаргантюа циркулируют вокруг первичных изображений полярных звезд, но пути их движения например, две замкнутые красные кривые сильно искажены пространственным вихрем и гравитационным линзированием. Тем же образом вторичные изображения звезд циркулируют вокруг вторичных изображений полярных звезд например, вдоль двух желтых кривых. Почему в случае невращающейся черной дыры рис.
На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть.
Телескоп горизонта событий получил свое название в честь границы черной дыры - "горизонта событий", границы пространства-времени, которое окружает черную дыру и является так называемой точкой невозврата. Член научного комитета EHT Лучано Реццола из университета Гёте в Германии отметил, что полученное изображение подтверждает существование горизонта событий, то есть доказывает правильность общей теории относительности Альберта Эйнштейна.
Считается, что черная дыра представляет собой объект с такой сильной гравитацией, что даже свет не может отдалиться от него на бесконечное расстояние и из черной дыры не может выбраться никакое тело. Концепция таких объектов связана с современным взглядом на гравитацию, общей теорией относительности Эйнштейна, и представлением тяготения в ней через искривление пространства-времени. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось", - объясняет глава Научного совета EHT Хайно Фальке из университета Рэдбуд в Нидерландах.
Именно она и позволила нам измерить гигантскую массу черной дыры в M87. Куда смотрел телескоп Чтобы исследовать окрестности сверхмассивных черных дыр они являются сравнительно маленькими астрономическими объектами в центрах каждой галактики, ученые направили сеть радиотелескопов на черную дыру в центре эллиптической галактики Messier 87 M87 в созвездии Девы, она находится на расстоянии 55 млн световых лет от Земли. По словам Хайно Фальке, ученые решили сосредоточиться на галактике M87, поскольку черная дыра в центре нашей Галактики двигается, а поле зрения телескопа ограниченно.
Как отмечает сайт Европейской южной обсерватории, благодаря своей огромной массе и относительной близости к Земле черная дыра в центре галактики M87 является для земного наблюдателя одной из крупнейших по своим угловым размерам, что и сделало ее идеальной мишенью для EHT.
Именно из-за слабости диска из Гаргантюа не вырываются плазменные пучки из южного и северного полюсов, как из квазара. Такое возможно, если дыра не «кушала» другие планеты в течение долгого времени. То, что на картинках светится - это и есть аккреционный газовый диск. А выглядит он как хрен пойми что, потому что, благодаря гравитационному линзированию , над и под чёрной дырой виден кусок диска за этой самой дырой. Очень близко к горизонту событий Гаргантюа есть две критические орбиты, образованные равновесием силы гравитации и центробежной силы. По одной из них движется планета Манна, по другой - Эндюранс в конце фильма. Пространство в Интерстелларе состоит из трёх трёхмерных бран в четырёхмерном пространстве анти-де Ситтера.
Над и под нашей браной находятся ограничивающие браны, они нужны для того, чтобы гиперпространство искривлялось между слоями и не нарушались человеческие законы распространения сил, в частности гравитации. Так, в общем, можно сделать пятой измерение развёрнутым, а не скрученным в трубочку. Гиперпространство искривляется между этими бранами и расстояние, измеренное в верхней или нижней бране будет очень сильно короче, чем в нашей бране Расстояние между этими бранами должно быть 1,5 сантиметров - этого достаточно для того, чтобы расстояние по верхней бране между Землёй и Гаргантюа было равно 1АЕ, и в нашей бране соблюдались законы Ньютона о гравитации. Как это сделать? Это не показывается в фильме , но Кип предполагает, что вокруг Гаргантюа должны вращаться ещё как минимум две маленькие чёрные дыры, размером с Землю. Только попав в гравитацию таких дыр, можно так сильно сбросить скорость и не убить команду корабля. При этом в фильме Купер говорит, что ему нужно сделать менёвр вокруг нейронной звезды, а не чёрной дыры я, честно, не помню этой фразы. Волны на планете Миллер вызваны «покачиванием» планеты туда-сюда, относительно оси, перпендикулярной Гаргантюа.
Типа, цунами. Планета Миллер должна располагаться между аккреционным диском и Гаргантюа. Но Нолан решил не палить концовку, и поставил планету сами знаете как. Греется планета от аккреционного диска. На поверхности - обычный лёд. Когда планета Манна подлетает ближе к Гаргантюа и её диску, диоксид углерода испаряется - получаются облака. Подлетая к чёрной дыре Как Купер поднял падающий Эндюранс? Вытащил его достаточно высоко, чтобы притяжение Гаргантюа притянуло его и Купера на критическую орбиту.
Не забывайте, что когда Эндюранс падает на планету Манна, планета находится очень близко к Гаргантюа. Критическая орбита, по которой Купер проводит корабль вокруг Гаргантюа - это поле, в котором центробежная сила, которая выталкивает корабль с орбиты и сила гравитации, которая тянет корабль внутрь дыры, совпадают. На этой орбите можно вечно крутиться вокруг Гаргантюа, но с одним условием: нельзя сдвигаться с орбиты ни на шаг, так как корабль либо отбросит от Гаргантюа, либо он упадёт в чёрную дыру. Эта орбита нестабильна. Стоит сказать, что орбита планеты Миллер точно такая же, но стабильная, с неё сложно слезть. Красота черных дыр завораживает. И все же что такое черная дыра с точки зрения традиционной физики? Рассказывает Кип Торн, физик-теоретик и автор книги «"Интерстеллар".
Наука за кадром». Спорим, вы об этом не знали? Впервые реалистично черные дыры показали в голливудском фильме «Интерстеллар». Их внешний вид был рассчитан с помощью уравнений — этим занимался Кип Торн, будучи научным консультантом картины. Раньше режиссеры и создатели спецэффектов полагались больше на фантазию, чем на науку. Но и сегодня вопрос о том, как устроены черные дыры и каковы их свойства, остается открытым. Даже Стивен Хокинг, гений и один из основных исследователей этого удивительного явления, недавно опроверг собственную теорию, предложенную 30 лет назад. Еще не так давно считалось, что черная дыра уничтожает все, что затягивает внутрь себя.
Хокинг же предположил, что черная дыра — дверь в альтернативную Вселенную. Так ли это? Ученым еще предстоит проверить. А пока мы узнаем у Кипа Торна, как же традиционная физика рассматривает это удивительное явление. Будет интересно! Светится ли черная дыра? Часть светящегося диска черной дыры Гаргантюа вблизи и пролетающий над ним космолет «Эндюранс». Светится не черная дыра, а диск вокруг нее, состоящий из раскаленного газа, который дыра «забирает» у звезд при помощи сил гравитации, когда разрывает их на части.
Иллюстрация из книги «"Интерстеллар". Наука за кадром» Нет, в черной дыре нечему светиться, так как она состоит только лишь из искаженного времени и пространства — и больше ничего. В фильмах можно увидеть, что вокруг черных дыр есть сияющие диски, мерцания и лучи. На самом деле это звезды и туманности, свет которых дыра тоже искривляет — отсюда и причудливые световые узоры. Правда ли, что черная дыра искривляет время? Космический модуль «Рейнджер», идущий на снижение к планете Миллер. Наука за кадром» Да, это так. Если человек провалится в черную дыру, он почти перестанет стареть: чем ниже он будет лететь, тем сильнее будет замедляться время.
Как на планете Миллер в фильме «Интерстеллар», которая находилась возле черной дыры Гаргантюа: час по времени Миллера равен семи земным годам. Таким образом, можно улететь в космос молодым и прилететь всего на пару лет старше, а на Земле пройдут сотни лет. Можно ли передать сообщение на Землю, угодив в черную дыру? Сигналы, которые будут посланы после пересечения горизонта событий, не могут выйти наружу, так как в черной дыре все стремится вниз, к сингулярности. Наука за кадром» В соответствии с современными представлениями — нет. Как только вы пересечете горизонт событий поверхность черной дыры , например, с радиопередатчиком в руках, то сигналы перестанут выходить наружу. А все потому, что и вас, и ваши сигналы будет непреодолимо затягивать вниз. Как происходит искривление пространства?
Представьте муравья человечество , живущего на детском батуте Вселенная , в середине которого лежит очень тяжелый камень. Точно так же, как и поверхность батута, искривляется пространство нашей Вселенной. Наука за кадром» Черная дыра искривляет не только время, но и пространство: получается что-то вроде батута пространство Вселенной , которое прогнулось под лежащим на нем тяжелым камнем черная дыра с ее низшей точкой — сингулярностью.
Так что диаметр дыры просто нельзя рассчитать на основе той убогой информации, которая имеется в вашем распоряжении. Получив эти результаты, вы можете исследовать окрестности горизонта черной дыры. Не желая рисковать человеческой жизнью, вы отправляете десятисантиметровый робот по имени R3D3 со встроенным передатчиком, который должен передать результаты своих исследований на корабль. Робот получает довольно простое задание: с помощью ракетного двигателя он должен сойти с круговой орбиты вашего звездолета и начать падать к черной дыре.
Падая, R3D3 будет передавать на корабль информацию о состоянии своих электронных систем и о пройденном расстоянии. Для этого может быть использован ярко-зеленый луч лазера. Вы рассчитываете принять лазерный сигнал, расшифровать его для определения состояния аппаратуры и пройденного расстояния, а также измерить цвет длину волны излучения. Вы знаете, что, хотя лазер все время испускает зеленый луч, вы будете видеть его все более красным по мере приближения робота к горизонту черной дыры. Отчасти излучение «покраснеет» за счет того, что ему придется затратить энергию на преодоление сильного гравитационного поля черной дыры, и отчасти — из-за доплеровского смещения, связанного с удалением источника излучения от вас. Измеряя «покраснение» лазерного излучения, вы сможете рассчитать скорость падения робота. Итак, эксперимент начинается.
R3D3 сходит с круговой орбиты и падает по радиальной траектории. Как только он начинает падать, вы пускаете часы, по которым фиксируется время прихода лазерных импульсов. По истечении 10 с вы получаете от него сообщение, что все системы функционируют нормально и он уже опустился на 2600 км. Здесь и далее прим. Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт — на расстоянии 8000 км и приближается со скоростью 15 тыс.
Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость — 30 тыс. А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено — лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом. По мере того как возбуждение спадает и вы подавляете налет сожаления по поводу участи робота, ваше внимание вновь обращается к записанным данным. В них зафиксированы подробности изменения окраски лазерного излучения.
Вы знаете, что свет представляет собой колебания электромагнитного поля и что каждый цвет характеризуется своей собственной длиной волны. Там, в записях — история этого удлинения. Из них следует, что пока R3D3 падал, длина волны принимаемого вами излучения сначала менялась очень медленно, а затем все быстрее и быстрее. Следует предположить, однако, что длина волны продолжала все так же удваиваться и после этого, так что после огромного числа удвоений длина волны стала бесконечной и возле горизонта все еще испускались чрезвычайно слабые и длинноволновые сигналы. Означает ли это, что R3D3 так и не пересек горизонт и никогда не сможет сделать этого? Вовсе нет. Эти последние сигналы с многократно удваивавшейся длиной волны будут бесконечно долго «выбираться» из «тисков» гравитационного поля черной дыры.
Но слабые сигналы от него будут продолжать приходить, поскольку время их пребывания в пути оказалось бесконечно велико. Они — следы далекого прошлого. Подчеркнем, что реализовать такую систему отсчета на самом горизонте и внутри него невозможно. Поэтому никаких нарушений принципа причинности, конечно, не происходит. После многочасового изучения данных, полученных от робота, и продолжительного сна, необходимого для восстановления сил, вы приступаете к следующему этапу исследований. На этот раз вы решаете самостоятельно обследовать окрестности горизонта событий, правда, рассчитываете сделать это с большей предосторожностью, чем ваш посланник: вместо свободного падения к горизонту, вы собираетесь снижаться постепенно. Попрощавшись с командой, вы влезаете в спускаемый аппарат и покидаете корабль, оставаясь сначала на той же круговой орбите.
Затем, включая ракетный двигатель, слегка тормозите, чтобы замедлить свое орбитальное движение. При этом вы начинаете по спирали приближаться к горизонту, переходя с одной круговой орбиты на другую. Ваша цель — выйти на круговую орбиту с периметром, слегка превышающим длину горизонта. Поскольку вы движетесь по спирали, длина вашей орбиты постепенно сокращается: от 1 млн км до 500 тыс. Находясь в состоянии невесомости, вы подвешены в своем аппарате, предположим, ногами — к черной дыре, а головой — к орбите вашего корабля и звездам. Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх — за голову. Вы соображаете, что причина — притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее.
То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. Скрипя зубами от натуги, вы продолжаете движение по спирали. При длине орбиты 25 тыс. Больше вы не в состоянии выдержать в вертикальном положении.
Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления. Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета. В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру.
Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле». Но почему же робот R3D3 оказался столь стойким к действию приливных сил? Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши. Его высота, помнится, равнялась 10 см и, стало быть, приливная сила, действующая на него, была, соответственно, гораздо слабее. Но затем вы приходите к неутешительному выводу: даже проткнув горизонт, R3D3 должен был продолжать падать в область со все возрастающими приливными силами. Вы вспоминаете, что еще в 1965 г.
Пенроуз использовал законы ОТО Эйнштейна для доказательства того, что такая сингулярность «проживает» внутри любой черной дыры, а в 1969 г. Лившицем, И. Халатниковым и В. Это были «золотые годы» теоретических исследований черных дыр. Но одна ключевая особенность их поведения ускользнула тогда от физиков, они лишь догадывались о ней. И только гораздо позже, в 2013 г. Чтобы изучить сингулярность, наблюдатель не только вынужден погибнуть — ему даже не удастся накопленный столь дорогой ценой опыт передать обратно, во внешнюю часть Вселенной.
Не желая платить столь высокую цену за личное знакомство с сингулярностью, вы решаете ограничиться исследованием окрестностей черных дыр. К счастью, вы припоминаете что большое разнообразие явлений может наблюдаться и снаружи от черной дыры, в непосредственной близости от ее горизонта. Вы решаете изучить эти явления в первую очередь и сообщить о результатах своих исследований на Землю, во Всемирное географическое общество. Черная дыра Гадес обладает слишком большими приливными силами, которые не позволяют приблизиться к ее горизонту, но, согласно законам Эйнштейна, величина приливных сил вблизи горизонта обратно пропорциональна квадрату массы черной дыры. Для черной дыры с массой в 100 тыс. Иными словами, такая дыра должна быть весьма «комфортабельной» — никаких болевых ощущений. Достижим ли горизонт?
Итак, вы начинаете строить планы следующего этапа путешествия: визит к ближайшей черной дыре с массой 100 тыс. Mслн из атласа черных дыр Уиткомба,— к черной дыре, расположенной в центре нашей Галактики — Млечного Пути. Ваш план полета предполагает создание такой тяги ракетных двигателей, которая обеспечивала бы ускорение всего в 1 g, так что вы и ваша команда будете ощущать внутри звездолета силу притяжения, равную земной. Вы разгонитесь по направлению к центру Галактики в течение половины пути, а вторую половину будете замедлять движение с отрицательным ускорением —1 g. Все путешествие длиной 30100 св. Вы предупреждаете Всемирное географическое общество, что следующее сообщение от вас прийдет из окрестностей галактического центра, после того как вы исследуете находящуюся там черную дыру с массой в 100 тыс. Члены общества должны пребывать в анабиозе около 60211 лет, если они хотят дождаться повторного сообщения 30103 года, пока вы доберетесь до центра Галактики, и 30108 лет, пока сообщение достигнет Земли.
К сожалению, это так. Гораздо приятнее Вселенная в фантастических фильмах, где звездолеты переносят путешественников через галактики за времена, непродолжительные с любой точки зрения. Действительно, в 60-е годы XX в. Но более пристальное изучение физических законов привело к заключению, что ни одно из таких путешествий не реализуемо. Самое большее, на что вы можете рассчитывать,— это путешествовать сравнительно недолго по своим часам, но чрезвычайно долго с точки зрения землян.
Наука в фильме "Интерстеллар": кротовые норы, черные дыры, пространство-время
Гаргантюа — это сверхмассивная черная дыра, ставшая популярной в массовой культуре после фильма Интерстеллар, именно в неё затянуло Купера к концу фильма. Я постарался графически обыграть маршруты, будто это лучи света вокруг горизонта событий черной дыры. Кстати, общепризнанный в кругах многих астрономов, тот факт, что изображение чёрной дыры "Гаргантюа" из к/a "Интерстеллар" наиболее точно и достоверно передаёт внешний вид свермассивной чд в галактике М87 (точнее её тени). Во многом это благодаря тому, что Гаргантюа – сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу.
Звезды могут поглощать черные дыры — нестандартная гипотеза
Владелец сайта предпочёл скрыть описание страницы. Черная дыра Гаргантюа – Самые лучшие и интересные посты на развлекательном портале Черная дыра Гаргантюа – Самые лучшие и интересные посты на развлекательном портале Черная дыра Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий. Черная дыра Гаргантюа — это огромный астрономический объект, который находится в центре галактики M87 в созвездии Девы.
Черная дыра Гаргантюа
Самое известное изображение черной дыры в поп-культуре — Гаргантюа из «Интерстеллара» Кристофера Нолана. Ее модель помогал делать Кип Торн — астроном, эксперт по черным дырам и лауреат Нобелевской премии за регистрацию гравитационных волн. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Часть светящегося диска черной дыры Гаргантюа вблизи и пролетающий над ним космолет «Эндюранс». Светится не черная дыра, а диск вокруг нее, состоящий из раскаленного газа, который дыра «забирает» у звезд при помощи сил гравитации, когда разрывает их на части. Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии.
Гаргантюа: самая большая Солнечная система во Вселенной
Что даст человечеству изучение процесса добычи энергии от черных дыр? Осталось дело за малым — придумать, как осуществить полет до черной дыры и разместить что-то в ее эргосфере , не попав за горизонт событий. В ближайшем будущем человечество едва ли сможет добывать энергию подобным способом, но это не означает, что исследования бесполезны. Помимо непосредственной «выкачки» энергии, изучение черных дыр позволит лучше понять происхождение вспышек рентгеновского излучения от черных дыр, представляющих собой огромные выбросы излучения в космос. Исследование таких явлений помогает проектировать космические зонды и корабли с учетом агрессивных факторов космической среды. Современные теории по добыче энергии из черных дыр В 1969 году физик и математик из Оксфордского университета Роджер Пенроуз представил публике «процесс Пенроуза» , где описал, что энергия теоретически может быть извлечена из области за пределами эргосферы черной дыры, внутри которой пространство-время искажается под действием вращения этой самой дыры. Расчеты Пенроуза показали, что если частица разделится внутри эргосферы на две части, одна из которых упадет в горизонт событий, а другая ускользнет от гравитационного притяжения черной дыры, то энергия, выделяемая удаляющейся частицей, может быть извлечена. Но для реализации процесса необходимо, чтобы две новорожденные частицы обладали скоростью, превышающей половину скорости света, вот только такие события настолько редки, что это не позволит получить значительные объемы энергии. Предложенный механизм был экспериментально подтвержден советским ученым Яковом Зельдовичем, переработавшим теорию «процесса Пенроуза» еще в 1971 году.
Он предложил заменить черную дыру вращающимся металлическим цилиндром и направить на нее искривленные лучи света. Если бы цилиндр вращался с нужной скоростью, свет отражался бы обратно с дополнительной энергией, извлекаемой из вращения цилиндра, из-за эффекта Доплера. В 2020 году ученые из университета Глазго смогли найти способ продемонстрировать эффект, описанный Пенроузом и Зельдовичем. Они заменили лучи света звуковыми волнами, ведь такой эксперимент намного проще провести в лабораторных условиях.
По сути, это очень большие микроскопы, задача которых - увеличение разрешения по длинам Dx. А как можно улучшить разрешение? И вот представим, что некто получил в свое распоряжение коллайдер неограниченной мощности. Сможет ли он, открывая все новые и новые частицы, бесконечно извлекать информацию? Увы, нет: непрерывно увеличивая энергию сталкивающихся частиц, он рано или поздно достигнет стадии, когда расстояние между какими-нибудь частицами из них в области столкновения станет сравнимо с соответствующим радиусом Шварцшильда, что немедленно повлечет рождение черной дыры. Начиная с этого момента вся энергия будет ею поглощаться, и, сколько ни увеличивай мощность, новой информации уже не получишь. Сама же черная дыра при этом станет интенсивно испаряться, возвращая энергию в окружающее пространство в виде потоков субатомных частиц. Таким образом, законы черных дыр, вкупе с законами квантовой механики, неизбежно означают существование экспериментального предела дробления материи. В этом смысле достижение "чернодырного" порога на коллайдерах будущего будет неизбежно означать конец старой доброй физики элементарных частиц - по крайней мере, в том виде, как она понимается сейчас то есть как непрерывное пополнение музея элементарных частиц новыми экспонатами. Но вместо этого откроются новые перспективы. Ускорители будут служить нам уже как инструмент исследования квантовой гравитации и "географии" дополнительных измерений Вселенной против существования которых на данный момент пока не выдвинуто каких-либо убедительных аргументов. Фабрики черных дыр на Земле? Итак, мы выяснили, что ускорители элементарных частиц в принципе способны производить микроскопические черные дыры. Вопрос: какую они должны развивать энергию, чтобы получать хотя бы одно такое событие в месяц? До недавнего времени считалось, что эта энергия чрезвычайно велика, порядка 1016 тераэлектронвольт для сравнения: LHC сможет дать не больше 15 ТэВ. Однако если окажется, что на малых масштабах менее 1 мм наше пространство-время имеет число измерений больше четырех, порог необходимой энергии значительно уменьшается и может быть достигнут уже на LHC. Причина заключается в усилении гравитационного взаимодействия, когда вступят в игру предполагаемые дополнительные пространственные измерения, не наблюдаемые при нормальных условиях. В случае же существования дополнительных измерений ускоренный рост Fграв экономит значительную часть необходимой энергии. Все вышесказанное никоим образом не означает, что мини-дыры будут получены уже на мощностях LHC - это произойдет лишь при самом благоприятном варианте теории, которую "выберет" Природа. Кстати, не следует преувеличивать их опасность в случае получения 4 - по законам физики они быстро испарятся. Иначе Солнечная система давно прекратила бы свое существование: в течение миллиардов лет планеты бомбардируются космическими частицами с энергией на много порядков выше достигаемых на земных ускорителях. Черные дыры и космологическая структура Вселенной Теория струн и большинство динамических моделей Вселенной предсказывают существование особого типа фундаментального взаимодействия - глобального скалярного поля ГСП. В масштабах планеты и Солнечной системы его эффекты крайне малы и труднообнаружимы, однако в космологических масштабах влияние ГСП возрастает неизмеримо, так как его удельная доля в средней плотности энергии во Вселенной может превышать 72 процента! Например, от него зависит, будет ли наша Вселенная расширяться вечно или в конце концов сожмется в точку. Глобальное скалярное поле - один из вероятнейших кандидатов на роль "темной энергии", о которой так много пишут в последнее время. Черные дыры появляются в этой связи весьма неожиданным образом. Можно показать, что необходимость их сосуществования с глобальным скалярным полем накладывает взаимные ограничения на свойства черных дыр. В частности, наличие черных дыр накладывает ограничение на верхний предел эффективной космологической постоянной параметра ГСП, ответственного за расширение Вселенной , тогда как ГСП ограничивает нижний предел их масс а значит, энтропии и обратной температуры T-1 некой положительной величиной. Иными словами, черные дыры, будучи "локальными" 5 и, по меркам Вселенной, крошечными объектами, тем не менее самим фактом своего существования влияют на ее динамику и другие глобальные характеристики опосредованно, через глобальное скалярное поле. Эпилог Эйнштейн однажды сказал, что человеческий разум, однажды "расширенный" гениальной идеей, уже никогда не сможет сжаться до первоначального состояния 6. Это прозвучит немного парадоксально, но исследование предельно сжатого состояния материи было, есть и долгое время будет одним из главных путей и стимулов расширения границ человеческого интеллекта и познания фундаментальных законов мироздания. Ответом было: "Назовите это энтропией - тогда в дискуссиях вы получите солидное преимущество - ибо никто не знает, что такое энтропия в принципе". Так родилось понятие "энтропии по Шеннону" англ. Shannon entropy , ныне широко используемое в теории информации. Ну что ж, уровни незнания могут быть разными - от полного невежества до глубокого понимания всей сложности проблемы. Попытаемся несколько улучшить наш уровень незнания энтропии. Статистическая энтропия, введенная Людвигом Больцманом Ludwig Boltzmann в 1877 году, - это, грубо говоря, мера количества возможных состояний системы. Предположим, мы имеем две системы, состоящие из ящиков и одного шарика в каждой из них. Первая система "ящики плюс шарик" имеет только 1 ящик, вторая - 100 ящиков. Вопрос - в каком ящике находится шарик в каждой системе? Ясно, что в первой системе он может быть только в одном ящике. Помните формулу "Энтропия есть логарифм числа возможных состояний"? Тогда энтропия первой системы равна log1, то есть нулю, что отражает факт полной определенности кстати, это одна из причин, почему в определении энтропии был использован логарифм. Что касается второй системы, то здесь мы имеем неопределенность: шарик может находиться в любом из 100 ящиков. В этом случае энтропия равна log100, то есть не равна нулю. Ясно, что, чем больше ящиков в системе, тем больше ее энтропия.
Мы даже не пытались искать следы "каннибализма". Космические хот-доги Эйзенхардт и его коллеги открыли галактику W2246-0526 три года назад, изучая снимки, полученные космическим телескопом WISE во время "холодной" фазы его работы в 2010 году. Все они относятся к категории так называемых гиперярких инфракрасных галактик, крайне необычных объектов, существовавших в ранней Вселенной. Астрономы называют такие галактики "хот-догами" из-за окружающей их толстой "шубы" из горячей пыли hot dust-obscured galaxy, hot DOG , скрывающей их от взора оптических телескопов. В общей сложности им удалось найти около 20 ранее неизвестных объектов этого типа, в том числе и нового рекордсмена, измерить их яркость, массу и свойства сверхтяжелых черных дыр в их центрах. Когда ученые измерили массу черной дыры в центре W2246-0526, они не поверили своим глазам — она оказалась тяжелее Солнца как минимум в три миллиарда раз.
Он верно подмечает, что они не образуются сами собой, большинство физиков действительно считают, что такие сложные и необычные объекты не могут возникнуть во Вселенной естественным путем, как, например звезды и галактики. Кадр из фильма. Источник: kinopoisk. Но мы в 2023-м до сих пор не наблюдаем ничего похожего возле Сатурна. И очень странно, что, судя по словам героев, такому интересному космическому объекту было уделено мало внимания — за все годы с ее открытия по гравитационным волнам от черной дыры туда отправилась всего одна экспедиция, да и то колонизаторская. И почему профессор так уверенно говорит о том, что кротовая нора ведет именно в другую галактику в нашей Вселенной? Есть модели «червоточин», которые позволяют отправиться в другую Вселенную, а отличить отдаленную часть нашего мира от чужого будет непросто. Марс все-таки ближе, а Сатурн — намного дальше В одном из эпизодов Купер просит напарника-робота озвучить маршрут путешествия. Робот отвечает, что путь до Марса займет восемь месяцев, а до Сатурна всего 14 месяцев. В действительности до Марса можно добраться всего за шесть месяцев при идеальном раскладе по расчетам NASA , а вот эффективность химических ракетных двигателей не позволяет быстро летать до Сатурна — быстрее трех лет и двух месяцев туда не добраться этот рекорд поставил аппарат Кассини, совершивший для этого пять гравитационных маневров — изменений траектории и скорости полета за счет гравитационных полей космических объектов. Людей в этом ограничивает длительность полета, набор скорости при помощи гравитационных маневров занимает гораздо больше времени. Источник: kinomania.
Обед Гаргантюа
- «Гаргантюа́»
- Путешествие среди чёрных дыр
- Похожие статьи
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры
Загробная жизнь звезд
- Челябинск. Другие новости 07.02.17
- Внешний Вид Гаргантюа
- Загробная жизнь звезд
- Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе
- Как установить?
- Найден новый тип черной дыры, скрывающейся на «космическом заднем дворе» Земли
Наука в фильме "Интерстеллар": кротовые норы, черные дыры, пространство-время
В заключение отметим, что система Гаргантюа — поистине впечатляющее открытие, и нетрудно понять, почему ученые решили назвать ее в честь вымышленной черной дыры в «Интерстеллар». С массивной звездой, меньшей звездой-компаньоном и двумя. Черная дыра Гаргантюа – Самые лучшие и интересные посты на развлекательном портале Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Сверхмассивная чёрная дыра или плохо сфотографированный глазированный пончик Krispy Kreme? Посмотрите идеальное GIF-изображение по теме "Gargantua Black Black Hole", которое украсит любой чат. Находите лучшую анимацию в Tenor и делитесь ею с друзьями.