«Возможности и перспективы развития искусственного интеллекта – глобальные, затрагивающие все сферы общественной жизни. В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту.
Каким будет будущее нейросетей в 2024 году
Искусственный интеллект уже способен генерировать тексты, изображения, видео и аудиозаписи, что открывает новые возможности для творчества, но также создает угрозу злоупотребления. «Эпоха искусственного интеллекта началась»: Билл Гейтс опубликовал эссе о том, как нейросети изменят нашу жизнь. В 2024 году 62,3% россиян стали чаще использовать технологии искусственного интеллекта (ИИ), прежде всего в смартфонах.
Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
Да практически везде. Рассмотрим несколько примеров. Медицина и здравоохранение: ИИ помогают в диагностике заболеваний, анализе медицинских изображений например, рентгеновских снимков и в принятии решений врачами. Финансы и банковское дело: ИИ применяется в финансовой аналитике. Транспорт и логистика: ИИ используется для управления автономными транспортными средствами и оптимизации маршрутов. Производство и робототехника: ИИ применяется для автоматизации производственных процессов и управления роботами.
Перевод и обработка текста: ИИ используется для автоматического перевода, генерации текста, чат-ботов. Прогнозы будущего ИИ Учёные предполагают, что в долгосрочной перспективе возможно создание единого виртуального разума, который сможет: Делать сложный и рациональный выбор; Обучаться; Коммуницировать; Преподавать. К сожалению, на сегодняшний день существующие технологии не в состоянии полностью установить эмоциональную связь между человеком и роботом. Однако эта цель является предметом активных исследований, и будущее искусственного интеллекта способствует достижению этой цели. Уже есть роботы, способные реагировать на эмоции людей.
В перспективе, через несколько десятилетий, коммуникация между людьми и роботами может достичь более дружественного уровня. Также ожидается взаимодействие между человеком и нейросетью в медицинской сфере. Так, эксперты считают, что с применением искусственного мозга можно предоставить человеческому телу новые возможности или восстановить утраченные. Сбор, хранение и обработка этих данных могут создать угрозу для приватности и безопасности личной информации. Неправильное использование или утечка данных могут привести к серьёзным последствиям.
Автономия и непредсказуемость: сложные ИИ-системы могут сами принимать решения, которые люди не всегда могут понять или предсказать. Это может привести к возникновению нежелательных последствий или ошибок, особенно если ИИ используется в критических областях, таких как медицина или автомобильная промышленность. Потеря рабочих мест: автоматизация и использование ИИ могут привести к изменению рынка труда и потере рабочих мест. Работы, выполняемые ранее людьми, могут быть замещены машинами или алгоритмами, что может повлечь социальные и экономические последствия.
Более оптимизированные и стандартизированные процессы машинного обучения в организациях 3. Генеративный искусственный интеллект в маркетинге и медиа ИИ создает контент для маркетинговых нужд бизнеса 4. Возрастающая важность платформ управления моделями Популяризация платформ управления моделями среди организаций 5. Более широкое распространение адаптивного искусственного интеллекта Более персонализированный опыт работы в магазине 6. Умные производственные подразделения, розничные магазины и цепочки поставок 7. Лучший и более автоматизированный опыт телемедицины 8. Лучшее прогнозирование спроса и автоматизация рабочих процессов в розничной торговле Уменьшение дефицита запасов, улучшение качества обслуживания, снижение затрат 9. Улучшенное обнаружение мошенничества и персонализация в сфере финансовых технологий Улучшенная идентификация клиентов и управление рисками, автоматизированное и быстрое обнаружение мошенничества. Творческий ИИ в мире искусства Изменение способов создания произведений искусства и иллюстраций 1. Рост этического ИИ кредиты: pixabay. В истории ИИ компании в основном полагались на саморегулирование внутри отрасли. Раньше индустрия искусственного интеллекта работала с небольшими ограничениями, но ситуация быстро меняется. Новые законы, такие как Закон Европейского Союза об искусственном интеллекте, Американский Конфиденциальность данных Закон о защите и Закон о защите программного обеспечения с открытым исходным кодом меняют ситуацию. В отчете Gartner прогнозируется, что к 2025 году предприятиям придется уделять первоочередное внимание этике, прозрачности и конфиденциальности при использовании ИИ из-за этих правил. Этот сдвиг знаменует собой значительные перемены в отрасли. Для систем искусственного интеллекта важно быть этичными и заслуживающими доверия. Доверие имеет решающее значение в этом контексте, поскольку ИИ полагается на данные, большая часть которых может быть очень конфиденциальной, например, информация о здоровье или финансовая информация. Если пользователям продуктов искусственного интеллекта будет неудобно делиться своими личными данными, вся экосистема искусственного интеллекта может оказаться под угрозой краха. Поэтому решение этой проблемы станет главным приоритетом в 2023 году. Лица, ответственные за внедрение систем искусственного интеллекта, должны убедиться, что они могут объяснить процессы принятия решений и данные, используемые их моделями искусственного интеллекта. Кроме того, решающее значение будет иметь устранение предвзятости и несправедливости в автоматизированных системах принятия решений, что еще больше повысит важность этики ИИ. Стандартизация процессов ML Внедрение искусственного интеллекта ИИ и машинного обучения МО в крупных организациях может оказаться сложной задачей из-за их способности нарушать различные бизнес-операции. На некоторых крупных предприятиях, внедривших искусственный интеллект и машинное обучение, отдельные группы по обработке данных работают независимо в разных отделах, используя свои собственные инструменты и методы. Хотя этот подход может работать для небольших проектов или конкретных задач, он не подходит для развертывания машинного обучения в больших масштабах, особенно в приложениях, взаимодействующих с клиентами.
Такой персонализированный подход повышает точность диагностики и общее качество оказания медицинской помощи. Лучшее прогнозирование спроса и автоматизация рабочих процессов в розничной торговле В розничной торговле происходит революция благодаря технологиям на базе искусственного интеллекта, которые меняют способы прогнозирования тенденций и прогнозирования спроса. Эти достижения помогают ритейлерам оптимизировать свою планирование запасов , что приводит к увеличению потенциального дохода. Такое сокращение логистических затрат приводит к повышению рентабельности. Это не только приводит к экономии средств, но и высвобождает ценные человеческие ресурсы для решения более стратегических задач. Это сводит к минимуму возникновение нехватки товаров на складе, что может привести к потере продаж и недовольству клиентов. Это приводит к повышению удовлетворенности и лояльности клиентов. Ожидается, что в 2023 году ИИ продолжит играть заметную роль в секторе розничной торговли, а его приложения расширятся за пределы управления запасами, цепочками поставок и логистикой. Вот некоторые области, где ИИ может оказать существенное влияние: Автоматизация кассового аппарата: Кассовые системы на базе искусственного интеллекта, такие как магазины без касс, станут более распространенными, что сократит время ожидания и улучшит общее впечатление от покупок. Персонализация опыта магазина: Алгоритмы искусственного интеллекта будут анализировать данные клиентов, чтобы предоставлять персонализированные рекомендации по продуктам, предложениям и впечатлениям в магазинах, повышая вовлеченность клиентов и продажи. Оформление витрин: Решения на основе искусственного интеллекта оптимизируют планировку магазинов и размещение продуктов на основе данных в реальном времени, повышая видимость продуктов и продажи. Предотвращение потерь: Системы наблюдения на базе искусственного интеллекта помогут ритейлерам более эффективно выявлять и предотвращать кражи и мошенничества. Поддержка клиентов: чат-боты с искусственным интеллектом и виртуальные помощники обеспечит мгновенную поддержку клиентов, улучшив время отклика и качество обслуживания. Улучшенное обнаружение мошенничества и персонализация в сфере финансовых технологий кредиты: pixabay В мире финансовых услуг крайне важно уделять приоритетное внимание безопасности и устанавливать доверительные отношения с клиентами. Обнаружение и предотвращение мошеннических или несанкционированных транзакций позволяет быстро сэкономить деньги, повысить безопасность и укрепить отношения между финансовым учреждением и его клиентами. Финансовые компании теперь используют технологию искусственного интеллекта для улучшения процессов идентификации клиентов и управления рисками. С помощью процедур идентификации на основе искусственного интеллекта компании могут с самого начала собирать более подробную информацию о своих клиентах, включая их личность, пригодность и потенциальные риски. Кроме того, модели машинного обучения позволяют быстро обнаруживать мошеннические транзакции и предпринимать необходимые действия для сокращения потерь клиентов. Кроме того, ИИ имеет возможность проверять клиентов с помощью различных методов, таких как биометрические данные, распознавание речи или распознавание лиц. Это позволяет создавать индивидуальный опыт, ориентированный на каждого отдельного клиента. Ожидается, что эти ценные применения ИИ в индустрии финансовых технологий будут продолжать развиваться в 2023 году. ИИ является движущей силой в повышении безопасности, повышении доверия клиентов и обеспечении высокой персонализации финансового опыта в постоянно развивающемся мире финансовых технологий. Эти замечательные алгоритмы машинного обучения оставили неизгладимый след в искусстве, предоставив пользователям возможность создавать уникальные изображения на основе текстовых подсказок. Этот процесс включает в себя объединение ранее существовавших данных с текстовым вводом пользователя для получения визуально привлекательного результата.
Анализируя свежие снимки и многолетние данные, такие системы помогают выявить риски и спланировать оптимальный севооборот. К ним относятся облачный сервис «История поля» от компании «Геомир» его использует уже более двух тысяч агрохозяйств , приложение «СкайСкаут» от компании «ИнтТерра» разработчики обещают сократить расходы на 30 процентов за счет правильной расстановки приоритетов и оптимизации процессов , система «Агротроник» от ГК «Ростсельмаш» и многие другие. Например, на птицефабрике в Татарстане всеми процессами сбора и движения яиц с 2020 года управляет искусственный интеллект на базе программного решение Amaks. Искусственный интеллект и нейросети позволяют примерно в десять раз ускорить селекционную работу. Например, буквально накануне выхода данной публикации генетики из ИППИ РАН, Сколтеха и МФТИ сообщили о разработке алгоритма, который упростит предсказание функций генов у сельскохозяйственных растений, создавать новые сорта с необходимыми характеристиками с его помощью станет намного проще и быстрее. ИИ строит станки и машины Машиностроение — одна из ключевых отраслей промышленности, здесь особенно важно тщательно контролировать и синхронизировать все производственные процессы. При создании станков и агрегатов приходится учитывать множество параметров — от рыночной конъюнктуры и перспектив развития предприятий-потребителей до качества сырья и отдельных компонентов. Искусственный интеллект позволяет автоматизировать огромную часть рутинной, но необходимой работы. Например, прежде чем запустить любую деталь в производство, нужно провести множество испытаний. Тесты на реальных прототипах требуют больших затрат времени и ресурсов. Искусственный интеллект помогает ускорить этот этап: умная система может сама провести сотни тысяч виртуальных симуляций, для испытаний офлайн останутся только самые важные этапы проверки Такие системы особенно активно развиваются в оборонной промышленности, авиа- и судостроении, автопроме и других отраслях, где в финале опытные образцы приходится тестировать людям. Нейросети отлично справляются и с управлением складскими процессами, планируя спрос и загрузку, прогнозируя потребность в сырье и его количество на складах Искусственный интеллект способен выстраивать логистические цепочки, учитывать сезонность, особенности хранения и множество других факторов. Все это не только сокращает расходы на хранение, но и снижает загрузку складских помещений. Например, одно из крупнейших металлургических предприятий — Новолипецкий металлургический комбинат — развивает у себя целый технологический кластер, задача которого обнаруживать подобные «узкие места» и находить способы их устранения. Машины работают быстро и точно, а централизованная интеллектуальная система позволяет дообучать их на полученном опыте, оптимизируя операции и энергозатраты. ИИ создает виртуальное ЖКХ Системы, построенные на алгоритмах искусственного интеллекта, находят применение и в сфере жилищно-коммунального хозяйства. Одна из наиболее сильных сторон ИИ — это прогнозирование энергопотребления. Нейросети, обученные на исторических данных об использовании электроэнергии в разное время суток, способны точно предсказывать объем, который потребуется в будущем. Например, ученые Ярославского государственного технического университета разработали приложение, с помощью которого возможно с высокой точностью спрогнозировать расходы на электричество в каждый час грядущей недели. Изобретение позволяет пользователям сэкономить до десяти процентов платы за энергопотребление. Например, информационная система «Цифровой водоканал», разработанная компанией «Русатом Инфраструктурные решения», моментально фиксирует аномалии в расходе воды и подает сигнал диспетчерским службам.
Отцы и дети
- Искусственный интеллект
- Каким будет будущее нейросетей в 2024 году: анализ IT-рынка
- Прогресс и развитие искусственного интеллекта
- 1. Автоматизированный транспорт
- Будущее искусственного интеллекта
Будущее искусственного интеллекта
- Сферы применения систем искусственного интеллекта
- Искусственный интеллект в реальной жизни
- Курсы валюты:
- 82% россиян позитивно относятся к технологиям искусственного интеллекта
- Искусственный интеллект изменит мировую экономику. Обзор: Искусственный интеллект 2023 - CNews
- Про "Яндекс" и премию в области компьютерных наук
Содержание
- Как ИИ уже затронул сферу образования
- 2. DeepMind AlphaCode
- Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект
- Что такое искусственный интеллект и зачем он нужен
- Искусственный интеллект — последние и свежие новости сегодня и за 2024 год на | Известия
- Искусственный интеллект в образовании в 2024 году: новые возможности и перспективы EdTech
Как искусственный интеллект изменит мир к 2030 году
А также, искусственный интеллект в медицине использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе большого объема сложных медицинских данных. Исходя из этого можно сделать вывод, что нейронные сети и искусственный интеллект всегда были и являются сквозными технологиями. В области лингвистики специалисты считают, что нейронные сети и искусственный интеллект можно использовать для улучшения распознавания речи и обработки естественного языка [2]. Одним из ключевых преимуществ нейронных сетей является их способность обучаться и адаптироваться к новым данным. После того, как нейронная сеть была обучена на определенном наборе данных, она может продолжать обучение и улучшать свои прогнозы по мере поступления новой информации. Это делает нейронные сети особенно полезными в приложениях, где данные постоянно меняются, например, на фондовом рынке или в анализе социальных сетей. Мы предлагаем практическое применение искусственного интеллекта в роли чат-бота в телеграмме, который внедрен в обслуживающие программы компании для психологической помощи и поддержки сотрудников, которые сталкиваются с проблемами и трудностями при выполнении работы. Как пример, приведем первоначальную реализацию чат-бота на Python.
Если их не инициализировать, то код не будет работать. Message : await message. Если этого не сделать, то мы не получим ответы бота. Реализовать получение новых сообщений можно с помощью поллинга. Если они есть, то они приходят в Telegram. Для включения поллинга необходимо добавить две строчки: Преимущество данного чат-бота состоит в том, что при общении с ним нейронная сеть активно собирает данные о проблемах пользователей для дальнейшего развития, улучшения, прогнозирования вариантов проблемных зон, а также для предоставления более лучшего ответа пользователю. Однако, нейронные сети также имеют некоторые ограничения.
Для эффективного обучения им требуются большие объемы данных, а их процесс принятия решений может быть трудно интерпретировать, что затрудняет понимание того, почему они делают определенные прогнозы. Заключение В заключении следует отметить, что искусственный интеллект и нейронные сети произвели революцию в том, как мы взаимодействуем с машинами и выполняем сложные задачи, а также подняли важные вопросы об этичности и подотчетности систем ИИ. Поскольку технологии продолжают развиваться, важно обеспечить этичное и ответственное использование ИИ и нейронных сетей на благо общества. На основании выше изложенных фактов предлагается внедрение ИИ в каждую отрасль современного мира, поскольку важность ИИ заключается в его способности повышать эффективность, производительность и инновации в самых разных отраслях, что ведет к ускорению экономического роста и улучшению качества жизни людей во всем мире.
Беспилотные автомобили, использующие алгоритмы искусственного интеллекта с возможностью полного автономного вождения без вмешательства человека, могут существенно трансформировать транспортную систему. Машины с использованием ИИ анализируют трафик и альтернативные маршруты, сокращая время в пути [5]. Применение высокопроизводительных роботов способствует быстрому и качественному выполнению задач, более эффективной, чем у человека, деятельности. Благодаря использованию 3D-технологий и машинного зрения роботы способны в разы ускорить процесс производства в любой сфере. Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений — это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме [8] Ermakova, Kovyazin, 2002.
Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ в зависимости от предпочтений пользователя осуществляет персонализированный подбор рекламы, что способствует повышению эффективности маркетинга в аспекте таргетированной рекламы и увеличению объемов продаж. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов. Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании. Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к значительному снижению финансовых потерь, повышенной защищенности системы и росту доверия пользователей [7] Dudin, Shkodinskiy, 2021.
Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом. Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций.
Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже [4] Babich, Kirillova, 2019. Процессы автоматизации. Существует большое количество факторов, вызывающих возможные ошибки в работе персонала. Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека человеческий фактор , используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу [12] Lapaev, Morozova, 2020. Однако следует отметить, что уже сегодня ведется ряд исследований, которые позволяют ИИ выявлять сарказм и двойной смысл человеческих сообщений. В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI.
Автоматизированный транспорт Мы свидетели появления автоматического вождения. Да, безопасность ещё требует присутствия человека в салоне, но индустрия растёт и развивается дальше. А теория и практика показывают, что у беспилотных машин много перспектив — робот ошибается реже, чем человек, а значит, его вождение практичнее. Будущее искусственного интеллекта в первую очередь ассоциируют именно с транспортом, который работает на автопилоте. Пионером отрасли стал Google, специальное отделение которого провалило задачу по роботизированным машинам в 2005 году. Спустя пять лет те же разработчики создали Waymo и попробовали ещё — дело пошло, а интерес к этим технологиям охватил весь мир. Taxi использует беспилотники в Сколково, а недавно сообщил о запуске первого подобного такси в Европе. Автомобили — не единственный вид транспорта, который меняет роботизация, но один из самых сложных. Существуют и беспилотные поезда, которые работают на земле и под ней. В ближайшие годы планируется их старт в московском метрополитене. Поезда даже проще «подружить» друг с другом. Их транспортная сеть работает по графику и имеет мало участников движения. Киборги Исследователи считают, что в будущем люди будут использовать компьютеры и роботизированные устройства для сохранения и улучшения способностей тела и мозга. Некоторые разработки будут выпускаться для комфорта, другие же — для возврата важных функций. Например, бионические протезы для людей с ампутированными конечностями. В этой сфере искусственный интеллект отвечает за то, чтобы помочь мозгу и приборам понять друг друга. Он преобразует входящие сигналы, передаёт информацию о положении конечностей в пространстве и состоянии внешней среды.
Собственно говоря, основная задача машины — это выполнять самый примитивный функционал. Потапенко уверен, что чем более архаична и авторитарна система социального устройства, тем меньше шансов на применение искусственного интеллекта, потому что, грубо говоря, нужно обеспечивать занятость. По образованию инженер-конструктор-технолог Московский институт радиотехники, электроники и автоматики. С 2003-го по 2005 год управлял сетью «Пятерочка» в Москве и Московской области. Мы вторые после Соединенных Штатов по количеству гастарбайтеров и продолжим такими же быть. Другие специалисты полагают: даже если сокращение и произойдет, то это пойдет на пользу человечеству. Машины возьмут на себя рутинный труд, освободив создавшим их людям время для творчества и развития. Экономист Рустем Шайахметов рассказал, что в некоторых странах практикуется уменьшение рабочих часов во многом благодаря применению новых технологий. Во-первых, развивается искусственный интеллект. Эксперты банка Goldman Sachs предполагают, что с учетом развития искусственного интеллекта будет сокращение порядка 300 миллионов человек, — сказал Шайахметов. Аналитики портала SuperJob выяснили, что переводчики, менеджеры по туризму и официанты больше других специалистов боятся, что их работу в ближайшие 10 лет могут отнять роботы. В то же время врачи, строители и учителя почти за это не переживают, свидетельствуют данные опроса, который проводили в феврале и марте 2023 года.
Ключевые тенденции-2024 в области ИИ
Искусственный интеллект (ИИ) — одна из самых перспективных областей в науке и технологиях. Искусственный интеллект примет участие в Тотальном диктанте. Влияние ML и искусственного интеллекта на различные отрасли промышленности −. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Актуальность: Создание искусственного интеллекта в настоящее время связана со сложностью проблем, которые приходится решать современному человечеству.
Искусственный интеллект: ближайшее будущее
Скопировать ссылку Freepik Технологии искусственного интеллекта ИИ стремительно развиваются. Весной 2023 года ИИ совершил качественный рывок вперед: вышла новая версия ChatGPT, которая научилась генерировать тексты до 25 тыс. В мире возник новый виток небывалого интереса к технологии ИИ. Появляются сотни различных сервисов, в которые внедрены возможности искусственного интеллекта. В России компании также стали чаще использовать ИИ и зарабатывать на этом все больше денег. Объем российского рынка ИИ в 2022 году оценивается в 635 млрд руб. Впрочем, если судить по темпам роста экономического эффекта, то вклад может оказаться значительнее.
Основной игрок на рынке ИИ — это Сбербанк. Финансовый эффект от использования ИИ за четыре года увеличился в организации в пять раз, до более чем 230 млрд рублей в 2022 году. В 2019 г. В отчете компании отмечается, что в ближайшие годы основные инвестиции будут направлены в проекты, связанные с улучшением работы ИИ в чат-ботах, созданием изображений, мобильных приложений. По данным McKinsey , наиболее значимые технологические тенденции на рынке ИИ — прикладной искусственный интеллект и внедрение машинного обучения. Аналитическая компания Analytics Vidhya среди актуальных трендов в области ИИ и машинного обучения в 2023 г.
NLP используются в создании чат-ботов, анализе огромных текстовых документов, распознавании речи, трансформации текста в речь и пр. Бизнес-практика ИИ Для бизнеса использование ИИ становится необходимостью, конкурентным преимуществом.
Вот некоторые из самых интересных опенсорсных моделей, которые появились в 2023 году: Dolly от компании Databricks, специализирующейся на разработках в области больших данных.
Отечественная ruGPT-3. Для неё опубликована лишь предобученная версия «претрейн» , поэтому для выполнения инструкций её нужно дообучать. Orca 2 от Microsoft.
Даже из нашей скромной подборки видно, что открытые LLM разрабатывают все: крупные компании, небольшие стартапы и научные организации со всего мира. При необходимости они могут быть дообучены и настроены с учётом пожеланий заказчика и требований местного законодательства. Большинство опенсорсных моделей содержат меньшее число параметров, чем известные проприетарные сети.
За счёт этого они могут быть запущены на относительно слабом «железе», иногда даже на домашнем компьютере. Сравнение возможностей опенсорсных и проприетарных LLM Инфографика: Майя Мальгина для Skillbox Media Опенсорсные модели, которые можно запустить локально на сервере или компьютере, снижают риски утечки данных и взлома инфраструктуры. Но возрастает опасность, что такие нейросети могут использоваться в противозаконной деятельности.
Например, для воссоздания голоса и внешнего вида реальных людей с их использованием для получения доступа к банковским счетам или социальной инженерии. Стоит быть осторожным при внедрении опенсорсных разработок от малоизвестных коллективов, поскольку они могут быть обучены на неполных или предвзятых данных и иметь недокументированные проблемы в работе. Точность их работы будет низкой.
Читайте также: Коварный Open Source: какие опасности кроются в открытом и свободном ПО Основные тренды в развитии опенсорсных моделей Компании работают над опенсорсными моделями, схожими с аналогичными в проприетарными проектами: снижение числа галлюцинаций, увеличение длины контекста, повышение скорости и точности ответов, добавление мультимодальных возможностей и так далее. Разработчики ведут поиск архитектур, способных преодолеть недостатки популярных нейросетей типа «трансформер». На рынке существуют сотни открытых LLM, которые уже соревнуются между собой на виртуальных тестовых аренах, подобных Chatbot Arena Leaderboard от Hugging Face.
Число опенсорсных проектов и их конкуренция продолжит расти. Стоимость внедрения и дообучения LLM снижается. Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов.
Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ. Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций. Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов.
Чего ждать в 2024 году Главное — появления ещё большего числа дешёвых и эффективных моделей с открытым исходным кодом от небольших стартапов и крупных компаний. Отрасль ИИ станет меньше зависеть от IT-гигантов. В новом году ждём от них самых навороченных нейронок.
Опенсорсные модели займут нишу простых и доступных по стоимости решений. На их основе будут созданы персональные ИИ-ассистенты нового поколения, способные работать в смартфонах и других гаджетах. Мы ждём, что рост конкуренции в опенсорс-сообществе приведёт к появлению прорывных технологий, а не только к количественному усложнению моделей.
Например, могут появиться новые способы обучения или архитектуры нейросетей, лишённые недостатков предшественников. Не стоит забывать про опасности Open Source. В отсутствие контроля хакеры и интернет-мошенники начнут использовать генеративный интеллект для противозаконных действий.
Например, для создания вирусов, взлома паролей или кражи денег с помощью социальной инженерии, создавая «двойников» людей для телефонных или даже видеозвонков. В 2023 году основной прорыв в массовом использовании нейронок с открытым кодом внесла LLaMA, на базе которой появились десятки моделей: Mistral, Zephyr , Alpaca, Phi-2 , Qwen, Yi и другие.
Кроме того, искусственный интеллект применяется в различных аспектах организации и управления здравоохранением. Автоматизация процессов позволяет повысить эффективность работы медицинских учреждений, сократить время оказания медицинской помощи и улучшить общее качество здравоохранения. Искусственный интеллект в медицине и здравоохранении — это новые возможности для точной диагностики, персонализированного лечения и улучшения организации здравоохранения. Потенциальные угрозы и проблемы искусственного интеллекта Взглянем на потенциальные угрозы и проблемы, которые может представлять развитие и использование искусственного интеллекта. Безработица: Одним из основных вопросов, связанных с искусственным интеллектом, является его влияние на рынок труда. Автоматизация и замена человека машинами могут привести к массовому увольнению людей из-за высокой производительности и эффективности искусственного интеллекта. Это может создать социальные напряжения и увеличить неравенство в обществе.
Этические вопросы: С развитием искусственного интеллекта возникают сложные этические дилеммы, например, вопросы о приватности, дискриминации и решениях, принимаемых автоматизированными системами. Как определить ответственность за ошибки искусственного интеллекта, если они произойдут? Как быть уверенным в безопасности и конфиденциальности данных, обрабатываемых искусственными интеллектами? Эти и другие этические вопросы вызывают серьезную озабоченность. Зависимость от технологии: Появление искусственного интеллекта может создать зависимость общества и отдельных людей от технологии. В случае сбоя или отказа искусственного интеллекта может произойти коллапс различных систем, например, транспортных или банковских. Растущая зависимость от искусственного интеллекта вызывает обеспокоенность о стабильности и надежности различных инфраструктурных систем. Угроза для безопасности: Искусственный интеллект может быть использован не только для благих целей, но и для враждебных действий. Злоумышленники могут использовать искусственный интеллект для создания программного обеспечения, способного распознавать и анализировать уязвимости в системах безопасности.
Это представляет угрозу для конфиденциальности данных и может привести к кибератакам и хищению личной информации. Отсутствие контроля: Другой проблемой является отсутствие контроля и масштабируемость искусственного интеллекта. При возрастании мощности и скорости вычислений, искусственный интеллект может превзойти способность человека контролировать его. Это может привести к непредсказуемым результатам и потенциальным опасностям для общества. Мы не можем игнорировать потенциальные угрозы и проблемы, связанные с искусственным интеллектом. Вместо этого, необходимо активно исследовать и разрабатывать стратегии, которые позволят справиться с этими вызовами и обеспечить безопасное и этичное развитие и использование искусственного интеллекта. Обучение искусственного интеллекта и его возможности Обучение искусственного интеллекта ИИ — это процесс, в результате которого компьютерные системы способны самостоятельно приобретать знания и навыки, улучшать свою производительность и принимать решения без вмешательства человека. Это одна из ключевых составляющих развития ИИ и открытая дверь в будущее инноваций. Одной из основных методик обучения ИИ является машинное обучение.
В основе машинного обучения лежит использование алгоритмов, которые позволяют компьютерной системе обучаться на основе опыта и данных, анализировать их, выявлять закономерности и делать выводы. Важным компонентом машинного обучения является использование больших объемов данных — так называемых больших данных, которые позволяют обучить ИИ эффективно и точно. Машинное обучение позволяет ИИ развивать искусственный интеллект, превосходящий возможности человека в некоторых областях. Например, в медицине ИИ может анализировать медицинские изображения и проводить диагностику с высокой точностью. В финансовой сфере ИИ может прогнозировать тренды на рынке и помогать в принятии инвестиционных решений. В области транспорта ИИ может управлять автономными транспортными средствами и повышать безопасность дорожного движения. Важно отметить, что обучение ИИ может происходить как с участием человека, так и без него. В первом случае мы говорим о наблюдаемом обучении, когда ИИ изучает действия и решения человека для последующего применения. Во втором случае — о ненаблюдаемом обучении, когда ИИ самостоятельно анализирует данные и определяет закономерности без участия человека.
С появлением новых технологий и возможностей обучения ИИ, его потенциал становится все более существенным. ИИ имеет потенциал существенно изменить нашу жизнь, упростить рутинные задачи, повысить производительность и улучшить качество жизни. Однако существует и обратная сторона медали — потенциальные этические и правовые проблемы, связанные с автономностью ИИ и возможностью принимать решения, которые могут негативно повлиять на человека или общество. В заключение, обучение искусственного интеллекта имеет огромный потенциал и перспективы для развития. С постоянным развитием технологий и улучшением алгоритмов, ИИ становится все более продвинутым и способным адаптироваться к изменяющимся условиям. Однако, необходимо учитывать и потенциальные риски и проблемы, связанные с использованием ИИ, чтобы обеспечить его безопасное и эффективное применение в будущем. Интеллектуальные агенты и персонализованные рекомендации С появлением и развитием искусственного интеллекта всё более популярными становятся интеллектуальные агенты, способные выполнять сложные задачи автоматически и предлагать персонализованные рекомендации.
Государству выгодно быстро и качественно собирать налоги, начислять и вычислять. Ни для кого ни секрет, что решения о выдаче кредитов в банке давно принимает ИИ, а не человек. ML-инженеры, как пользовались, так и пользуются колоссальным успехом. И это будет продолжаться дальше. Это происходит во всем мире, не только в России и СНГ. Все больше людей обучается, появляются свои платформы. Потому что кто владеет качественной платформой по ИИ, тот владеет практически миром. К ним приходят запросы, данные и т. Без ИИ 3. Это огромный прорыв. Сейчас мы находимся в движении к 2025 году. Использование терабайтов в мире будет в 4 раза больше, чем в 2020 году. ML-инжиниринг будет востребован все больше. Они без работы точно не останутся. JS часто используют для разработки пользовательских интерфейсов. Но это высокоуровневый язык программирования, который не требует ручного управления памятью. C — универсальный, гибкий и многофункциональный язык от Microsoft. Он позволяет программистам писать всё — от системных приложений до сайтов. Microsoft активно поддерживает C и даже создала для него библиотеку ML. NET, которая содержит всё необходимое для работы с машинным обучением. Ампилогов Артур Владимирович Консультант и архитектор по разработке информационных систем 2023 год ознаменовал расцвет в области генеративных сетей искусственного интеллекта. Такие модели могут генерировать разный тип контента: писать текст, создавать картинки, аудио и видео, отвечать на текстовые сообщения в чате, распознавать аудио и отвечать на телефонные звонки, а также отвечать на вопросы пользователей, в том числе с поиском информации в интернете в режиме реального времени. Если раньше результат от общих моделей ИИ, таких как GPT, выглядел довольно примитивно, то сейчас ответы ничем не хуже специализированных моделей в конкретной области. В 2024 году продолжится бум ИИ. Компании поняли насколько можно сократить расходы на создание контента, например, при написании новостей или маркетинговых статей. Дизайнеры начали активно использовать помощь ИИ при редактировании и создании изображений, например, Adobe Photoshop позволяет изменить задний фон картинки, развернуть проекцию изображения лица, а также генерировать и вставить части изображения. ИИ активно применяется при обучении, при создании заданий, проверке ответов и помощи студентам через разъяснение ответов. Так DuoLingo, приложение для обучения языкам, использует ИИ для распознавания речи, сверки с правильностью произношения, и проверке ответов. Бизнес с энтузиазмом смотрит на возможность упростить создания программного обеспечения. Данная сфера требует высокого порога вхождения и больших трудозатрат для достижения профессионального уровня, что сказывается на высоких заработных платах в сфере ИТ и в конечном итоге на высоких затратах компании. Идут активные разработки с покрытием тестами ПО при помощи ИИ. Покрытие End-2-End тестами web сайтов показывает хорошие результаты, а генерация Unit тестов отстает. Также идут попытки улучшить создание простых приложений с ИИ с Low-code решениями. Например, FlutterFlow, программа для создания мобильных приложений, и Vercel V0, утилита для создания Web страниц, позволяют генерировать UI по описанию требований в чате. Программистам также представлены такие утилиты как Github Copilot и Tabnine, позволяющие дописывать код функций во время написания кода. Все крупные провайдеры ввязались в гонку создания больших генеративных моделей. Такой интеллект должен быть лучше человека в способности обучения и выдачи большинства ответов. Многих такая бурная перспектива развития ИИ пугает, и возможно это стало причиной по которой Илья Суцкевер, один из основателей OpenAI, был одним из идеологов увольнения Сэма Альтмана. Альтман, вместе с Microsoft, придерживается идеи быстрого развития и прихода к AGI с получением прибыли от захвата рынка, а Илья в недавнем выступлении TED предостерегает от таких действий. Рынок труда испытывает недостаток в ML специалистах, как на медународном уровне, так и на российском. Основные области работы ML инженера это или создания собственных моделей искусственного интеллекта, например в Яндексе и Сбербанке, или до-настройка существующих моделей под требования бизнеса. В обеих сферах сейчас большой недостаток специалистов.
«Сократят 300 млн человек по всему миру»: людей каких профессий совсем скоро могут заменить роботы
И главное. Материалы проанализированы непосредственно нейронкой. В таком подходе есть сразу несколько плюсов. Во-первых, появилась возможность построить итоговый рейтинг на основе отдельных номинаций с большим числом показателей. Во-вторых, нам доступны сырые данные, «провалившись» в которые мы можем убедиться в корректности расчета. Конечно, о рейтинге будет много споров. Мимо такого проекта не пройдешь, а мы этого и хотим».
Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений — это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме [8] Ermakova, Kovyazin, 2002. Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ в зависимости от предпочтений пользователя осуществляет персонализированный подбор рекламы, что способствует повышению эффективности маркетинга в аспекте таргетированной рекламы и увеличению объемов продаж. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов. Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании. Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к значительному снижению финансовых потерь, повышенной защищенности системы и росту доверия пользователей [7] Dudin, Shkodinskiy, 2021. Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом. Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций. Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже [4] Babich, Kirillova, 2019. Процессы автоматизации. Существует большое количество факторов, вызывающих возможные ошибки в работе персонала. Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека человеческий фактор , используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу [12] Lapaev, Morozova, 2020. Однако следует отметить, что уже сегодня ведется ряд исследований, которые позволяют ИИ выявлять сарказм и двойной смысл человеческих сообщений. В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI. Это перспективная подсистема ИИ, которая способна распознавать и интерпретировать проявления человеческих эмоций. Благодаря этому достигается более естественное и непринужденное взаимодействие человека и ИИ [6]. Виртуальные помощники. К примеру, чат-бот Олег, применяемый в приложении интернет-банка Тинькофф, с помощью распознавания речи общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы.
По мнению экспертов, к 2023 г. Задачи, на решение которых человек раньше тратил довольно продолжительное время, искусственный интеллект может выполнить за несколько секунд. Уже сегодня с помощью ИИ в десятки раз быстрее открывают банковские счета и проводят закупки, разрабатывают новые лекарства, инвестируют на фондовом рынке и могут с точностью до минут определить время задержки рейса. Искусственный интеллект называют «новым электричеством»: он меняет целые отрасли бизнеса, а в будущем, возможно, изменит и облик всей цивилизации. Согласно формулировке профессионального медийного ресурса Techtarget. ИИ применяется для создания экспертных систем, обработки данных на естественном языке, распознавания речи и машинного зрения и т. Цель работы — проанализировать результаты использования высокоинтеллектуальных решений в различных сферах бизнеса и определить перспективные направления внедрения алгоритмов искусственного интеллекта в бизнес-процессы. Научная новизна исследования заключается в изучении результатов внедрения программ и сервисов искусственного интеллекта в различные сферы бизнеса, что позволило определить основные направления дальнейшего развития систем искусственного интеллекта, а также обозначить основные проблемы, риски и угрозы, связанные с широким использованием искусственного интеллекта и информационных технологий в жизни общества, человека и государства. Гипотеза: основная цель внедрения сервисов искусственного интеллекта заключается не в полной замене человека в технологических и бизнес-процессах, но в повышении эффективности труда человека и показателей бизнеса в целом. Основная часть. Внедрение сервисов искусственного интеллекта в бизнес-сферу Объем информации, созданной человечеством за последние 30 лет, равен объему за предыдущие 3 тысячелетия и продолжает стремительно расти, формируя, таким образом, огромные массивы данных Big Data , которые не могут быть эффективно использованы без применения возможностей искусственного интеллекта ИИ [1, 4] Arkhipov, 2020; Babich, Kirillova, 2019. Включение в жизнедеятельность человека алгоритмов ИИ в качестве помощника с дополнительными возможностями и опциями позволяет получить основное преимущество такой интеграции — это не только ускорить процесс принятия решений, но и существенно повысить их качество [6] Gorodnova, 2021. Стремительное развитие систем ИИ позволяет ему самосовершенствоваться на основе нейронных сетей глубокого обучения. Это подтверждается ростом количества ИИ-стартапов, число которых в период с 2015 по 2018 г. США, причем в Соединенных Штатах — 1393 млрд долл. Наибольшее количество таких ИИ-компаний в 2017 г. По данным информационного портала DataProt, к 2027 г. Это свидетельствует о том, что возможности использования новых высокоинтеллектуальных технологий в будущем будут неуклонно возрастать [9] Zhilin, Safaryan, 2020. Объем инвестиций в разработки на основе искусственного интеллекта в 2020 г. США [3]. Также гигантские денежные ресурсы вкладываются в программы, способные распознавать человеческую речь. Этот сегмент, по данным аналитиков, в 2020 г. По прогнозу, уже в 2022 г. США [1] Arkhipov, 2020. Сегодня ядром сервисов искусственного интеллекта, применяемых в бизнес-сфере, являются ИИ-рекомендации онлайн-магазинов и виртуальные ассистенты например, Alex, Cortan и Siri [3] Bukhtiyarova, 2019. Искусственный интеллект сортирует контент по предпочтениям и популярности пользователей, распознает, понимает и самостоятельно пишет тексты, фильтрует и блокирует СПАМ, распознает человеческую речь, идентифицирует людей по фотографии, селфи, сетчатке глаза и другими способами. Это приводит экономистов и экспертов к противоречивым выводам по вопросу влияния ИИ на рынок труда вследствие ограниченных данных о негативных последствиях такого воздействия [6, 23] Gorodnova, 2021; Kitzmann, Yatsenko, Launer, 2021. В целях коммуникации с клиентами ИИ-компании используют чат-боты, которые вступают во взаимодействие и отвечают на вопросы. Системы искусственного интеллекта активно применяются при оказании телекоммуникационных услуг, в автомобильной промышленности и финансовом секторе. Указанные технологии внедряются и в розничных сетях, при производстве FMCG пер.
Поэтому с точки зрения бизнеса, ИИ будет набирать ход. С точки зрения государства — это очень быстрая обработка данных. Государству выгодно быстро и качественно собирать налоги, начислять и вычислять. Ни для кого ни секрет, что решения о выдаче кредитов в банке давно принимает ИИ, а не человек. ML-инженеры, как пользовались, так и пользуются колоссальным успехом. И это будет продолжаться дальше. Это происходит во всем мире, не только в России и СНГ. Все больше людей обучается, появляются свои платформы. Потому что кто владеет качественной платформой по ИИ, тот владеет практически миром. К ним приходят запросы, данные и т. Без ИИ 3. Это огромный прорыв. Сейчас мы находимся в движении к 2025 году. Использование терабайтов в мире будет в 4 раза больше, чем в 2020 году. ML-инжиниринг будет востребован все больше. Они без работы точно не останутся. JS часто используют для разработки пользовательских интерфейсов. Но это высокоуровневый язык программирования, который не требует ручного управления памятью. C — универсальный, гибкий и многофункциональный язык от Microsoft. Он позволяет программистам писать всё — от системных приложений до сайтов. Microsoft активно поддерживает C и даже создала для него библиотеку ML. NET, которая содержит всё необходимое для работы с машинным обучением. Ампилогов Артур Владимирович Консультант и архитектор по разработке информационных систем 2023 год ознаменовал расцвет в области генеративных сетей искусственного интеллекта. Такие модели могут генерировать разный тип контента: писать текст, создавать картинки, аудио и видео, отвечать на текстовые сообщения в чате, распознавать аудио и отвечать на телефонные звонки, а также отвечать на вопросы пользователей, в том числе с поиском информации в интернете в режиме реального времени. Если раньше результат от общих моделей ИИ, таких как GPT, выглядел довольно примитивно, то сейчас ответы ничем не хуже специализированных моделей в конкретной области. В 2024 году продолжится бум ИИ. Компании поняли насколько можно сократить расходы на создание контента, например, при написании новостей или маркетинговых статей. Дизайнеры начали активно использовать помощь ИИ при редактировании и создании изображений, например, Adobe Photoshop позволяет изменить задний фон картинки, развернуть проекцию изображения лица, а также генерировать и вставить части изображения. ИИ активно применяется при обучении, при создании заданий, проверке ответов и помощи студентам через разъяснение ответов. Так DuoLingo, приложение для обучения языкам, использует ИИ для распознавания речи, сверки с правильностью произношения, и проверке ответов. Бизнес с энтузиазмом смотрит на возможность упростить создания программного обеспечения. Данная сфера требует высокого порога вхождения и больших трудозатрат для достижения профессионального уровня, что сказывается на высоких заработных платах в сфере ИТ и в конечном итоге на высоких затратах компании. Идут активные разработки с покрытием тестами ПО при помощи ИИ. Покрытие End-2-End тестами web сайтов показывает хорошие результаты, а генерация Unit тестов отстает. Также идут попытки улучшить создание простых приложений с ИИ с Low-code решениями. Например, FlutterFlow, программа для создания мобильных приложений, и Vercel V0, утилита для создания Web страниц, позволяют генерировать UI по описанию требований в чате. Программистам также представлены такие утилиты как Github Copilot и Tabnine, позволяющие дописывать код функций во время написания кода. Все крупные провайдеры ввязались в гонку создания больших генеративных моделей. Такой интеллект должен быть лучше человека в способности обучения и выдачи большинства ответов. Многих такая бурная перспектива развития ИИ пугает, и возможно это стало причиной по которой Илья Суцкевер, один из основателей OpenAI, был одним из идеологов увольнения Сэма Альтмана. Альтман, вместе с Microsoft, придерживается идеи быстрого развития и прихода к AGI с получением прибыли от захвата рынка, а Илья в недавнем выступлении TED предостерегает от таких действий. Рынок труда испытывает недостаток в ML специалистах, как на медународном уровне, так и на российском.
20% крупных российских компаний уже используют генеративный искусственный интеллект
Необходимо учитывать как позитивные, так и потенциально негативные последствия использования ИИ, чтобы использовать его потенциал на благо человечества. Этические вопросы искусственного интеллекта С развитием искусственного интеллекта возникают все больше этических вопросов, которые общество должно рассмотреть и решить. Для оценки этических аспектов развития ИИ необходимо учитывать его потенциальные негативные последствия и влияние на человечество в целом. Одной из главных этических проблем является создание автономных систем ИИ, способных принимать решения без внешнего вмешательства. Вызывает беспокойство, что такие системы могут принимать решения, которые не соответствуют этическим нормам и ценностям общества.
Необходимо разработать и применять этические принципы и нормы, чтобы гарантировать соблюдение прав и интересов людей во всех сферах использования ИИ. Еще одной проблемой является неравенство доступа к инновационным технологиям ИИ. Если развитие ИИ будет неравномерным и ограниченным только небольшой группой людей или организаций, это может создать социальное неравенство и усугубить уже существующие проблемы. Важно обеспечить равный доступ к развитию и использованию технологий ИИ, чтобы все слои населения могли воспользоваться их преимуществами.
Также возникают этические вопросы в сфере приватности и безопасности. ИИ может собирать и обрабатывать огромные объемы данных о людях, что вызывает опасения относительно нарушения личной жизни и конфиденциальности. Регулирование искусственного интеллекта должно включать строгие меры по защите данных и соблюдению приватности. Другой важной этической проблемой является возможность злоупотребления ИИ.
Использование искусственного интеллекта для негативных целей, таких как массовая слежка, манипуляция мнениями и создание оружия, может иметь серьезные последствия для общества. Необходимо установить строгие правила и надзор за использованием ИИ, чтобы предотвратить его злоупотребление. В целом, этические вопросы, связанные с развитием искусственного интеллекта, требуют внимательного изучения и обсуждения. Они касаются основных ценностей и норм общества и должны быть решены в интересах сохранения человеческого достоинства и благополучия.
Будущее робототехники и автоматизации В современном быстро развивающемся мире, робототехника и автоматизация занимают все более важную роль. В будущем эти области ожидается еще больший рост и прогресс, оказывая значительное влияние на различные сферы нашей жизни. Сейчас уже можно наблюдать, как роботы вступают в нашу повседневную жизнь. Они помогают нам в домашних делах, доставляют посылки, выполняют операции в медицине и даже заменяют людей в определенных сферах работы.
В будущем, представляется, что роботы станут еще более продвинутыми и способными, что позволит улучшить эффективность и качество нашей жизни. Одной из самых перспективных областей, связанных с робототехникой и автоматизацией, является производство. Уже сейчас роботы применяются в производственных линиях, где они выполняют монотонные и опасные работы. В будущем, роботы возможно полностью заменят людей на таких рабочих местах, что создаст новые вызовы и возможности для образования и развития рабочей силы.
Робототехника и автоматизация также приводят к изменениям в сфере транспорта. С развитием беспилотных автомобилей уже можно предвидеть, что в будущем водительские права станут необязательными. Это приведет к снижению аварий и сократит время путешествия. Сфера медицины также не останется в стороне от прогресса робототехники и автоматизации.
Уже сейчас роботы успешно выполняют сложные операции, но в будущем они смогут выйти на новый уровень. С развитием искусственного интеллекта, роботы станут способными анализировать большие объемы данных и предлагать индивидуальные планы лечения, что значительно повысит эффективность и точность медицинской помощи. Однако, с ростом робототехники и автоматизации возникают и новые проблемы и вызовы. Возникает вопрос о потере рабочих мест, что требует поиска решений и создания новых предложений для обеспечения жизни людей.
Также существуют этические вопросы, связанные с искусственным интеллектом и роботами, которые нуждаются в ответах и регулировании. В целом, будущее робототехники и автоматизации представляет собой огромные возможности для прогресса и развития. Но также необходимо учесть и все нюансы и проблемы, чтобы обеспечить устойчивое и гармоничное влияние этих технологий на общество и нашу жизнь. Искусственный интеллект в медицине и здравоохранении Искусственный интеллект находит все большее применение в медицине и здравоохранении, привнося в эту сферу множество инноваций и улучшений.
Одной из главных областей применения искусственного интеллекта в медицине является диагностика заболеваний. Компьютерные алгоритмы и анализ больших объемов данных позволяют выявить патологические изменения на ранних стадиях, что способствует более точному и своевременному назначению лечения. Искусственный интеллект также применяется в прогнозировании развития определенных заболеваний и состояний пациента. Компьютерные модели, основанные на алгоритмах машинного обучения, способны предсказать не только вероятность возникновения болезни, но и течение ее развития, что позволяет принимать соответствующие меры предосторожности и своевременно корректировать лечение.
Звучит как антиутопия, верно? Но таков прогресс, и здесь можно думать, пройдёт он быстрее или нет, рассуждать, хорошо это или плохо, но он неизбежен. И, главное, мы через это уже проходили, и не раз. Во-первых, в какой-то момент появились паспорта для идентификации человека.
Был период, когда никакой идентификации не было, у человека было только имя, не было даже фамилии, по которой можно навести справки. Потом появились документы, благодаря которым о человеке можно многое узнать, и чем дальше, тем больше. В какой-то момент появляется технология обработки отпечатков пальцев, жёсткий идентификатор, который нельзя поменять. Сейчас то же самое с лицом, и это удобно, позволяет нам разблокировать телефон, например.
Мы периодически думаем: а как же соображение приватности, но на другой чаше весов лежит отсутствие необходимости доказывать, что ты ничего плохого не делал. Это ещё один важный тренд. Паспорт будущего — принципиально другой тип коммуникаций. О спектре применения искусственного интеллекта Первое, с чего стоит начать, — поиск, который невозможен без технологии искусственного интеллекта.
Это тысячи фактов, по которым принимается решение, что именно нужно показать по короткому запросу человека, и качество поиска определяется целиком и полностью качеством машинного обучения. Убрав машинное обучение из поиска, мы получим проблему. Иногда раскладку на сайте забудешь поменять — и ничего не находится. Поисковая система нас приучила к тому, что как ты ни пиши, что ни введи, нас сразу идеально понимают.
Это машинное обучение. Спектр возможностей практически бесконечен: кино, музыка, прогноз погоды, навигаторы, беспилотные авто. Вообще всё, что касается транспорта: рассчитать время прибытия такси, выбрать автомобили, которые увидят заказ, рассчитать время подачи, правильно определить и спрогнозировать цены — это всё делается в автоматическом режиме. И, в частности, предельно близкая мне тема — компьютерное зрение, распознавание изображений.
Та же "Алиса" — пример машинного обучения, она понимает речь, способна отвечать речью, а также распознаёт изображения. Недавно мы сделали технологию, которая называется DeepHD — технология увеличения размера изображения и видео, когда берётся маленькая картинка и в два раза увеличивается с помощью нейросетей. Ещё из примеров — реклама. Та реклама, которая нас сопровождает в интернете, подбирается автоматически, исходя из знаний пользователя, его интересов, потому что цель бизнеса — показывать рекламу, максимально полезную и удобную для человека.
Это выгодно всем: и пользователю, и рекламодателю. Это то, что мы делаем, и многое-многое другое. В случае "Яндекса" мне даже сложно представить или придумать какую-нибудь сферу деятельности, где не применяется искусственный интеллект. О том, как искусственный интеллект использует или может использовать государство Технологии искусственного интеллекта — это инструмент, и, как любой инструмент, для решения одних задач он эффективен, для других — нет.
В государственном секторе, я знаю, есть проблема входящей корреспонденции. Вся бюрократическая машина построена таким образом, что письмо может где-то повиснуть, а оно должно обязательно до кого-то дойти, гражданин должен получить ответ. Такой корреспонденции много, и часто она проходит какими-то неведомыми путями, потому что никто долгое время не может понять и решить, кому она конкретно должна быть адресована и как на неё отвечать. Системы сортировки входящей корреспонденции вполне можно автоматизировать по содержимому.
Кроме того, нужно выделять вопросы индивидуальные, которые требуют какого-то человеческого подхода, анализа, общения людей. А в крайне типовых ситуациях процесс можно автоматизировать: выбрать с помощью анализа самый частотный сценарий, сделать классификатор таких сценариев и его автоматизировать. Это упростит работу и повысит эффективность госаппарата. О том, что ИИ может сделать для медицины Мой личный интерес к машинному обучению появился лет 30 назад.
Я купил в антикварном магазине один из томов многотомного издания, который назывался "Опыт советской медицины в годы Великой Отечественной войны", и обнаружил там просто сумасшедшую статистику. Том, который я держал в руках, назывался "Лёгочные патологии при ранении конечностей". Казалось бы, какая связь — патологии в легких и ранения конечностей. Оказывается, какие-то закономерности есть, при этом книга была выпущена сразу после войны, и не было времени понять почему.
Там были собраны наблюдения и статистика, и она была просто огромная, тысячи случаев. Из этого понятно, что, просто анализируя события и наблюдая за происходящим, можно найти закономерности, которые на первый взгляд неочевидны. Дело в том, что медицина — это консервативная область, которая жёстко регулируется по вполне понятным причинам — слишком высока цена ошибки, любое внедрение требует множества экспериментов. Второй важный момент — данные, которые собирает медицина, очень чувствительны и приватны, никто из нас не хочет, чтобы его история болезни стала публичной.
Поэтому законодательная база устроена таким образом, что любые медицинские данные крайне строго охраняются. Эту ситуацию нужно как-то аккуратно менять, потому что медицина — сфера, где максимально высок потенциал применения технологий: и скорость постановки диагноза, и постановка каких-то упреждающих диагнозов, и прогноз ситуации. Все врачи говорят одно и то же: приходите и проверяйтесь, чем раньше что-то диагностировано, тем лучше. Никто из нас, конечно, не ходит, потому что кажется, что меня это не коснётся, я молодой, у меня нет времени или ещё что-нибудь.
Но если система будет давать индивидуальные рекомендации: конкретно тебе нужно прийти конкретно к этому врачу, потому что именно в твоём случае высок риск появления такого-то заболевания, которое нужно диагностировать на раннем этапе, — это было бы невероятно полезно. Надеюсь, что такие системы появятся. О том, почему банки заинтересованы в развитии технологий ИИ Есть то, что называется скоринг — принятие решения, выдавать или не выдавать кредит.
Например, при управлении «умным домом» с помощью голосового ассистента или обработке больших объемов информации различия между поколениями стираются — эти сферы применения ИИ пользуются практически одинаковым спросом у респондентов из разных возрастных групп. Тем не менее люди старшего возраста от 45 до 55 лет чаще отмечают, что ИИ-технологии пока не принесли им никакой конкретной пользы. Вместе с тем они отмечают свою общую заинтересованность в таких инновациях. Общий тренд на интерес к технологиям искусственного интеллекта и доверие к нему продемонстрировали респонденты с детьми. При этом каждый десятый житель региона запрещает своим детям пользоваться нейросетями, опасаясь, что это помешает им научиться принимать собственные решения. Заметна и тенденция на рост использования ИИ в повседневной жизни. Респондент мог указать несколько вариантов ответа. ООO «Техкомпания Онор».
Более точная диагностика здоровья кредиты: pixabay Достижения технологий и искусственного интеллекта открывают новую эру более точной диагностики здоровья. Благодаря интеграции передовых алгоритмов искусственного интеллекта и методов машинного обучения специалисты здравоохранения теперь могут предлагать пациентам более точные и надежные диагностические оценки. Одно из ключевых преимуществ этих технологические инновации Это способность быстро и эффективно анализировать огромные объемы данных о пациентах. Сюда входят данные медицинской визуализации, генетического профиля, электронных медицинских карт и носимых устройств. Диагностические инструменты на основе искусственного интеллекта могут анализировать это огромное количество информации, чтобы выявить закономерности, аномалии и потенциальные риски для здоровья, которые специалистам-практикам может быть сложно обнаружить. Более того, эти достижения могут сделать здравоохранение более персонализированным. Принимая во внимание уникальную генетическую структуру человека, историю болезни и стиль жизни факторов, диагностика на основе искусственного интеллекта может адаптировать рекомендации и планы лечения к конкретным потребностям каждого пациента. Такой персонализированный подход повышает точность диагностики и общее качество оказания медицинской помощи. Лучшее прогнозирование спроса и автоматизация рабочих процессов в розничной торговле В розничной торговле происходит революция благодаря технологиям на базе искусственного интеллекта, которые меняют способы прогнозирования тенденций и прогнозирования спроса. Эти достижения помогают ритейлерам оптимизировать свою планирование запасов , что приводит к увеличению потенциального дохода. Такое сокращение логистических затрат приводит к повышению рентабельности. Это не только приводит к экономии средств, но и высвобождает ценные человеческие ресурсы для решения более стратегических задач. Это сводит к минимуму возникновение нехватки товаров на складе, что может привести к потере продаж и недовольству клиентов. Это приводит к повышению удовлетворенности и лояльности клиентов. Ожидается, что в 2023 году ИИ продолжит играть заметную роль в секторе розничной торговли, а его приложения расширятся за пределы управления запасами, цепочками поставок и логистикой. Вот некоторые области, где ИИ может оказать существенное влияние: Автоматизация кассового аппарата: Кассовые системы на базе искусственного интеллекта, такие как магазины без касс, станут более распространенными, что сократит время ожидания и улучшит общее впечатление от покупок. Персонализация опыта магазина: Алгоритмы искусственного интеллекта будут анализировать данные клиентов, чтобы предоставлять персонализированные рекомендации по продуктам, предложениям и впечатлениям в магазинах, повышая вовлеченность клиентов и продажи. Оформление витрин: Решения на основе искусственного интеллекта оптимизируют планировку магазинов и размещение продуктов на основе данных в реальном времени, повышая видимость продуктов и продажи. Предотвращение потерь: Системы наблюдения на базе искусственного интеллекта помогут ритейлерам более эффективно выявлять и предотвращать кражи и мошенничества. Поддержка клиентов: чат-боты с искусственным интеллектом и виртуальные помощники обеспечит мгновенную поддержку клиентов, улучшив время отклика и качество обслуживания. Улучшенное обнаружение мошенничества и персонализация в сфере финансовых технологий кредиты: pixabay В мире финансовых услуг крайне важно уделять приоритетное внимание безопасности и устанавливать доверительные отношения с клиентами. Обнаружение и предотвращение мошеннических или несанкционированных транзакций позволяет быстро сэкономить деньги, повысить безопасность и укрепить отношения между финансовым учреждением и его клиентами. Финансовые компании теперь используют технологию искусственного интеллекта для улучшения процессов идентификации клиентов и управления рисками. С помощью процедур идентификации на основе искусственного интеллекта компании могут с самого начала собирать более подробную информацию о своих клиентах, включая их личность, пригодность и потенциальные риски.
Сферы применения систем искусственного интеллекта
— Какие изменения нас ждут в области искусственного интеллекта через 30–50 лет? — Учебная дисциплина об искусственном интеллекте существует давно, ещё до основания СФУ. — Какие изменения нас ждут в области искусственного интеллекта через 30–50 лет? Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь.